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FIXED POINTS OF MONOTONE ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION
SPACES

M. R. ALFURAIDAN, M. BACHAR, AND M. A. KHAMSI

ABSTRACT. Let C be a nonempty, p-bounded, p-closed, and convex subset of
a modular function space L, and 7' : ¢ — C be a monotone asymptotically
p-nonexpansive mapping. In this paper, we investigate the existence of fixed
points of T. In particular, we establish a modular monotone analogue to the
original Goebel and Kirk’s fixed point theorem for asymptotically nonexpansive
mappings. We will also investigate the behavior of the modified Mann iteration
process defined by
frrr=a T"(fn) + (1 — a) fn,

for n € N and establish the analogue to Schu’s fundamental results in the setting
of modular function spaces.

1. INTRODUCTION

Modular function spaces (MFS) find their roots in the study of the classical func-
tion spaces LP(£2) and their extensions by many like Orlicz spaces for example. For
more details on MFS, we recommend the book by Kozlowski [11]. Another inter-
esting use of the modular structure, for whoever is looking for more applications,
is the excellent book by Diening et al. [4] about Lebesgue and Sobolev spaces with
variable exponents. Fixed point theory in MFS was initiated in 1990 in the original
paper [9]. Since then this theory has seen an explosion which culminated in the
publication of the recent book by Khamsi and Kozlowski [8]. In this work, we con-
tinue investigating the fixed point problem in MFS. To be precise, we investigate
the case of monotone mappings. This area of metric fixed point theory is new and
attracted some attention after the publication of Ran and Reuring’s paper [15]. An
interesting reference with many applications of the fixed point theory of monotone
mappings is the excellent book by Carl and Heikkila [3].

Since this work deal with the metric fixed point theory, we recommend the book
by Khamsi and Kirk [6].

2. PRELIMINARIES

For the basic definitions and properties of MFS, we refer the readers to the books
8, 11].
Throughout this work, A stands for a nonempty set, ¥ a nontrivial o-algebra of
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subsets of A, P a d-ring of subsets of A such that PN.S € P for any P € P and
S € 3. We will assume that there exists an increasing sequence {A,} C P such
that A = JA,,. My will stand for the space of all extended measurable functions
f: A — [—o0,00] for which there exists {g,} C &, with |g,| < |f| and ¢, (t) — f(t),
for all t € A, where £ stands for the vector space of simple functions whose supports
is in P.

Definition 2.1 ([8, 11]). A convex and even function p : My, — [0, 00] is called a
regular modular if:

(i) p(f) =0 implies f =0 p — a.e,;
(i) [f(t)] < |g(t)] for all t € A implies p(f) < p(g), where f,g € Mo (we will say
that p is monotone);
(ili) [fn(®)] 1 |f(t)] for all ¢ € A implies p(fn) T p(f), where f € Mo (p has the
Fatou property).

Recall that a subset A € ¥ is said to be p-null if p(gl4) = 0, for any g € £, and
a property holds p-almost everywhere (p-a.e.) if the exceptional set is p-null. The
notation 14 denotes the characteristic function of the set A. Consider the set

M ={feMu;|f(t)] <o p—a.e}.
The MFS L, is defined as:
L,={feM;p(Af) = 0as X — 0}
In the following theorem we recall some of the properties of modular spaces that
will be used throughout this work.

Theorem 2.2 ([8, 11]). Let p be a convex reqular modular.

(1) If p(Bfn) — 0, for some B > 0, then there exists a subsequence { fy(n)} such
that fym) — 0 p— a.e.

(2) If fn = [ p— a.e., then p(g) <liminf p(gy).
(3) p satisfies the Aq-type condition if

= su M o0 00
w(a) = sup { p(g),0<p(g)< }<

for any o € [0,400). If p satisfies the Aq-type condition, then we have
plafn) — 0 if and only if p(afy) — 0, for any o > 0.

The following definition is needed since it connects the metric properties with its

modular version.
Definition 2.3 ([8, 11]). Let p be a convex regular modular.

(1) {gn} is said to p-converge to g if lim p(g, —g) = 0.

n—oo
(2) A sequence {g,} is called p-Cauchy if lim p(gn, — gm) = 0.
n,m—00
(3) A subset C of L, is said to be p-closed if for any sequence {g,} in C p-
convergent to g implies that g € C.

