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Abstract. In this paper we examine the basic structure of metric trees and prove
fixed point theorems for uniformly Lipschitzian mappings in metric trees.

1 Introduction The study of injective envelopes of metric spaces, also known as metric
trees (R-trees or T-theory), has its motivation in many subdisciplines of mathematics as
well as biology/medicine and computer science. Its relationship with biology and medicine
stems from the construction of phylogenetic trees [25]. In computer science, concepts of
“string matching” are closely related with the structure of metric trees [3]. In the definition
of an ordinary tree all the edges are assumed to have the same length, and therefore the
metric is not often stressed. A metric tree is a generalization of an ordinary tree which
allows for different edge lengths, thereby emphasizing the behavior of free actions on metric
trees. (for more details see [23],[24]). Metric trees were first introduced by J. Tits [26]
in 1977. A metric tree is a metric space (M, d) such that for every x, y in M , there is a
unique arc between x and y and this arc is isometric to an interval in R. For example, a
connected graph without loop is a metric tree.One basic property of metric trees is their
one-dimensionality. Also in the late seventies, while studying t-RNA molecules of the E.
Coli bacterium M. Eigen raised several questions which led A. Dress [8],[9] to construct
metric trees (named as T -theory). Metric trees also arise naturally in the study of group
isometries of hyperbolic spaces. For metric properties of trees we refer to [7] and the ex-
cellent book [5]. Topological characterization of metric trees were explored in [20] and [21]
where it was proved that for a separable metric space (M, d) the following are equivalent:

1. M admits an equivalent metric ρ such that (M, ρ) is an metric tree.
2. M is locally arcwise connected and uniquely arcwise connected.

There is a close connection between hyperconvex spaces and metric trees. In [1], authors
take A. Dress’ definition of a metric tree and show that every complete metric tree is hyper-
convex. On the other hand, in [16], by using J. Tits’ definition of R-tree, it is shown that
a metric space M is a complete R-tree if and only if M is hyperconvex with unique metric
segments. For more about hyperconvex spaces and fixed point theorems in hyperconvex
spaces we refer to [15] and [6]. Also in [13] Lipschitz quotients from metric trees and in [22],
extension of Lipschitzian mappings on metric trees were considered. In the following, after
proving basic properties of metric intervals, we will study convex subsets of metric trees
and show that the collection of all convex subsets of a metric tree is uniformly normal. We
will also prove under suitable conditions two fixed point theorems for uniformly Lipschizian
mappings in metric trees. It should be mentioned that the maps, even though they are not
intrinsically continuous, they are asymptotically continuous. It is unknown to us whether
such theorems currently exist.
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2 Basic Properties and Results Since a metric tree (M, d) is a space in which there
is only one path between two points x and y, this would imply that if z is a point between
x and y, by which we mean if d(x, z) + d(z, y) = d(x, y) then we know that z is actually on
the path between x and y. This will motivate the next concept of a metric interval.

Definition 2.1 Let (M, d) be a metric space and let x, y ∈ M . An arc from x to y is
the image of a topological embedding α : [a, b] → M of a closed interval [a, b] of R such
that α(a) = x and α(b) = y. A geodesic segment from x to y is the image of an isometric
embedding α : [a, b] → M such that α(a) = x and α(b) = y. The geodesic segment will be
called metric segment and denoted by [x, y] throughout this work.

Now we are ready to define a metric tree.

Definition 2.2 A metric tree is a nonempty metric space M satisfying:

(a) Any two points of x, y ∈ M , x and y are the endpoints of a metric segment [x, y].
(b) If x, y, z ∈ M then [x, y] ∩ [x, z] = [x,w] for some w ∈ M (i.e., if we have two metric
segments with a common endpoint, then their intersection is a metric segment.)
(c) If x, y, z ∈ M and [x, y] ∩ [y, z] = {y} then [x, y] ∪ [y, z] = [x, z] (i.e., if two metric
segments intersect in a single point, then their union is a metric segment.)

Next we give some basic properties of metric segments.

