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1. Introduction and basic definitions

Let T be a self-map on a nonempty subset K of a metric space (X, d). Denote by F(T) = {x € K : T(x) = x} the set of
fixed points of T.

The map T is said to be: (i) uniformly L-Lipschitzian if for L > 0, we have d(T"x, T"y) < Ld(x,y) forx,y € K, and
n > 1; (ii) asymptotically nonexpansive [1] if there exists a sequence {k,} C [1, co) with lim,_,, k, = 1 such that
d(T"x, T"y) < k, d(x,y) forx,y € K,and n > 1; and (iii) asymptotically quasi-nonexpansive if F(T) # ¢ and there exists a
sequence {k,} C [1, o) with lim,_,», k; = 1such that d(T"x, p) < k, d(x,p) forx € K,p € F(T),andn > 1.

If k, = 1forn > 1 in the above definitions (ii), (iii), then T becomes a nonexpansive and a quasi-nonexpansive map,
respectively.

Various iteration processes have been studied for an asymptotically nonexpansive map T on a convex subset K of a
normed space E. Schu [2] considered the following modified Mann iterations:

Xnp1 = (1 —ap)Xy + @, "%, n>1, (1.1)

where0 < a, < 1.
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Fukhar-ud-din and Khan [3] have studied the modified Ishikawa iterations:
Xn41 = (1 - an(l))xn + an(l)Tn((‘1 - an(Z))Xn + an(z)Tan), n>1 (12)

where 0 < a1y, anz) < 1, such that {a,} is bounded away from 0 and 1 and {a,(,)} is bounded away from 1.

Xu and Noor [4] introduced and studied a three-step iteration scheme. Khan et al. [5] have defined a general iteration
scheme for a family of maps which extends the scheme of Khan and Takahashi [6] and the three-step iteration scheme of
Xu and Noor [4] simultaneously, as follows:

Throughout this paper, we will use I = {1, 2, ..., k}, where r > 1. Suppose thata;; € [0,1],n > 1andi € I. Let
{T; : i € I} be a family of asymptotically quasi-nonexpansive self-maps of K. Let x; € K. The scheme introduced in [5] is

Xnp1 = (1 — Qpn)xn + aknT/? Yk—1)ns
Yk=1n = (1 — g—nn)Xn + C—1nTi_1 Y—2)n,
Yk—2n = (1 — @g—2yn)Xn + C—2ynTi_5 Y3,

(1.3)

Yon = (1 — agn)xn + WZnTzn Yin,
Yin =1 —ap)x, + a]nT1n Yon,

where yo, = x,, for all n.

Very recently, inspired by the scheme (1.3) and the work in [5], Xiao et al. [7] have introduced an (r 4+ 1)-step iteration
scheme with error terms and studied its strong convergence under weaker boundary conditions.

One of the most interesting aspects of metric fixed point theory is to extend a linear version of a known result to the
nonlinear case in metric spaces. To achieve this, Takahashi [8] introduced a convex structure in a metric space (X, d). A map
W:X? x [0, 1] — X is a convex structure in X if

dlu,Wk,y, 1)) < xd(u,x) + (1 —21)d(u,y)

forallx,y € X and A € [0, 1]. A metric space together with a convex structure W is known as a convex metric space. A
nonempty subset K of a convex metric space is said to be convex if W(x,y, A) € K forallx,y € K and A € [0, 1]. In fact,
every normed space and its convex subsets are convex metric spaces but the converse is not true, in general (see [8]). A
hyperconvex metric space is another example of a convex metric space. For more on these spaces and their applications, we
refer the reader to [9,10].

Let (X, d) be a metric space. A geodesic from x to y in X is a map c from a closed interval [0, I] C R to X such that c(0) = x,
c() = y,and d(c(t), c(t')) = |t — t/| forall t,t’ € [0, []. In particular, c is an isometry and d(x, y) = L. The image « of c is
called a geodesic (or metric) segment joining x and y. The space (X, d) is said to be a geodesic space if every two points of X
are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for eachx, y € X,
which we will denote by [x, y], called the segment joining x to y.