(4) A subset C of L, is called p-bounded if its p-diameter sup{p(g — h); g, h €
C} < 0.
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Note that despite the fact that p does not satisfy the triangle inequality in general,

the p limit is unique and p-convergence may not imply p-Cauchy behavior. But it

is interesting to know that p-balls B,(z,7) = {y € Ly;p(x —y) < r} are p-closed,

and any p-Cauchy sequence in L, is p-convergent, i.e. L, is p-complete [8, 11].
Using Theorem 2.2, we get the following result:

Theorem 2.4. Let p be a convex regular modular. Let {g,} C L, be a sequence
which p-converges to g. The following hold:
(i) if {gn} is monotone increasing, i.e., gn < gnt1 p-a.e., for any n > 1, then
gn < g p-a.e., for anyn > 1.;
(i) if {gn} is monotone decreasing, i.e., gn+1 < gn p-a.e., for any n > 1, then
g < gn p-a.e., for any n > 1.

Next we discuss a property called uniform convexity which plays an important
part in metric fixed point theory.

Definition 2.5 ([8]). Let p be a convex regular modular.
(i) Let 7 > 0 and € > 0. Define

dp(r,e) = inf{l — % p(%); (f,9) € D(’F,E)},

where

D(r,e) ={(f,9): f,9 € Lp, p(f) <7, plg) <7.p(f —g) Zer}.
p is said to be uniformly convex (UC) if for every R > 0 and € > 0, we have
dp(R,e) > 0.

(ii) p is said to be (UUCQ) if for every s > 0, > 0 there exists 7(s,e) > 0 such
that 0,(R,e) > n(s,e) > 0, for R > s.

(iii) p is said to be strictly convex (SC), if for any g and h in L, with p(g) = p(h)
and p(a g+ (1 — a)h) = a p(g) + (1 — a)p(h), for some « € (0,1), we must
have f = g.

Note that the uniform convexity of p easily implies (SC).

Remark 2.6. It is known that, under suitable assumptions, the uniform convexity

of the modular in Orlicz spaces is satisfied iff the Orlicz function is uniformly convex

[10, 17]. Examples of Orlicz functions that do not satisfy the Ay condition and are

uniformly convex are: ¢1(t) = ell — |t| — 1 and () = ef* — 1 [14, 13].

Modular functions which are uniformly convex enjoys a property similar to re-
flexivity in Banach spaces.

Theorem 2.7 ([8, 10]). Let p be a (UUC) convex regular modular. Then L, has
property (R), i.e. every nonincreasing sequence {Cy} of nonempty, p-bounded, p-
closed, convex subsets of L, has nonempty intersection.

Remark 2.8. Let p be a (UUC) convex regular modular. Let K be a p-bounded
convex p-closed nonempty subset of L,. Let {f,} C K be a monotone increasing
sequence. Since order intervals in L, are convex and p-closed, then the property
(R) implies

N{feks fu<f p—ae}#0.

n>1
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In other words, there exists f € K such that f, < f p-a.e., for any n > 1. A similar
conclusion holds for decreasing sequences.

The following lemma is useful throughout this work.

Lemma 2.9 ([7]). Let p be a (UUC) convex reqular modular. If there exists R > 0
and o € (0,1) with limsup p(fn) < R, limsup p(gx) < R, and lim p(ar fo + (1 -

n—oo n—o0

a) gn) = R, then lim p(fn = gn) — 0 holds.

The concept of p-type functions will prove to be an important tool dealing with
the existence of fixed points.

Definition 2.10 ([10]). Let p be a convex regular modular. Let C' be a nonempty
subset of L,. A function 7: C — [0,00] is called a p-type if there exists a sequence
{gm} of elements of L, such that

T(f) = %rljélop p(gm — ),

for any f € C. Let 7 be a type. A sequence {f,} is called a minimizing sequence
of 7in C if li_>m 7(fn) = inf{7(f); feC}.

We have the following amazing result about type functions in MFS.

Lemma 2.11 ([7]). Let p be a (UUC) convex regular modular. Let K be a p-
bounded p-closed convexr nonempty subset of L,. Then any minimizing sequence of
any p-type defined on K is p-convergent. Its limit is independent of the minimizing
sequence.

Before we finish this section, let us give the modular definitions of monotone
Lipschitzian mappings. The definitions are straightforward generalizations of their
norm and metric equivalents.

Definition 2.12. Let p be a convex regular modular. Let K be nonempty subset of
L,. A mapping T': K — K is said to be monotone if T'(f) < T'(g) p-a.e. whenever
f < g p-ae., for any f,g € K. Moreover T is called monotone asymptotically
nonexpansive if 7' is monotone and there exists {k,} C [1,+00) such that nlgrolo ky, =

1 and

p(T"(g) = T"(h)) < kn p(g — h),
for any g and h in K such that ¢ < h p-a.e., and n > 1. g € K is called a fixed
point of 7" if and only if T'(g) = g.

3. MONOTONE ASYMPTOTIC NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION
SPACES

The fixed point theory for asymptotically nonexpansie mappings finds its root in
the work of Goebel and Kirk [5]. Following the success of the fixed point theory
of monotone mappings, the fixed point theorem of monotone asymptotically non-
expansie mappings was only proved recently [1].
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Before we state our main result on monotone asymptotically nonexpansie map-
pings in MFS, recall that a map T is said to be p-continuous if {g,} p-converges to
g implies {T'(gn)} p-converges to T'(g). A similar result for asymptotically nonex-
pansive mapping in modular function spaces may be found in [7].