Lemma 2.1 Let (M, d) be a metric space and x, y ∈ M , with x �= y.

1. If z ∈ [x, y], then [x, z] ⊂ [x, y].

2. If M is a metric tree, then for any z ∈ M , there is a unique w ∈ [x, y] such that

[x, z] ∩ [y, z] = [w, z].

The proof is classical and may be found in [4] on page 33.

Definition 2.3 Let M be a metric tree and C ⊂ M . We say C is convex, if for all x, y ∈ C
we have [x, y] ⊂ C.

Clearly, a metric tree M and the ∅ are convex. Also any closed ball B(a, r) = {z ∈ M :
d(a, z) ≤ r} in a metric tree is also convex. To see this, take two arbitrary elements x, y of
B(a, r) and let z ∈ [x, y]. From the above lemma, there exists a unique w ∈ [x, y] such that

[x, a] ∩ [y, a] = [w, a].

Since [x, y] = [x,w] ∪ [w, y], we have z ∈ [x,w] or z ∈ [w, y]. Without loss of generality,
assume z ∈ [x,w], then

d(a, z) ≤ d(a,w) + d(w, z) ≤ d(a,w) + d(w, z) + d(x, z) = d(a,w) + d(x,w) = d(a, x) ≤ r ,

which implies z ∈ B(a, r).

Throughout this paper we will make abundant use of the following property which is
closely related to uniform convexity in Banach spaces.
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Theorem 2.1 Let M be a metric tree. Let x, y ∈ M and let z be the middle-point of [x, y].
For a ∈ M , we have

d(a, z) ≤ max
(
d(a, x); d(a, y)

)
− d(x, y)

2
.

We will refer to this conclusion as property (UC).
Proof: Let x, y, a, z ∈ M as in the theorem 2.3. Since M is a metric tree, there exists
w ∈ [x, y] such that

[a, x] ∩ [a, y] = [a, w] .

Since z ∈ [x,w] ∪ [w, y], then without loss of generality we may assume z ∈ [x,w]. So

d(a, z) + d(z, x) = d(a, x) ≤ max
(
d(a, x); d(a, y)

)
.

Hence

d(a, z) ≤ max
(
d(a, x); d(a, y)

)
− d(z, x) = max

(
d(a, x); d(a, y)

)
− d(x, y)

2

which completes the proof of our theorem.

The following notations will be needed throughout this paper. Let (M, d) be a metric
space and let A be a nonempty bounded subset of M . Set

co(A) = ∩{B : B is a closed ball and A ⊂ B}.
The subset A is called admissible if co(A) = A, (i.e., A is an intersection of closed balls.)
Let A(M) denotes the collection of admissible subsets in M . A(M) is said to be uniformly
normal if for each C ∈ A(M) for which diam(C) > 0 there exists α < 1 such that R(C) ≤
α diam(C), where ⎧⎨

⎩
r(x) = sup{d(x, c); c ∈ C}
R(C) = inf{r(x);x ∈ C}
diam(C) = sup{d(x, y) : x, y ∈ C}.

Letting C(M) denote the collection of all closed convex subsets of the metric tree M , we
set:

conv(A) = ∩{B : B is a convex subset of M such that A ⊆ B}.
Since closed balls are convex, we have A(M) ⊂ C(M). Moreover, this is a proper inclusion.
To see this, we need to make a couple of observations. First, if one has x �= y with
[x, y] ⊂ B(a, r) and m is the midpoint of [x, y], then using the (UC) property we get

B

(
m,

d(x, y)
2

)
⊂ B(a, r),

which implies B

(
m,

d(x, y)
2

)
⊂ co([x, y]). Moreover closed unit balls in a metric tree

may not be compact. Indeed, take closed unit ball in R
2 with radial metric. Looking at

x, y ∈ B(0, 1) with x �= y, then the radial distance between x and y is 2. Also any metric
segment in B(0, 1) is contained in co([x, y]), which implies that co([x, y]) is not compact for
this distance. But [x, y] is compact and convex. This example was suggested to us by Kirk.
[17]

In order to prove our first fact about C(M), we need the following result of Baillon [2].
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Theorem 2.2 [2] Let M be a bounded metric space and let {Hβ}β∈Γ be a decreasing family
of nonempty hyperconvex subsets of of M . Then

⋂
β∈Γ

Hβ �= ∅ and is hyperconvex.

