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a b s t r a c t

We introduce and study strong convergence of a general iteration scheme for a finite family
of asymptotically quasi-nonexpansive maps in convex metric spaces and CAT (0) spaces.
The new iteration scheme includes modified Mann and Ishikawa iterations, the three-step
iteration scheme of Xu and Noor and the scheme of Khan, Domlo and Fukhar-ud-din as
special cases in Banach spaces. Our results are refinements and generalizations of several
recent results from the current literature.
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1. Introduction and basic definitions

Let T be a self-map on a nonempty subset K of a metric space (X, d). Denote by F(T ) = {x ∈ K : T (x) = x} the set of
fixed points of T .

The map T is said to be: (i) uniformly L-Lipschitzian if for L > 0, we have d(T nx, T ny) ≤ L d(x, y) for x, y ∈ K , and
n ≥ 1; (ii) asymptotically nonexpansive [1] if there exists a sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1 such that
d(T nx, T ny) ≤ kn d(x, y) for x, y ∈ K , and n ≥ 1; and (iii) asymptotically quasi-nonexpansive if F(T ) ≠ ∅ and there exists a
sequence {kn} ⊂ [1, ∞) with limn→∞ kn = 1 such that d(T nx, p) ≤ kn d(x, p) for x ∈ K , p ∈ F(T ), and n ≥ 1.

If kn = 1 for n ≥ 1 in the above definitions (ii), (iii), then T becomes a nonexpansive and a quasi-nonexpansive map,
respectively.

Various iteration processes have been studied for an asymptotically nonexpansive map T on a convex subset K of a
normed space E. Schu [2] considered the following modified Mann iterations:

xn+1 = (1 − an)xn + anT nxn, n ≥ 1, (1.1)

where 0 < an < 1.
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Fukhar-ud-din and Khan [3] have studied the modified Ishikawa iterations:

xn+1 = (1 − an(1))xn + an(1)T n((1 − an(2))xn + an(2)T nxn), n ≥ 1 (1.2)

where 0 ≤ an(1), an(2) ≤ 1, such that {an(1)} is bounded away from 0 and 1 and {an(2)} is bounded away from 1.
Xu and Noor [4] introduced and studied a three-step iteration scheme. Khan et al. [5] have defined a general iteration

scheme for a family of maps which extends the scheme of Khan and Takahashi [6] and the three-step iteration scheme of
Xu and Noor [4] simultaneously, as follows:

Throughout this paper, we will use I = {1, 2, . . . , k}, where r ≥ 1. Suppose that ain ∈ [0, 1], n ≥ 1 and i ∈ I . Let
{Ti : i ∈ I} be a family of asymptotically quasi-nonexpansive self-maps of K . Let x1 ∈ K . The scheme introduced in [5] is

xn+1 = (1 − αkn)xn + αknT n
k y(k−1)n,

y(k−1)n = (1 − α(k−1)n)xn + α(k−1)nT n
k−1 y(k−2)n,

y(k−2)n = (1 − α(k−2)n)xn + α(k−2)nT n
k−2 y(k−3)n,

· · · · · · · · · · · ·

y2n = (1 − α2n)xn + α2nT n
2 y1n,

y1n = (1 − α1n)xn + α1nT n
1 y0n,

(1.3)

where y0n = xn for all n.
Very recently, inspired by the scheme (1.3) and the work in [5], Xiao et al. [7] have introduced an (r + 1)-step iteration

scheme with error terms and studied its strong convergence under weaker boundary conditions.
One of the most interesting aspects of metric fixed point theory is to extend a linear version of a known result to the

nonlinear case in metric spaces. To achieve this, Takahashi [8] introduced a convex structure in a metric space (X, d). A map
W : X2

× [0, 1] → X is a convex structure in X if

d(u,W (x, y, λ)) ≤ λd(u, x) + (1 − λ)d(u, y)

for all x, y ∈ X and λ ∈ [0, 1]. A metric space together with a convex structure W is known as a convex metric space. A
nonempty subset K of a convex metric space is said to be convex if W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1]. In fact,
every normed space and its convex subsets are convex metric spaces but the converse is not true, in general (see [8]). A
hyperconvexmetric space is another example of a convexmetric space. For more on these spaces and their applications, we
refer the reader to [9,10].

