Exit Exam-Part 4: October 11, 2005

Problem 1. Find $\displaystyle
\frac{d^2y}{dx^2}$ for $x=t^3+t$ and $y=t^2$. Then decide whether the curve is concave up or down at $t=1$.

Answer. We have

\begin{displaymath}\frac{dy}{dx} = \frac{\displaystyle \frac{dy}{dt}}{\displaystyle
\frac{dx}{dt}}= \frac{2t}{3t^2+1}\end{displaymath}

Since

\begin{displaymath}\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) =...
...t}
\left(\frac{2t}{3t^2+1}\right) \left(\frac{1}{3t^2+1}\right)\end{displaymath}

or

\begin{displaymath}\frac{d^2y}{dx^2} = \left(\frac{2(3t^2+1)-6t(2t)}{(3t^2+1)^2}\right)
\left(\frac{1}{3t^2+1}\right) = \frac{2}{(3t^2+1)^3}\end{displaymath}

When $t=1$, we get

\begin{displaymath}\frac{d^2y}{dx^2} = \frac{2}{4^3} = \frac{1}{32} \end{displaymath}

so the curve is concave up at $t=1$.




Problem 2. Find the indefinite integrals

\begin{displaymath}\int \left(t \sqrt{t} + \frac{1}{t\sqrt{t}}\right)dt\end{displaymath}

Answer. We have

\begin{displaymath}t \sqrt{t} = t t^{1/2} = t^{3/2}\end{displaymath}

so

\begin{displaymath}\displaystyle \int \left(t \sqrt{t} +
\frac{1}{t\sqrt{t}}\right)dt = \int \left(t^{3/2} +
t^{-3/2}\right)dt\end{displaymath}

Since

\begin{displaymath}\int t^{r} dt = \frac{t^{r+1}}{r+1} + C\end{displaymath}

whenever $r \neq -1$, we get

\begin{displaymath}\int \left(t^{3/2} + t^{-3/2}\right)dt = \frac{t^{3/2 + 1}}{3/2+1} + \frac{t^{-3/2+1}}{-3/2+1} + C\end{displaymath}

or

\begin{displaymath}\int \left(t^{3/2} + t^{-3/2}\right)dt = \frac{t^{5/2}}{5/2} + \frac{t^{-1/2}}{-1/2} + C =
\frac{2}{5}t^{5/2} - 2t^{-1/2} + C\end{displaymath}




Problem 3. Find the definite integrals

\begin{displaymath}\displaystyle \int_0^{\pi/4} \frac{1}{\cos^2(x)}dx\end{displaymath}

Answer. We have

\begin{displaymath}\int \frac{1}{\cos^2(x)}dx = \tan(x) + C\end{displaymath}

The fundamental theorem of Calculus gives

\begin{displaymath}\int_0^{\pi/4} \frac{1}{\cos^2(x)}dx = \Big[\tan(x)\Big]^{\pi/4}_0 = \tan(\pi/4) - \tan(0) = 1-0 = 1\end{displaymath}




Problem 4. Find the exact area below the curve $y = x^3(1-x)$ and above the x-axis.

Answer. Graphing the function $y = x^3(1-x)$ we see that when $0 \leq x \leq 1$ the function is above the x-axis otherwise it is below. And it crosses the x-axis when $x=0$ and $x=1$. So the area is given by the formula

\begin{displaymath}\mbox{Area} = \int_0^1 x^3(1-x) dx \end{displaymath}

Since

\begin{displaymath}\int_0^1 x^3(1-x) dx = \int_0^1 (x^3-x^4) dx = \left[\frac{x^4}{4} - \frac{x^5}{5}\right]_0^1 \end{displaymath}

so

\begin{displaymath}\mbox{Area} = \int_0^1 x^3(1-x) dx = \frac{1}{4} - \frac{1}{5} = \frac{1}{20}\end{displaymath}




Problem 5. Find the derivatives

\begin{displaymath}\frac{d}{dt} \left(\int_t^{t^2} \sin(x^2)dx\right)\end{displaymath}

Answer. Recall the formula

\begin{displaymath}\frac{d}{dt} \left(\int_{u}^{v} f(x)dx\right) = f(v)\frac{dv}{dt} - f(u)\frac{du}{dt}\end{displaymath}

so

\begin{displaymath}\frac{d}{dt} \left(\int_t^{t^2} \sin(x^2)dx\right) =
\sin\Big((t^2)^2\Big)2t - \sin(t^2) 1 = 2t \sin(t^4) - \sin(t^2)\end{displaymath}



If you have any questions or comments about this web page, please contact M. A. Khamsi via email.