Since convex subsets of a metric tree are hyperconvex [1] and [16] and the intersection
of convex subsets is also convex, we get the following amazing fact.

Theorem 2.3 Let M be a bounded metric tree. Then C(M) is compact, (i.e., for any
family {Cβ}β∈Γ in C(M) such that

⋂
β∈Γf

Cβ �= ∅, where Γf is any finite susbet of Γ, we have

⋂
β∈Γ

Cβ �= ∅

and is in C(M).) Moreover C(M) is uniformly normal.

The following remark will help shed more light on the properties of the convex sets and
metric segments.

Remark 2.1 In [14] (see also [10]) a natural isometric embedding of any metric space M
into the Banach space l∞(M) is given. So if M is a metric tree, it is also hyperconvex.
Then, there exists a nonexpansive retract R : l∞(M) → M . For any x, y ∈ M , we write

tx ⊕ (1 − t)y = R(tx + (1 − t)y)

for any t ∈ [0, 1]. Here we are using the linear convexity of l∞(M). It is not hard to check
that tx ⊕ (1 − t)y ∈ [x, y] and that for any x, y, z, w ∈ M , we have

d(z, tx ⊕ (1 − t)y) ≤ td(z, x) + (1 − t)d(z, y)

and
d(tx ⊕ (1 − t)y, tz ⊕ (1 − t)w) ≤ td(x, z) + (1 − t)d(y,w)

for any t ∈ [0, 1]. Recall that R is nonexpansive if

d(R(x), R(y)) ≤ d(x, y)

for any x, y.

3 Main Results Up till now the metric fixed point theory in metric trees is based on
what is currently known about hyperconvex spaces. But because metric trees enjoy the
property (UC) which fails in the classical hyperconvex spaces, metric trees inherit some
known results in the uniformly convex Banach spaces. In fact, in this paper, we give the
proofs in a larger class of maps. It is worth to mention the recent works [11] and [18] where
the authors deal with similar questions.

Definition 3.1 Let M be a metric tree. A mapping T : C → C of a subset C of M is said
to be Lipschitzian if there exists a non-negative number k such that d(Tx, T y) ≤ kd(x, y)
for all x and y in C. The smallest such k is called Lipschitz constant and will be denoted by
Lip(T ). Same mapping is called uniformly Lipschitzian (respectively eventually uniformly
Lipschitzian) if sup

n≥1
Lip(T n) < ∞ (respectively sup

n≥n0

Lip(T n) < ∞ for some n0 ≥ 1).
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Note that eventually uniformly Lipschitzian mappings need not be continuous. If Lip(T ) ≤
1, then T is called nonexpansive and eventually nonexpansive if sup

n≥n0

Lip(T n) ≤ 1 for some

n0 ≥ 1.

It is well-known fact that if a map is uniformly Lipschitzian, then one may find an
equivalent distance for which the map is nonexpanive. Indeed, let T : C → C be uniformly
Lipschitzian. Setting

ρ(x, y) = sup{d(T nx, T ny) : n = 0, 1, 2...}

for x, y ∈ C, one can obtain a metric ρ on C which is equivalent to the metric d and relative
to which T is nonexpansive. In this context, it is natural to ask the question: if a set C
has the fixed point property (fpp) for nonexpansive mappings with respect to the metric d,
then does C also have (fpp) for mappings which are nonexpansive relative to an equivalent
metric? This is known as the stability of (fpp). The first result in this direction is due to
Goebel and Kirk [12]. Motivated by such questions,the following fixed point theorems of
uniformly Lipschitzian mappings in metric trees are given:

Theorem 3.1 Let M be a metric tree and K be a nonempty, closed, convex, and bounded
subset of M with diam(K) > 0. Let T : K → K be eventually uniformly Lipschitzian such
that

σ(T ) = lim sup
n→∞

Lip(T n) <
3
2

.