Let (X, d) be ametric space. A geodesic from x to y in X is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,
c(l) = y, and d(c(t), c(t ′)) = |t − t ′| for all t, t ′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is
called a geodesic (or metric) segment joining x and y. The space (X, d) is said to be a geodesic space if every two points of X
are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X ,
which we will denote by [x, y], called the segment joining x to y.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three points x1, x2, x3 in X (the vertices of
∆) and a geodesic segment between each pair of vertices (the edges of ∆). A comparison triangle for the geodesic triangle
∆(x1, x2, x3) in (X, d) is a triangle ∆(x1, x2, x3) := ∆(x̄1, x̄2, x̄3) in R2 such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such
a triangle always exists [11].

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of appropriate size satisfy the following
CAT (0) comparison axiom:

Let ∆ be a geodesic triangle in X and let ∆ ⊂ R2 be a comparison triangle for ∆. Then ∆ is said to satisfy the CAT (0)
inequality if for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆,

d(x, y) ≤ d(x̄, ȳ).

Complete CAT (0) spaces are often called Hadamard spaces (see [12]). If x, y1, y2 are points of a CAT (0) space and if y0 is the
midpoint of the segment [y1, y2], which we will denote by y1⊕y2

2 , then the CAT (0) inequality implies

d2

x,

y1 ⊕ y2
2


≤

1
2
d2(x, y1) +

1
2
d2(x, y2) −

1
4
d2(y1, y2).

This inequality is the (CN) inequality of Bruhat and Titz [13]. The above inequality has been extended by Khamsi and Kirk [14]
as

d2(z, αx ⊕ (1 − α)y) ≤ αd2(z, x) + (1 − α)d2(z, y) − α(1 − α)d2(x, y), (CN*)

for any α ∈ [0, 1] and x, y, z ∈ X . The inequality (CN*) also appeared in [15].
Let us recall that a geodesic metric space is a CAT (0) space if and only if it satisfies the (CN) inequality (see [11], p. 163).

Moreover, if X is a CAT (0)metric space and x, y ∈ X , then for anyα ∈ [0, 1], there exists a unique pointαx⊕(1−α)y ∈ [x, y]
such that

d(z, αx ⊕ (1 − α)y) ≤ αd(z, x) + (1 − α)d(z, y)

for any z ∈ X and [x, y] = {αx ⊕ (1 − α)y : α ∈ [0, 1]}.
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In view of the above inequality, CAT (0) spaces have Takahashi’s convex structureW (x, y, α) = αx ⊕ (1 − α)y. A subset
K of a CAT (0) space X is convex if for any x, y ∈ K , we have [x, y] ⊂ K .

The existence of fixed (common fixed) points of one map (or two maps or a family of maps) is not known in many
situations. So the approximation of fixed (common fixed) points of one ormore nonexpansive, asymptotically nonexpansive,
or asymptotically quasi-nonexpansive maps by various iterations have been extensively studied, in Banach spaces, convex
metric spaces and CAT (0) spaces (see [2–7,16–21]).

We now translate the scheme (1.3) from the normed space setting to the more general setup of convex metric spaces as
follows:

x1 ∈ K , xn+1 = Un(r)xn, n ≥ 1, (1.4)

where

Un(0) = I (the identity map),
Un(1)x = W (T n

1Un(0)x, x, an(1)),
Un(2)x = W (T n

2Un(1)x, x, an(2)),
. . . . . .

Un(r−1)x = W (T n
r−1Un(r−2)x, x, an(r−1))

Un(r)x = W (T n
r Un(r−1)x, x, an(r)),

where 0 ≤ an(i) ≤ 1, for i ∈ I.
In a convex metric space, the scheme (1.4) provides analogues of:

(i) the scheme (1.1) if r = 1 and T1 = T ;

(ii) the scheme (1.2) if r = 2, T1 = T2 = T and
(iii) the Xu and Noor [4] iteration scheme if r = 3, T1 = T2 = T3 = T .