A geodesic triangle A(x, X2, X3) in a geodesic metric space (X, d) consists of three points x1, x5, X3 in X (the vertices of
A) and a geodesic segment between each pair of vertices (the edges of A). A comparison triangle for the geodesic triangle
A(x1, X2, X3) in (X, d) is a triangle A(x1, X, X3) == A(X1, X2, X3) in R? such that dy2 (;, X)) =d(x;, xj) fori,j € {1, 2, 3}. Such
a triangle always exists [11].

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following
CAT (0) comparison axiom: .

Let A be a geodesic triangle in X and let A C R? be a comparison triangle for A. Then A is said to satisfy the CAT(0)
inequality if for all x, y € A and all comparison pointsx,y € A,

dx,y) <d®R,y).

Complete CAT (0) spaces are often called Hadamard spaces (see [12]). If x, y1, y, are points of a CAT (0) space and if yq is the
midpoint of the segment [y1, ¥>], which we will denote by ylgﬂ, then the CAT (0) inequality implies

V1 DYy 1, 1, 15
d (x, V=) < =d*(x, ~d*(x, y2) — ~d*(y1, y2).
(X 5 ) =3 *,y1) + 5 (*,y2) 1 1, ¥2)
This inequality is the (CN) inequality of Bruhat and Titz [ 13]. The above inequality has been extended by Khamsi and Kirk [ 14]
as

Pz, ox® (1 —a)y) <ad®z, %)+ (1 —a)d?(z,y) —a(l —a)d(x,y), (CN*)

forany o € [0, 1] and x, y, z € X. The inequality (CN*) also appeared in [15].

Let us recall that a geodesic metric space is a CAT (0) space if and only if it satisfies the (CN) inequality (see [11], p. 163).
Moreover, if X is a CAT (0) metric spaceand x, y € X, thenforany « € [0, 1], there exists a unique point ax® (1—a)y € [x, y]
such that

dz,ax® (1 —a)y) < ad(z,x) + (1 —a)d(z,y)

foranyz € Xand [x,y] = {axd (1 —a)y : @ € [0, 1]}.
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In view of the above inequality, CAT (0) spaces have Takahashi’s convex structure W (x, y, «) = ax ® (1 — «)y. A subset
K of a CAT(0) space X is convex if for any x, y € K, we have [x, y] C K.

The existence of fixed (common fixed) points of one map (or two maps or a family of maps) is not known in many
situations. So the approximation of fixed (common fixed) points of one or more nonexpansive, asymptotically nonexpansive,
or asymptotically quasi-nonexpansive maps by various iterations have been extensively studied, in Banach spaces, convex
metric spaces and CAT (0) spaces (see [2-7,16-21]).

We now translate the scheme (1.3) from the normed space setting to the more general setup of convex metric spaces as
follows:

x; € K, Xnt1 = UpyXn, n>1, (1.4)
where

Unoy = I (the identity map),

Unyx = W (T} UnoyX, X, Qn(1y),

Unyx = W(TSUncyX, X, n2)),

Ungr—1yX = W(T;L 1 Unr—2)X, X, Gnr—1))

UnryX = W (T Unr—1)X, X, Gn(r)),
where 0 < a, < 1,fori el.

In a convex metric space, the scheme (1.4) provides analogues of:

(i) the scheme (1.1)ifr =1and T, = T;
(ii) the scheme (1.2)ifr =2,T; =T, =T and
(iii) the Xu and Noor [4] iteration scheme ifr =3, T =T, =T3 =T.

This scheme becomes the scheme (1.3) if we choose a special convex metric space, namely, a normed space.

In this paper, we establish theorems of strong convergence, for the

iteration scheme (1.4), to a common fixed point of a finite family of asymptotically quasi-nonexpansive maps, where the
underlying space is either a convex metric space or a CAT (0) space. Our work extends as well as refines several comparable
results given in [2-7,16-18].

In the sequel, it is assumed that F = ﬂ{;l F(Ty) # ¢.

2. Results for convex metric spaces
We begin with a technical result.

Lemma 2.1. Let K be nonempty convex subset of a convex metric space X and let {T; : i € I} be a finite family of asymptotically
quasi-nonexpansive self-maps of K with sequences {k, (i)} C [1, oo) foreachi € I, respectively, such that Zﬁ; (kp(i)—1) < o0.
Then for the iteration scheme {x,} in (1.4), we have

(i): d(xnt1,p) < kyd(xnp), where k, = max ky(i);

1<i<r

(ii): d(Xpym,p) < sd(X,,p), form > 1,n>1,p € F and for somes > 0.