Theorem 3.1. Let p be a (UUC) convex regular modular. Let K be a p-bounded
p-closed convex nonempty subset of L,. LetT : K — K be a p-continuous monotone
asymptotically nonexpansive mapping. Assume there exists fo € K such that fy <
T(fo) (resp. T(fo) < fo) p-a.e. Then T has a fixed point f such that fo < f (resp.
f < fo) p-ae.

Proof. Without loss of generality assume fo < T'(fy) p-a.e. Since T is monotone,
the sequence {T"(fp)} is monotone increasing. Remark 2.8 implies that Ko, = {f €
K; fn, < f p—a.e.} is not empty. Consider the p-type function ¢ : Ko — [0, 400)
defined by
w(h) = limsup p(T"(fo) — h), for any h € K.
n—oo

Let po = inf{p(h);h € Ks}. Let {gn} C K be a minimizing sequence of .
Lemma 2.11 implies that {g,} p-converges to g € K. Let us prove that g is a fixed
point of T'. First notice that ¢(T™(h)) < kp, @(h), for any h € Ko and m > 1. In
particular, we have ¢(T™(gn)) < km ©(gn), for any n,m > 1. Clearly the sequence
{T"*P(g,)} is a minimizing sequence in K, for any p € N. Again Lemma 2.11
will force {T""P(g,)} to p-converge to g, for any p € N. Since T is p-continuous
and {T™(g,)} is p-convergent to g, then {T""1(g,)} is p-convergent to T(g) and g.
Since the p-limit of any p-convergent sequence is unique, we must have T'(g) = g.
Since g € Ko, we have fy < g p-a.e., which completes the proof of Theorem 3.1. O

Next we discuss an iteration which will generate an approximate fixed point of
monotone asymptotically nonexpansive mapping in MFS. This is useful because it
allows for an algorithm with possible use in computational science.

Definition 3.2 ([16]). Let p be a convex regular modular. Let K be a convex
nonempty subset of L,. Let T': K — K be a mapping. Fix fo € K and o € [0, 1].
The modified Mann iteration is the sequence {f,} defined by

(3'1) Jnt1 :aTn(fn)+(1_a)fna
for any n € N.

We start by proving some Lemmas which will be helpful.

Lemma 3.3. Let p be a convex reqular modular. Let K be a convexr nonempty
subset of L,. Let T : K — K be a mapping. Let fo € K be such that fo < T(fy)
(resp. T(fo) < fo) p-a.e. Let {t,} C [0,1]. Consider the modified Mann iteration
sequence { fn} generated by fo and {t,}. Let f be a fized point of T such that fy < f
(resp. f < fo) p-a.e. Then

(1> fO < fn < f (T65p~ f < fn < f()) p-a.e.,

(i) T"(fo) < T"(fa) < f (resp- < T"(fu) < T"(fo)) p-aec.,
for anyn € N.
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Proof. Without loss of generality, assume fy < T'(fp). Since T' is monotone and f
is a fixed point of T', we get (ii) from (i). Let us prove by induction (i). Indeed, we
have fo < T(fo) < T(f) = f p-a.e. since T' is monotone. Using the convexity of
the order intervals, we conclude that fo < fi < f. Assume that fy < f,, < f p-a.e.
Again using the monotonicity of T', we get

Jo T (fo) <T"(fn) ST™(f) = f p—a.e,

which implies by convexity of the order intervals that fo < fh,+1 < f p-a.e. By
induction, we conclude that fy < f, < f p-a.e., for any n € N. O

Lemma 3.4. Let p be a convex reqular modular. Let K be a convexr and p-bounded
nonempty subset of L,. Assume that the map T : K — K is monotone asymptotic

o0
nonexpansive with the associated constants {k,} satisfy > (k, —1) < oo. Let

n=1
fo € K be such that fo < T(fo) (resp. T(fo) < fo) p-a.e. Let a € (0,1). Consider
the modified Mann iteration sequence {f,} generated by fo and .. Let f be a fized
point of T such that fo < f (resp. f < fo) p-a.e. Then le p(fn — f) exists.

Proof. Without loss of generality, assume that fo < T'(fy) p-a.e. From the definition
of {fn}, we have
plfn1=f) < ap(T(fu) =)+ A —a)p(fa—f)
= ap(T"(fu) =T"(f) + A —a) p(fn = [),

for any n > 1. Since T is monotone asymptotic nonexpansive, we get

p(fnsr = f) < kn p(fo— f) = (ko = 1) p(fu — f) + p(fu = f),

for any n > 1. Hence

p(frt1 = f) = p(fa — ) < (kn — 1) 6,(K),
for any n € N, where 6,(K) = sup{p(h — g); h,g € K} is the p-diameter of K.