This scheme becomes the scheme (1.3) if we choose a special convex metric space, namely, a normed space.
In this paper, we establish theorems of strong convergence, for the
iteration scheme (1.4), to a common fixed point of a finite family of asymptotically quasi-nonexpansive maps, where the

underlying space is either a convex metric space or a CAT (0) space. Our work extends as well as refines several comparable
results given in [2–7,16–18].

In the sequel, it is assumed that F =
r

i=1 F(Ti) ≠ φ.

2. Results for convex metric spaces

We begin with a technical result.

Lemma 2.1. Let K be nonempty convex subset of a convex metric space X and let {Ti : i ∈ I} be a finite family of asymptotically
quasi-nonexpansive self-maps of K with sequences {kn(i)} ⊂ [1, ∞) for each i ∈ I , respectively, such that

∑
∞

n=1(kn(i)−1) < ∞.
Then for the iteration scheme {xn} in (1.4), we have

(i): d(xn+1,p) ≤ krnd(xn,p), where kn = max
1≤i≤r

kn(i);

(ii): d(xn+m,p) ≤ sd(xn,p), for m ≥ 1, n ≥ 1, p ∈ F and for some s > 0.

Proof. (i) It is clear that
∑

∞

n=1(kn − 1) < ∞ if and only if
∑

∞

n=1(kn(i) − 1) < ∞.
Now for any p ∈ F , we have

d(xn+1,p) = d(W (T n
r Un(r−1)xn, xn, an(r)), p)

≤ an(r)d(T n
r Un(r−1)xn, p) + (1 − an(r))d(xn, p)

≤ an(r)knd(Un(r−1)xn, p) + (1 − an(r))d(xn, p)

≤ an(r)an(r−1)k2nd(Un(r−2)xn, p) + (1 − an(r))d(xn, p) + an(r)(1 − an(r−1))d(xn, p)

≤ an(r)an(r−1)k2nd(Un(r−2)xn, p) + (1 − an(r))d(xn, p) + an(r)(1 − an(r−1))k2nd(xn, p)

= an(r)an(r−1)k2nd(Un(r−2)xn, p) + (1 − an(r)an(r−1))k2nd(xn, p)
. . . . . . . . .

≤ an(r)an(r−1)an(r−2) . . . an(1)krnd(p,Un(0)xn) + (1 − an(r)an(r−1)an(r−2) . . . an(1))krnd(xn, p).

That is,

d(xn+1, p) ≤ krnd(xn, p). (2.1)
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(ii) If x ≥ 1, then x ≤ exp(x − 1). Therefore, it follows from (2.1) that

d(xn+m, p) ≤ krn+m−1d(xn+m−1, p)
≤ exp((rkn+m−1 − r)d(xn+m−1, p))
≤ exp((rkn+m−1 − r)[krn+m−2d(xn+m−2, p)])
≤ exp((rkn+m−1 + rkn+m−2 − 2r)d(xn+m−2, p))

. . . . . . . . .

≤ exp


r
n+m−1−

i=n

ki − mr


d(xn, p)

≤ exp


r

∞−
i=n

ki − r


d(xn, p)

≤ s d(xn, p),

where s = exp(r
∑

∞

i=1 ki − r).
That is,

d(xn+m, p) ≤ s d(xn, p) (2.2)

form ≥ 1, n ≥ 1, p ∈ F and for some s > 0. �

We need the following lemma for further development.

Lemma 2.2 (See [5], Lemma 1.1). Let {an} and {un} be positive sequences of real numbers such that an+1 ≤ (1 + un)an and∑
∞

n=1 un < +∞.
Then:

(i) limn→∞ an exists;
(ii) if lim infn→∞ an = 0, then from (i), we get limn→∞ an = 0.

We now state and prove the main theorem of this section.

Theorem 2.1. Let K be a nonempty closed convex subset of a complete convex metric space X and let {Ti : i ∈ I} be a finite
family of asymptotically quasi-nonexpansive self-maps of K with sequences {kn(i)} ⊂ [1, ∞) for each i ∈ I , respectively, such
that

∑
∞

n=1(kn(i) − 1) < ∞. Then the iteration scheme {xn} in (1.4) converges to p ∈ F if and only if lim infn→∞ d(xn, F) = 0.