Proof. (i)Itis clear that ) -, (k, — 1) < ooifand only if > oo, (ks (i) — 1) < oo.

Now for any p € F, we have

d(xny1.p) = d(W(T'Ung—1)Xn, Xn» Gn(r))» P)

anryd(T Unir—1)Xn, D) + (1 — anry)d(Xn, D)
Anryknd(Unr—1yXn, p) + (1 — an(r))d(xp, p)
Uy An(r—1y KA (Unr—2)Xn, P) + (1 = n(r))d(Xn, P) + ey (1 = Ane—1))d(Xn, P)
n(ry (-1 k2dUnr—2)Xn, D) + (1 = @y )dXny P) + Anry (1 — Gnge—1))K2d (X, P)
= Gn(r)n(r—1)Kad(Ungr—2)Xn, P) + (1 = An(r) @ngr—1))Kad(Xn, p)

IA A

IA

IA

An(ry Anr—1)Anr—2) - - - Gnyknd(P, UnyXn) + (1 = @ngryGnir—1)Anir—2) - - - Gn(1)) K, d(xn, D).

IA

That is,
d(xXps1, p) < kjd(xn, D). (2.1)
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(i) If x > 1, then x < exp(x — 1). Therefore, it follows from (2.1) that

d(xn+m7 p) = k;+m71d(xn+m—lv p)
< exp((rkntm—1 — 1)dXn+m-1, P))
< exp((rkngm—1 — N [Kyym_2dXnym—2, p)1)
=< eXp((rkn+m—1 + rkn+m—2 - 2r)d(xn+m—2a p))
....... n.+.m7]
< exp (r Z ki — mr) d(x,, p)
i=n
o0
< exp (erf - r) d(xs, p)
i=n
< sd(xn, D),
where s = exp(r Y =, ki — ).
That is,
dXp4m, p) < s d(xn, p) (2.2)

form>1,n> 1,p € F and for somes > 0. O

We need the following lemma for further development.

Lemma 2.2 (See [5], Lemma 1.1). Let {a,} and {u,} be positive sequences of real numbers such that a,+1 < (1 + u,)a, and
307 Up < +00.
Then:

(i) limy,_s o ay exists;
(ii) if liminf,_ o a, = O, then from (i), we get lim,_, o, a, = 0.

We now state and prove the main theorem of this section.

Theorem 2.1. Let K be a nonempty closed convex subset of a complete convex metric space X and let {T; : i € I} be a finite
family of asymptotically quasi-nonexpansive self-maps of K with sequences {k,(i)} C [1, oo) for eachi € I, respectively, such
that Z,ﬁ](kn(i) — 1) < oo. Then the iteration scheme {x,} in (1.4) converges to p € F if and only if liminf,_, ,, d(x,, F) = 0.

Proof. If {x,} convergestop € F,thenlim,_, o, d(x,, p) = 0.Since0 < d(x,, F) < d(x,, p), we haveliminf,_, o, d(x,, F) = 0.
Conversely, suppose that liminf,,_, o, d(x,, F) = 0. From (2.1), we have that

d(Xp41, F) < kj, d(xy, F).
We have Z;’il(k; — 1) < 00, so limy_ o d(x,, F) exists by Lemma 2.2. Now liminf,_ o, d(x,, F) = O reveals that
lim,_, o d(x,, F) = 0. Hereafter, we show that {x,} is a Cauchy sequence. Let ¢ > 0. Since lim,,_, o, d(x,, F) = 0, there
exists an integer ng such that
€
d(x,, F) < — foralln > ng,
3s
where s is as in Lemma 2.1(ii). In particular,
£
d(xn,, F) < I
That is,
e
inf{d(x,y, p) :p € F} < —.
3s
So there must exist p* € F such that
N £
d(XnO’p ) < Z
Now, for n > ng, we have from the inequality (2.2) that
dXngm, Xn) < dXngm, p*) + d(xy, p*)

" e
< 2sd(Xp,, p*) < 2s % =e.
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This proves that {x,} is a Cauchy sequence in X. As X is complete and K is closed, {x,} must converge to a point g € K. We
claim that g € F. Indeed, let ¢’ > 0. Since lim,_, o, X, = q, there exists an integer n; > 1 such that