Then T has a fixed point.

Proof: Let k > 0 such that σ(T ) < k < 3/2. By the definition of σ(T ), there exists n0 ≥ 1
such that Lip(T n) ≤ k for n ≥ n0. Next let x ∈ K and set

d(x) = lim sup
n→∞

d(x, T n(x))

and

r(x) = inf

⎧⎨
⎩ρ > 0 : ∃ n ≥ 1 such that K ∩

( ⋂
i≥n

B(T ix, ρ)
)
�= ∅

⎫⎬
⎭ .

Observe that since the diameter of the set K is finite, then r(x) ≤ diam(K) is finite. Next,
for each ε > 0 we define

Cε(x) =
⋃
n≥1

( ⋂
i≥n

B(T i, r(x) + ε)
)
.

Then for each ε > 0 the set Cε(x) is nonempty (Cε(x) ∩ K �= ∅) and convex. Compactness
of C(M) implies that

C(x) =
⋂
ε>0

Cε ∩ K �= ∅.

Let z ∈ C(x), then z and r(x) have the properties:

1. For any ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0 we have T n(x) ∈ B(z, r(x)+ε).
2. For any z ∈ K and 0 < r < r(x), the set {i : d(T i(x), z) > r} is infinite.

Observe that if r(x) = 0 or if d(z) = 0, then lim
n→∞ T n(x) = z. Let us prove that in this
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case we have Tz = z. Indeed, let n0 ≥ 1 such that T n is Lipschitzian for any n ≥ n0. In
particular, T n will be continuous (for n ≥ n0). So for N ≥ 1, we have lim

n→∞ T n+N(x) =

T N(z). But
lim

n→∞T n+N(x) = lim
n→∞T n(x) = z.

So for N ≥ n0, we have T N(z) = z. This clearly implies T N+1(z) = z as well. Combining
the two, we get T (z) = z. Of course, if we knew that T was continuous the proof would
have been easier. Assume now that r(x) > 0 and d(z) > 0. Let ε > 0, ε ≤ d(z), and select
j big enough so that d(z, T jz) ≥ d(z)− ε. By property (1.) above, there exists n0 ≥ 1 such
that if i ≥ n0, then

d(z, T ix) ≤ r(x) + ε ≤ k(r(x) + ε)

where n0 is chosen so that Lip(T n) ≤ k for n ≥ n0. Thus if i − j ≥ n0, we have

d(T j(x), T i(x)) ≤ k d(z, T i−j(x)) ≤ k
(
r(x) + ε

)
.

Considering the midpoint m of the interval [z, T j(z)], and using the property (UC), we have

d(m,T i(x)) +
1
2
d(z, T j(z)) ≤ k

(
r(x) + ε

)
,

equivalently,

d(m,T i(x)) ≤ k
(
r(x) + ε

)
− 1

2
d(z, T j(z)) ≤ k

(
r(x) + ε

)
− 1

2

(
d(z) − ε

)
.

Therefore, we have

r(x) ≤ k
(
r(x) + ε

)
− 1

2

(
d(z) − ε

)

from the definition of r(x). Since ε was arbitrary we get

r(x) ≤ k r(x) − 1
2
d(z)

or equivalently
d(z) ≤ 2(k − 1)r(x).

Set a = 2(k − 1) < 1, then
d(z) ≤ a r(x) ≤ a d(x)

and
d(z, x) ≤ d(x) + r(x) ≤ 2 d(x).