Proof. If {xn} converges to p ∈ F , then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn, F) ≤ d(xn, p), we have lim infn→∞ d(xn, F) = 0.
Conversely, suppose that lim infn→∞ d(xn, F) = 0. From (2.1), we have that

d(xn+1, F) ≤ krn d(xn, F).

We have
∑

∞

n=1(k
r
n − 1) < ∞, so limn→∞ d(xn, F) exists by Lemma 2.2. Now lim infn→∞ d(xn, F) = 0 reveals that

limn→∞ d(xn, F) = 0. Hereafter, we show that {xn} is a Cauchy sequence. Let ε > 0. Since limn→∞ d(xn, F) = 0, there
exists an integer n0 such that

d(xn, F) <
ε

3s
for all n ≥ n0,

where s is as in Lemma 2.1(ii). In particular,

d(xn0 , F) <
ε

3s
.

That is,

inf{d(xn0 , p) : p ∈ F} <
ε

3s
.

So there must exist p∗
∈ F such that

d(xn0 , p
∗) <

ε

2s
.

Now, for n ≥ n0, we have from the inequality (2.2) that

d(xn+m, xn) ≤ d(xn+m, p∗) + d(xn, p∗)

≤ 2sd(xn0 , p
∗) < 2s

ε

2s
= ε.
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This proves that {xn} is a Cauchy sequence in X . As X is complete and K is closed, {xn} must converge to a point q ∈ K . We
claim that q ∈ F . Indeed, let ε′ > 0. Since limn→∞ xn = q, there exists an integer n1 ≥ 1 such that

d(xn, q) <
ε′

2k1
, (2.3)

for all n ≥ n1. Also limn→∞ d(xn, F) = 0 implies that there exists an integer n2 ≥ 1 such that

d(xn, F) <
ε′

7k1
for all n ≥ n2. Hence there exists p′

∈ F such that

d(xnj , p
′) <

ε′

6k1
. (2.4)

Using (2.3) and (2.4), we have, for any fixed i ∈ I,

d(Tiq, q) ≤ d(Tiq, p′) + d(p′, Tixnj) + d(Tixnj , p
′) + d(xnj , p

′) + d(xnj , q)

≤ k1d(q, p′) + 2k1d(xnj , p
′) + d(xnj , q)

≤ k1d(q, xnj) + k1d(xnj , p
′) + 2k1d(xnj , p

′) + d(xnj , q)

< k1
ε′

2k1
+ 3k1

ε′

6k1
= ε′.

That is, d(Tiq, q) < ε′, for any arbitrary ε′. Therefore,we have d(Tiq, q) = 0. Hence q is a common fixed point of {Ti, i ∈ I}. �

Note that every quasi-nonexpansive map is asymptotically quasi-nonexpansive, so we have:

Corollary 2.1. Let K be a nonempty closed convex subset of a complete convex metric space X and let {Ti : i ∈ I} be a finite
family of quasi-nonexpansive self-maps of K . Define the iteration scheme {xn} as

x1 ∈ K , xn+1 = Un(r)xn, n ≥ 1,

where

Un(0) = I (the identity map),
Un(1)x = W (T1Un(0)x, x, an(1)),
Un(2)x = W (T2Un(1)x, x, an(2)),
. . . . . . . . . . . . . . . . . .

Un(r−1)x = W (Tr−1Un(r−2)x, x, an(r−1)),

Un(r)x = W (TrUn(r−1)x, x, an(r)),

where 0 ≤ an(i) ≤ 1, for i ∈ I . Then sequence {xn} converges to p ∈ F if and only if lim infn→∞ d(xn, F) = 0.
Since an asymptotically nonexpansive map is an asymptotically quasi-nonexpansive, so we get the following extension of

Theorem 2.5 in [7].

Corollary 2.2. Let K be a nonempty closed convex subset of a complete convex metric space X and let {Ti : i ∈ I} be a finite
family of asymptotically nonexpansive self-maps of K with sequences {kn(i)} ⊂ [1, ∞) for each i ∈ I , respectively, such that∑

∞

n=1(kn(i) − 1) < ∞. Then the sequence {xn} in (1.4) converges to p ∈ F if and only if lim infn→∞ d(xn, F) = 0.