I

&

d(x,, q) < —, 2.3
(Xn, q) 2% (23)
for all n > ny. Also lim,,_, o, d(x,, F) = 0 implies that there exists an integer n, > 1 such that
8/
d(x,, F —
(%, F) < 7
for all n > n,. Hence there exists p’ € F such that
8/
dxy. p) < ~— (2.4)

6k,
Using (2.3) and (2.4), we have, for any fixed i € I,
d(Tiq, @) < d(Tiq, p") +d(p', Tixw,) + d(Tixny, p') + d (X, p') + d(xn;, q)
< kid(q, p") + 2kid(xy;, P) + d(xny. )
kid(q, Xn;) 4 k1d(xn;, ') + 2k1d Xy, p') + d(xe;, Q)

IA

g g
ki— +3k;— =¢'.
! 2’(1 ! 6’(1

Thatis, d(Tiq, q) < &', forany arbitrary &’. Therefore, we have d(T;q, q) = 0.Hence qis acommon fixed pointof {T;,i € I}. O

A

Note that every quasi-nonexpansive map is asymptotically quasi-nonexpansive, so we have:

Corollary 2.1. Let K be a nonempty closed convex subset of a complete convex metric space X and let {T; : i € I} be a finite
family of quasi-nonexpansive self-maps of K. Define the iteration scheme {x,} as

X1 €K, Xn+1 = UpnyXn, n = 1,
where

Unoy = I (the identity map),
Unyx = W(T1Un(o)X, X, an(1)),
Un)x = W(TUp)X, X, ane)),
Ungr—1yx = W(T,_1Ung—2)X, X, Gnr—1)),
Unyx = W (T Upr—1)X, X, Gn(r),
where 0 < ang < 1, for i € I. Then sequence {x,} converges to p € F if and only if liminf,_, o d(x,, F) = 0.

Since an asymptotically nonexpansive map is an asymptotically quasi-nonexpansive, so we get the following extension of
Theorem 2.5 in [7].

Corollary 2.2. Let K be a nonempty closed convex subset of a complete convex metric space X and let {T; : i € I} be a finite
family of asymptotically nonexpansive self-maps of K with sequences {k,(i)} C [1, co) for eachi € I, respectively, such that
Zﬁi](kn (i) — 1) < oc. Then the sequence {x,} in (1.4) converges to p € F if and only if liminf,_, o, d(x,, F) = 0.

Recall thatamap T : K — K (a subset of a metric space) is semi-compact if any bounded sequence {x,} satisfying
d(x,, Tx,) — 0asn — oo has a convergent subsequence.

Theorem 2.2. Let K be a nonempty closed convex subset of a complete convex metric space X and let {T; : i € I} be a finite
family of asymptotically nonexpansive self-maps of K with sequences {k,(i)} C [1, oo) for each i € I, respectively, such that
Z?:l(kn (i) — 1) < oo. Then {x,} in (1.4) converges to p € F provided lim,_, o, d(x,;, Tix,) = 0, for each i € I, and one member
of the family {T; : i € I} is semi-compact.

Proof. Without loss of generality, we assume that T; is semi-compact. Then, there exists a subsequence {xnj} of {x,} such
that x,, — g € K. Hence, for any i € I, we have

d(q7 qu) S d(q7 Xﬂj) + d(xnj» TiXHj) + d(Tl‘an, qu)
< (1 + kﬂj)d(qa an) + d(xnja Tixnj) — 0.
Thusq € F.Bylemma2.2,x, - q. O
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3. Convergence in CAT (0) spaces

The scheme (1.4) in CAT (0) spaces is translated as follows:
x; €K, Xnp1 = UpyXn, n>1, (3.1)
where
Uny = I, the identity map,
UnyX = an1yT] Uno)X ® (1 — an(1y)x,
Un2)X = ny Ty UnyX @ (1 — apez))X,

Unr—1yX = An—1) T 1 Un—2% ® (1 — ane—1))X,
Un(r)x = an(r)TrnUn(r—l)X 52 (1 - Cln(r))X,

where 0 < g, < 1foreachiel.
We prove some lemmas needed for the development of our main theorem in this section.