Hence
m—1

p(faim = F) = pfa = ) S 6p(K) Y (knsi = 1),
i=0
for any n,m > 1. If we let m — oo, we get
limsup p(fin = f) < p(fn = £) + 0, () Z(ki - 1),

for any n > 1. Next let n — oo, we get

lim sup p(fm = [) < liminf p(fy, — f) + 6,(K) lim inf Z(ki — 1) = liminf p(f, — f).

Therefore, we have lim sup p(fm, — f) = liminf p(f,, — f), which implies the desired
m—00 n—00
conclusion. 0

The next result shows that the sequence generated by the modified Mann iteration
almost provide a fixed point. Similar results for such iteration in modular function
spaces may be found in [2, 12].
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Theorem 3.5. Let p be a (UUC) convex regular modular. Let K C L, be a p-
bounded p-closed convex nonempty subset. Let T : K — K be a p-continuous
monotone asymptotically nonexpansive mapping with the associated constants {k;,}

satisfy § (kn, — 1) < 00. Let fo € K be such that fo < T(fo) (resp. T(fo) < fo)

n=1
p-a.e. Let o € (0,1). Consider the modified Mann iteration sequence { f,,} generated
by fo and a. Then either {f,} p-converges to f or

Jim p(fn = T"(fn)) = 0.
Proof. Assume that {f,} does not p-converge to f. Let us prove that le o(fn —

T"(fn)) = 0. Without loss of generality, we assume fy < T'(fy) p-a.e. Using
Theorem 3.1, there exists f a fixed point of T such that fy < f p-a.e. Using Lemma
3.4, we conclude that ILm p(fn — f) exists. Set R = ILm p(fn — f). Since {fn}

does not p-converge to f, we have R > 0. We have
limsup p(T"(fn) — f) = limsup p(T"(fn) — T"(f)) < limsup ky p(fn — f) = E.

n—oo n—o0

On the other hand, we have p(fr+1— f) < a p(T"(fn) — f) + (1 — ) p(fn— f), for
any n > 1. Let U be a non-trivial ultrafilter over N. Hence

R=1impl(fus — ) < o limp(T"(f) — f) + (1~ ) R
Since a # 0, we get lizjr{n p(T"(fn) — f) > R. Hence

R < liminf p(T" () = f) < lin p(T" (1) — ) < limsup p(T" (£,) — /) < R
So nh_)rgo p(T™(fn) — f) = R. Using Lemma 2.9, we conclude that nh_g)lo o(fn —
T™(fn)) = 0, which finishes the proof of our claim. O
Remark 3.6. In fact, the modified Mann sequence {f,} is an approximate fixed

point sequence of T" under suitable conditions. Indeed, assume p satisfies the Ao-
type condition and T is uniformly p-Lipschitzian, i.e. there exists ¢ > 0 such that

p(T"(g) = T"(h)) < £ p(g = h),
for any g,h € K and n > 1. In this case, we have

Jim p(fo =T™(fn)) =0,

for any m > 1. Indeed, note that

o= T() = w2) p (L
< w(2) p(fn - Tn(fn)) + W(2) p(Tn( n) - T(fn))
< w(2) p(fr = T"(fn)) +w(2) £ P(Tnil(fn) — fn);
for any n > 2. From
n—1 _
p(Tnil(fn) —fn) < w(®@)p L (];1) Jn

w(2)p(T"(fn) = TN fa1)) +w(2)p(T"(fr1) = fu)
W)l p(fn = fr1) + w(@2)p(T"H(fa1) = fu),

INIA
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and p(fn - fnfl) = O‘p(fnfl _Tn_l(fnfl))v p(Tn_l(fnfl) - fn) = (1 - a) p(fnfl -
T Y(fn-1)), we get that

p(T" " (fa) = fa) Sw (@) +1) p(fao1 =T (fam))-

Hence

p(frn —T(fn)) Sw(2) p(fn —T"(fn)) + W2(2) £+ 1)2 p(fn-1— Tn_l(fnfl)),
for any n > 2. Since nlg)go p(fn—T"(fn)) =0, we conclude that

Jim p(fn = T(fa)) =0,

ie. {fn} is an approximate fixed point sequence of T'. Finally let us fix m > 1.
Then

p(fn =T (fn)) < w(m) p(T(fu) = T (fn) < w(m) Cp(fn = T(fn)),

which implies that p(f, — T (fn)) < m £ w(m) p(fn — T(fn)), for any m > 1.
Clearly, this implies

li_)rn p(fn—T"(fn)) =0, for any m > 1.
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