Recall that a map T : K → K (a subset of a metric space) is semi-compact if any bounded sequence {xn} satisfying
d(xn, Txn) → 0 as n → ∞ has a convergent subsequence.

Theorem 2.2. Let K be a nonempty closed convex subset of a complete convex metric space X and let {Ti : i ∈ I} be a finite
family of asymptotically nonexpansive self-maps of K with sequences {kn(i)} ⊂ [1, ∞) for each i ∈ I , respectively, such that∑

∞

n=1(kn(i) − 1) < ∞. Then {xn} in (1.4) converges to p ∈ F provided limn→∞ d(xn, Tixn) = 0, for each i ∈ I , and one member
of the family {Ti : i ∈ I} is semi-compact.

Proof. Without loss of generality, we assume that T1 is semi-compact. Then, there exists a subsequence {xnj} of {xn} such
that xnj → q ∈ K . Hence, for any i ∈ I , we have

d(q, Tiq) ≤ d(q, xnj) + d(xnj , Tixnj) + d(Tixnj , Tiq)
≤ (1 + knj)d(q, xnj) + d(xnj , Tixnj) → 0.

Thus q ∈ F . By Lemma 2.2, xn → q. �
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3. Convergence in CAT (0) spaces

The scheme (1.4) in CAT (0) spaces is translated as follows:

x1 ∈ K , xn+1 = Un(r)xn, n ≥ 1, (3.1)

where

Un(0) = I, the identity map,
Un(1)x = an(1)T n

1Un(0)x ⊕ (1 − an(1))x,
Un(2)x = an(2)T n

2Un(1)x ⊕ (1 − an(2))x,
. . .

Un(r−1)x = an(r−1)T n
r−1Un(r−2)x ⊕ (1 − an(r−1))x,

Un(r)x = an(r)T n
r Un(r−1)x ⊕ (1 − an(r))x,

where 0 ≤ an(i) ≤ 1 for each i ∈ I.
We prove some lemmas needed for the development of our main theorem in this section.

Lemma 3.1. Let K be a nonempty bounded closed convex subset of a CAT (0) space. Let {Ti : i ∈ I} be a family of uniformly
L-Lipschitzian self-maps on K . Then for {xn} in (3.1) with limn→∞ d(xn, T n

i xn) = 0, we have

lim
n→∞

d(xn, Tixn) = 0 for each i ∈ I.

Proof. Denote d(xn, T n
i xn) by c(i)

n for each i ∈ I . Then

d(xn, xn+1) = d(xn,Un(r)xn)

= d(xn, an(r)T n
r Un(r−1)xn ⊕ (1 − an(r))xn)

≤ d(xn, T n
r xn) + d(T n

r xn, T
n
r Un(r−1)xn)

≤ c(r)
n + L d(xn,Un(r−1)xn)

≤ c(r)
n + L{an(r−1)d(xn, T n

r−1Un(r−2)xn) + (1 − an(r−1))d(xn, xn)}

≤ c(r)
n + Lan(r−1)d(xn, T n

r−1Un(r−2)xn)

≤ c(r)
n + Lan(r−1){d(xn, T n

r−1xn) + d(T n
r−1xn, T

n
r−1Un(r−2)xn)}

≤ c(r)
n + Lc(r−1)

n + L2d(xn,Un(r−2)xn).

Continuing in this way, we have

d(xn, xn+1) ≤ c(r)
n + Lc(r−1)

n + L2c(r−2)
n + · · · + Lrd(xn, T n

1 xn)

≤ c(r)
n + Lc(r−1)

n + L2c(r−2)
n + · · · + Lrc(1)

n . (3.2)

Taking the lim sup on both sides, we get

lim
n→∞

d(xn, xn+1) = 0. (3.3)

Further, observe that

d(xn, Tixn) ≤ d(xn, xn+1) + d(xn+1, T n+1
i xn+1) + d(T n+1

i xn+1, T n+1
i xn) + d(T n+1

i xn, Tixn)