Lemma 3.1. Let K be a nonempty bounded closed convex subset of a CAT(0) space. Let {T; : i € I} be a family of uniformly
L-Lipschitzian self-maps on K. Then for {x,} in (3.1) with lim_, o d(x,, T'x,) = 0, we have

lim d(x,, Tix,) =0 foreachiel.
n—oo

Proof. Denote d(x,, T'x,) by c,si) for eachi € I. Then
d(xp, Xp1) = d(Xn, UnnXn)
= d(Xn, Oy T Ungr—1yXn D (1 — angry)Xn)
d(xn, T!'xn) + d(T'%n, T} Unr—1)Xn)
¢\ 4 L d(xq, Ungr—1)%n)
¢\ + L{ane—1yd X, T {Unir—2)%n) 4+ (1 = apgr—1))d(Xn, X))
cér) + Lane—1d(Xn, T ; Unr—2)Xn)

INIA TN IA

IA

C,gr) + Lan(r—l){d(xna T;rl_1xn) + d(T:_1Xn7 T,Zq_lun(r—Z)xn)}
C,Sr) + LC,ST_U + de(xna Un(r—Z)xn)'

IA

Continuing in this way, we have
d(Xn, Xnp1) < Cr(lr) + Lcéril) + LZC,(J?Z) + -+ Ld(xy, T1nxn)

IA

¢ 4 LV 4 12¢0D 4 LD, (3-2)
Taking the lim sup on both sides, we get

lim d(x,, X,+1) = 0. (3.3)
n—oo

Further, observe that
d(n, Tixn) < d(Xn, Xn41) + d@ag1, T K1) + dT %1, T %) + (T %, Tikn)
< A, Xnp1) + d@nar, T x01) + Ld(ur, %) + Ld G, T'x)
= (1+1)d(xn, Xp1) + €1, + L. (3.4)
Taking the lim sup on both sides in (3.4) and using (3.3) and lim,_, c,(,i) = 0, we get that

lim d(x,, Tix,) =0 foreachiel. O
n—oo

Lemma 3.2. Let K be a nonempty bounded closed convex subset of a CAT (0) space. Let {T; : i € I} be a family of uniformly L-
Lipschitzian asymptotically quasi-nonexpansive self-maps on K with sequences {k, (i)} C [1, c0), such that Z;’il (ky(i)—1) <
oo foreach i € I. Then for the sequence {x,} in (3.1) with0 < § < a4 < 1 — 8 for some 6 € (0, %), we have

lim d(x,, Tix,) =0 foreachiel.
n—oo
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Proof. Take p € F and apply the inequality (CN*) to the scheme(3.1) to get
& (Xns1, P) = & (@n) T Unr—1y%n @ (1 = anr))Xn, P)
< Uy d* (T Ungr—1)Xns P) + (1 = @) )d* (X, P) — Angry (1 — ) d* Xy T Une—1)%n)
< anrk} @ (Ungr—1%n, ) + (1 = Gn()d* (n, ) — ey (1 = Anir)d* X, T Upr—1)%n)
= an(r)erz dz(an(rfl)Trann(er)xn ® (1 — angr—1))Xn, P)
+ (1 = anr)d* Xn, P) — Gniry (1 = @ngr))d* %n, T Ungr—1)Xn)
< Uuk2 [ane—1 @ (0, T Unr—2%n) + (1 = apir—1))d (D, Xn)
— -1y (1 = Anr—1))d” (X, T Ungr—2)%)]
+ (1 = Qo)) d* Xn, P) — Angry (1 = Qnr))d* K, T Upr—1)Xn).
That is,

dz(xn—Hs p) = an(r)an(r—l)(ki)zdz(un(r—Z)Xm p) + [an(r)(1 - an(r—]))kﬁ + (1 - an(r))]dz(xna p)

— () Gnr—1y (1 — an(rfl))dz(xny Trn,1un(r72)xn) — Gpgry (1 — an(r))dz(xna Trnun(rfl)xn)-

After applying the inequality (CN*) to the scheme (3.1) r times, we get
r r r r
dz(xn+1, p) < |:l_[ angy + !H Angiy — 1_[ an(i)} + {Hir_3an(i) - l_[ an(i)}
i=1 i=2 i=1 i=2