To complete the proof, fix x ∈ K and construct by induction a sequence {xn}, with x0 = x,
such that

d(xn+1) ≤ a d(xn) and d(xn+1, xn) ≤ 2 d(xn)

for n = 1, ...,. If we have d(xn) = 0 for some n, then the above argument yields a fixed
point of T . Otherwise, we have

d(xn+1, xn) ≤ 2 d(xn) ≤ 2 an d(x)

which implies that the sequence {xn} is Cauchy, therefore lim
n→∞ xn = z ∈ K exists. Also

d(z, T i(z)) ≤ d(z, xn) + d(xn, T i(xn)) + d(T i(xn), T i(z))
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for any i ≥ 1. If we chose i large enough to assume that Lip(T i) ≤ k, then

d(z, T i(z)) ≤ (k + 1)d(z, xn) + d(xn, T i(xn)).

This implies
d(z) ≤ (k + 1)d(z, xn) + d(xn),

hence d(z) = 0 which implies Tz = z.

In order to improve the constant
3
2
, one needs to use Lifschitz’s [19] ideas.

Theorem 3.2 Let M be a metric tree. Then for any 4/3 < b < 2, there exists a > 1 such
that for any x, y ∈ M and r > 0 with d(x, y) > r it implies that there exists z ∈ M such
that

B(x, br) ∩ B(y, ar) ⊂ B(z, r).

Proof: Let 4/3 ≤ b < 2. Choose c > 0 such that

max
{

1
b
, 2 − 2

b
,
4
b
− 2

}
< c < 1.

Then choose a > 0 such that

1 < a ≤ 2 − bc

2
.

It is easy to check that a < b. Let x, y ∈ M such that d(x, y) > r. Let w ∈ B(x, br) ∩
B(y, ar). We have three cases.

Case 1. If d(x, y) ≥ br, let z be the midpoint of [x, y]. Then, we have

d(z, w) +
d(x, y)

2
≤ br

which implies

d(z, w) ≤ br − br

2
=

br

2
< r

(i.e., w ∈ B(z, r).)

Case 2. If ar ≤ d(x, y) < br, let z ∈ [x, y] such that

d(x, z) =
br

2
.

Since M is a metric tree, there exists wxy ∈ [x, y] such that

[w, x] ∩ [w, y] = [w,wxy].

So either z ∈ [x,wxy] or z ∈ [wxy, y]. Assume z ∈ [x,wxy]. Then

d(z, w) = d(x,w) − d(x, z) = d(x,w) − br

2
≤ br − br

2
< r.
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Otherwise, assume z ∈ [wxy, y]. Then

d(z, w) = d(y, w) − d(y, z) = d(y, w) −
(

d(x, y) − br

2

)
≤ ar − d(x, y) +

br

2
≤ br

2
< r

since ar − d(x, y) ≤ 0.

Case 3. If d(x, y) < ar, let z ∈ [x, y] such that

d(x, z) =
bcr

2
.

Let wxy be as in the previous case. Then again either z ∈ [x,wxy] or z ∈ [wxy, y]. Assume
z ∈ [x,wxy]. Then

d(z, w) = d(x,w) − d(x, z) = d(x,w) − bcr

2
≤ br − bcr

2
= br

(
1 − c

2

)
< r

since b − bc

2
< 1. Otherwise, assume z ∈ [wxy , y]. Then

d(z, w) = d(y, w)−d(y, z) = d(y, w)−
(

d(x, y) − bcr

2

)
≤ ar−d(x, y)+

bcr

2
≤ ar−r+

bcr

2
≤ r

since a − 1 +
bc

2
≤ 1.

This completes the proof of our theorem.

Using this theorem, we are ready to state the main result of this paper.

Theorem 3.3 Let M be a metric tree and C be a nonempty, closed, convex subset of M
with diam(C) > 0. Let T : C → C be eventually uniformly Lipschitzian such that

σ(T ) = lim sup
n→∞

Lip(T n) < 2 .

Then T has a fixed point provided that T has bounded orbits.

Proof: Let k > 0 such that σ(T ) < k < 2. By definition of σ(T ), there exists n0 ≥ 1
such that Lip(T n) ≤ k for any n ≥ n0. Let y ∈ C and set

R(y) = inf
{
d > 0 : ∃ x ∈ C such that for any n ≥ 1 d(T n(x), y) ≤ d

}
.