≤ d(xn, xn+1) + d(xn+1, T n+1
i xn+1) + L d(xn+1, xn) + L d(xn, T n

i xn)

= (1 + L)d(xn, xn+1) + c(i)
n+1 + Lc(i)

n . (3.4)

Taking the lim sup on both sides in (3.4) and using (3.3) and limn→∞ c(i)
n = 0, we get that

lim
n→∞

d(xn, Tixn) = 0 for each i ∈ I. �

Lemma 3.2. Let K be a nonempty bounded closed convex subset of a CAT (0) space. Let {Ti : i ∈ I} be a family of uniformly L-
Lipschitzian asymptotically quasi-nonexpansive self-maps on K with sequences {kn(i)} ⊂ [1, ∞), such that

∑
∞

n=1(kn(i) − 1) <

∞ for each i ∈ I . Then for the sequence {xn} in (3.1) with 0 < δ ≤ an(i) ≤ 1 − δ for some δ ∈ (0, 1
2 ), we have

lim
n→∞

d(xn, Tixn) = 0 for each i ∈ I.
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Proof. Take p ∈ F and apply the inequality (CN*) to the scheme(3.1) to get

d2(xn+1, p) = d2(an(r)T n
r Un(r−1)xn ⊕ (1 − an(r))xn, p)

≤ an(r)d2(T n
r Un(r−1)xn, p) + (1 − an(r))d2(xn, p) − an(r)(1 − an(r))d2(xn, T n

r Un(r−1)xn)

≤ an(r)k2n d2(Un(r−1)xn, p) + (1 − an(r))d2(xn, p) − an(r)(1 − an(r))d2(xn, T n
r Un(r−1)xn)

= an(r)k2n d2(an(r−1)T n
r−1Un(r−2)xn ⊕ (1 − an(r−1))xn, p)

+ (1 − an(r))d2(xn, p) − an(r)(1 − an(r))d2(xn, T n
r Un(r−1)xn)

≤ an(r)k2n [an(r−1)d2(p, T n
r−1Un(r−2)xn) + (1 − an(r−1))d2(p, xn)

− an(r−1)(1 − an(r−1))d2(xn, T n
r−1Un(r−2)xn)]

+ (1 − an(r))d2(xn, p) − an(r)(1 − an(r))d2(xn, T n
r Un(r−1)xn).

That is,

d2(xn+1, p) ≤ an(r)an(r−1)(k2n)
2d2(Un(r−2)xn, p) + [an(r)(1 − an(r−1))k2n + (1 − an(r))]d2(xn, p)

− an(r)an(r−1)(1 − an(r−1))d2(xn, T n
r−1Un(r−2)xn) − an(r)(1 − an(r))d2(xn, T n

r Un(r−1)xn).

After applying the inequality (CN*) to the scheme (3.1) r times, we get

d2(xn+1, p) ≤


r∏

i=1

an(i) +


r∏

i=2

an(i) −

r∏
i=1

an(i)


+


Π r

i=3an(i) −

r∏
i=2

an(i)



+ · · · + {an(r) − an(r)an(r−1)}


(k2n)

rd2(xn, p)

− (1 − an(1))
r∏

i=1

an(i)d2(xn, T n
1 xn)

− (1 − an(2))
r∏

i=2

an(i)d2(xn, T n
2Un(1)xn)

· · ·

− (1 − an(r))an(r)d2(xn, T n
r Un(r−1)xn).

From the above computation, we have the following r inequalities:

d2(xn+1, p) ≤ (k2n)
rd2(xn, p) − (1 − an(1))

r∏
i=1

an(i)d2(xn, T n
1 xn) (1)

d2(xn+1, p) ≤ (k2n)
rd2(xn, p) − (1 − an(2))

r∏
i=2

an(i)d2(xn, T n
2Un(1)xn) (2)

. . .

d2(xn+1, p) ≤ (k2n)
rd2(xn, p) − an(r)an(r−1)(1 − an(r−1))d2(xn, T n

r−1Un(r−2)xn) (r-1)

d2(xn+1, p) ≤ (k2n)
rd2(xn, p) − an(r)(1 − an(r))d2(xn, T n

r Un(r−1)xn). (r)

Using δ ≤ an(i) ≤ 1 − δ in the above (1)–(r) inequalities and then arranging the terms, we have

δr+1d2(xn, T n
1 xn) ≤ (k2n)

rd2(xn, p) − d2(xn+1, p) (1*)

δrd2(xn, T n
2Un(1)xn) ≤ (k2n)

rd2(xn, p) − d2(xn+1, p) (2*)

. . .