+ -+ {an(r) - an(r)an(rl)}:| (kﬁ)rdz(xnv P)
r

— (1= ay)) [ | anp @ G, Ti%n)
i=1

.
— (1 —aye) 1_[ Ay (Xn, T3 Un(1yXn)
=2

- (l - an(r))an(r)dz(xn, TrnUn(r—l)Xn)~
From the above computation, we have the following r inequalities:

& (g1, P) < (k2)7d* (%0, ) — (1= ann) [ [ tnp @ (o, Ti)

i=1

& (xni1,p) < () A (%, ) — (1 = an2) | [ @niy @ s T3 Uncry )
i=2

& (Xnt1, P) < (K2) d* (Xn, P) — nirynr—1) (1 — Gngr—1))d> Xn, Ty Upr—2)Xn)
& (Xny1, ) < (K2 d* (Xn, P) — Anry(1 — ) K, T Upr—1)Xn)-
Using § < a,i < 1 — 6 in the above (1)-(r) inequalities and then arranging the terms, we have
8"1d? (Xn, T{xn) < (k) d* (xn, p) — d*(Xn41, D)
8"d? (xn, Ty Unykn) < (k)"d? Xy, p) — d (a1, D)

Szdz(xna TrnUn(r—l)Xn) =< (kﬁ)rdz(xnv p) — dz(xn-Ha p).
The sequence {d(x,, p)} is convergent and k, — 1; therefore from the inequalities (1*)-(r*), we deduce

lim d(Xn, TinUn(i_l)Xn) =0 foriel.
n—o00
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Further,
d(xn, Txn) < d(xn, T Un1yXn) + d(T3 Unc1yXn, Ty Xn)
< d(Xp, T Un(yXn) + L d(an1y T{Xn @ (1 — Gn(1))Xn, Xn)
< d(Xp, Ty Unc1yXn) + L anc1yd(T7Xn, Xn)
together with (3.5) (for i = 2) gives that
nlingc d(xn, Tyxn) = 0.
Similar computations show that

lim d(xn, T'x,) =0 foreachiel. (3.6)

n—oo

Finally, by Lemma 3.1, we get

lim d(x,, Tix,) =0 foreachiel. O
n—oo

For further analysis, we need the following concept:

A family of self-maps {T; : i € I} on a subset K of a metric space (X, d) with at least one common fixed point is said
to satisfy Condition (AV) if there exists a nondecreasing function f : [0, c0) — [0, co) with f(0) = 0, f(t) > 0 for all
t € (0, o0) such that

-1 r
fdeP) < - ;d(x, T:X)

forallx € K.

Theorem 3.1. Let K be a nonempty closed convex subset of a CAT (0) space. Let {T; : i € I} be a family of uniformly L-Lipschitzian
asymptotically quasi-nonexpansive self-maps on K with sequences {k, (i)} C [1, o0), such that Zﬁil(kn (i) — 1) < oo for each
i€ LIf {T; : i € I} satisfies the Condition (AV), then the sequence {x,} in (3.1) with0 < § < ani < 1— 6 forsome § € (0, %)
converges to a common fixed point of {T; : i € I}.

Proof. Immediate from Lemma 3.2 and Theorem 2.1. O

Recall that a convex metric space X is uniformly convex [8] if for € > 0 and ry > 0, there exists @(¢) > 0 such that

d <z, w (x, v, %)) <ro(1 —a) (3.7)

wheneverx,y,z € X,d(z,x) <r1o,d(z,y) <r19,d(x,y) > rge€.
CAT(0) spaces provide wonderful examples of uniformly convex metric spaces (see [22]). The results obtained in
Section 3, extend nicely to uniformly convex metric spaces which satisfy an inequality like (CN*), satisfied by CAT (0) spaces.

Remark 3.1. (1) The approximation results about

(i) modified Mann iterations in Hilbert spaces [2],
(ii) modified Ishikawa iterations in Banach spaces [3,6,17], and
(iii) the three-step iteration scheme in uniformly convex Banach spaces from [4,5] are immediate consequences of our
results.

(2) Theorem 3.1 extends and improves Theorem 5.7 of Nanjaras and Panyanak [18] to the case of an asymptotically quasi-
nonexpansive map defined on an unbounded domain in a CAT (0) space.

(3) The conclusion of Theorem 3.1 also holds if one of the maps in {T; : i € I} is semi-compact. This, in turn, generalizes
Theorem 3.2 of Xiao et al. [7] in the setup of CAT(0) spaces.
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