Since the orbit of y is bounded, we get R(y) < ∞. Assume that R(y) = 0. Then for all
ε > 0, there exists xε ∈ C such that d(T n(xε), y) < ε for any n ≥ 1. If we choose i ≥ n0,
then we get

d(T n+i(xε), T i(y)) < k ε

which implies d(y, T i(y)) < ε (1+k), for any i ≥ n0. Since ε was arbitrary, we get T i(y) = y,
for any i ≥ n0. So T n0(y) = T n0+1(y) = y which obviously implies T (y) = y. Now assume
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that R(y) > 0. Since k < 2, let k < b < 2 and a > 1 such that ∀x, y ∈ C, ∀r > 0 with
d(x, y) > r, there exists z ∈ [x, y] such that

{
d(x,w) ≤ b r
d(y, w) ≤ a r

=⇒ d(w, z) ≤ r.

Letting λ < 1 be such that γ = min{aλ, bλ/2}, we will construct by induction a sequence
{yn} ∈ C such that

R(yn+1) ≤ λR(yn) and d(yn, yn+1) ≤ (λ + γ)R(yn).

Let y1 ∈ C and assume y1, ....yn are known. Again if R(yn) = 0 we are done. Assuming
that R(yn) > 0, then there exists j ≥ n0 such that λR(yn) ≤ d(T j(yn), yn) and x ∈ C with
d(T m(x), yn) ≤ γR(yn) for all m ≥ 1. Let x∗ = T j(x). Then for i ≥ 1 we have

T i(x∗) = T i+j(x) ∈ B(yn, γR(yn)) ⊂ B(yn, aγR(yn))

which implies

d(T i(x∗), T j(yn)) = d(T i+j(x), T j(yn)) ≤ k d(T ix, yn) ≤ k γ R(yn) ≤ b λ r(yn),

hence
T i(x∗) ∈ B(yn, a λ R(yn)) ∩ B(T j(yn), b λ R(yn)) = D.

Since b < 2 , there exists w ∈ [yn, T j(yn)] ⊂ C such that D ⊂ B(w,λ R(yn)) yielding
T i(x∗) ∈ B(w,λ R(yn)) for all i ≥ 1. Thus, R(w) ≤ λR(yn). Set yn+1 = w, then
R(yn+1) ≤ λR(yn) and

d(yn+1, yn) ≤ d(yn+1, T
i(x∗)) + d(T i(x∗), yn) ≤ λR(yn) + γR(yn) ≤ (λ + γ)R(yn) .

By induction, the sequence {yn} is built. It is easy to see that {yn} is a Cauchy sequence.
Therefore lim

n→∞ yn = z ∈ C exists. Let ε > 0,so that there exists n1 ≥ n0 such that for all

n ≥ n1, d(z, yn) < ε. By fixing n ≥ n1, there exists x ∈ C such that R(yn)+ε ≥ d(yn, T i(x))
and hence

d(T i(x), z) ≤ d(z, yn) + R(yn) + ε .

Thus R(z) ≤ d(z, yn) + R(yn) + ε yielding R(z) = 0. This will imply T (z) = z.

As a direct consequence of the above result, we have the following stability result.

Theorem 3.4 Let (M, d) be a metric tree. Let d∗ be an equivalent distance such that
d ≤ d∗ ≤ b d, with b < 2. Then (M, d∗) has the fixed point property for eventually nonex-
panisve mappings, (i.e., for any nonempty closed convex subset C of M and any eventually
nonexpansive map T : C → C with bounded orbits, T has a fixed point.)

Proof: Let T be as in the statement of the theorem. Then for any n ≥ 1, we have

d(T n(x), T n(y)) ≤ d∗(T n(x), T n(y)) ≤ d∗(x, y) ≤ b d(x, y) .

So T is eventually Lipschitzian for the distance d with σ(T ) ≤ b < 2. The previous results
assure us of the existence of a fixed point of T in C.
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