δ2d2(xn, T n
r Un(r−1)xn) ≤ (k2n)

rd2(xn, p) − d2(xn+1, p). (r*)

The sequence {d(xn, p)} is convergent and kn → 1; therefore from the inequalities (1*)–(r*), we deduce

lim
n→∞

d(xn, T n
i Un(i−1)xn) = 0 for i ∈ I. (3.5)
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Further,

d(xn, T n
2 xn) ≤ d(xn, T n

2Un(1)xn) + d(T n
2Un(1)xn, T n

2 xn)

≤ d(xn, T n
2Un(1)xn) + L d(an(1)T n

1 xn ⊕ (1 − an(1))xn, xn)

≤ d(xn, T n
2Un(1)xn) + L an(1)d(T n

1 xn, xn)

together with (3.5) (for i = 2) gives that

lim
n→∞

d(xn, T n
2 xn) = 0.

Similar computations show that

lim
n→∞

d(xn, T n
i xn) = 0 for each i ∈ I. (3.6)

Finally, by Lemma 3.1, we get

lim
n→∞

d(xn, Tixn) = 0 for each i ∈ I. �

For further analysis, we need the following concept:
A family of self-maps {Ti : i ∈ I} on a subset K of a metric space (X, d) with at least one common fixed point is said

to satisfy Condition (AV) if there exists a nondecreasing function f : [0, ∞) → [0, ∞) with f (0) = 0, f (t) > 0 for all
t ∈ (0, ∞) such that

f (d(x, F)) ≤
1
r

r−
i=1

d(x, Tix)

for all x ∈ K .

Theorem 3.1. Let K be a nonempty closed convex subset of a CAT (0) space. Let {Ti : i ∈ I} be a family of uniformly L-Lipschitzian
asymptotically quasi-nonexpansive self-maps on K with sequences {kn(i)} ⊂ [1, ∞), such that

∑
∞

n=1(kn(i) − 1) < ∞ for each
i ∈ I . If {Ti : i ∈ I} satisfies the Condition (AV ), then the sequence {xn} in (3.1) with 0 < δ ≤ an(i) ≤ 1 − δ for some δ ∈ (0, 1

2 )
converges to a common fixed point of {Ti : i ∈ I}.

Proof. Immediate from Lemma 3.2 and Theorem 2.1. �

Recall that a convex metric space X is uniformly convex [8] if for ϵ > 0 and r0 > 0, there exists α(ϵ) > 0 such that

d

z,W


x, y,

1
2


≤ r0(1 − α) (3.7)

whenever x, y, z ∈ X, d(z, x) ≤ r0, d(z, y) ≤ r0, d(x, y) ≥ r0ϵ.
CAT (0) spaces provide wonderful examples of uniformly convex metric spaces (see [22]). The results obtained in

Section 3, extend nicely to uniformly convexmetric spaces which satisfy an inequality like (CN*), satisfied by CAT (0) spaces.

Remark 3.1. (1) The approximation results about

(i) modified Mann iterations in Hilbert spaces [2],
(ii) modified Ishikawa iterations in Banach spaces [3,6,17], and
(iii) the three-step iteration scheme in uniformly convex Banach spaces from [4,5] are immediate consequences of our

results.

(2) Theorem 3.1 extends and improves Theorem 5.7 of Nanjaras and Panyanak [18] to the case of an asymptotically quasi-
nonexpansive map defined on an unbounded domain in a CAT (0) space.
(3) The conclusion of Theorem 3.1 also holds if one of the maps in {Ti : i ∈ I} is semi-compact. This, in turn, generalizes
Theorem 3.2 of Xiao et al. [7] in the setup of CAT (0) spaces.
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