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a b s t r a c t

In this work we discuss some recent results about KKM mappings in cone metric spaces.
We also discuss the fixed point existence results of multivalued mappings defined on such
metric spaces. In particular we show that most of the new results are merely copies of the
classical ones and do not necessitate the underlying Banach space nor the associated cone.
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1. Introduction

Cone metric spaces were introduced in [1]. A similar notion was also considered by Rzepecki in [2]. After carefully
defining convergence and completeness in cone metric spaces, the authors in [1] proved some fixed point theorems of
contractive mappings. Recently, more fixed point results in cone metric spaces appeared in [3,4]. Topological questions in
cone metric spaces were studied in [3] where it was proved that every cone metric space is a first countable topological
space. Hence, continuity is equivalent to sequential continuity and compactness is equivalent to sequential compactness.
It is worth mentioning the pioneering work of Quilliot [5] who introduced the concept of generalized metric spaces. His
approach was very successful and is used by many (see the references in [6]). It is our belief that cone metric spaces are
a special case of generalized metric spaces. In this work, we introduce a metric type structure in cone metric spaces and
show that classical proofs related to KKM mappings proved in [7] do apply almost identically in these metric type spaces.
This approach suggests that any extension of known fixed point results to cone metric spaces is redundant. Moreover the
underlying Banach space and the associated cone subset are not necessary.
For more on metric fixed point theory, the reader may consult book [8].

2. Basic definitions and results

First let us start by defining some basic definitions.
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Definition 1. Let E be a real Banach space with norm ‖.‖ and P a subset of E. Then P is called a cone if and only if

1. P is closed, nonempty and P 6= {0};
2. if a, b ≥ 0, and x, y ∈ P , then ax+ by ∈ P;
3. if x ∈ P and−x ∈ P , then x = 0.

Given a cone P in a Banach space E, we define a partial ordering�with respect to P by

x � y⇐⇒ y− x ∈ P.

We also write x ≺ ywhenever x � y and x 6= y, while x� ywill stand for y− x ∈ Int(P) (where Int(P) denotes the interior
of P). The cone P is called normal if there is a number K > 0, such that for all x, y ∈ E, we have

0 � x � y H⇒ ‖x‖ ≤ K‖y‖.

The least positive number satisfying this inequality is called the normal constant of P . The cone P is called regular if every
increasing sequencewhich is bounded from above is convergent. Equivalently the cone P is called regular if every decreasing
sequence which is bounded from below is convergent. Regular cones are normal and there exist normal cones which are not
regular. Moreover the cone P allows for the definition of a new natural norm ‖.‖+ in E, known as the order norm, defined
by

‖x‖+ = inf{λ ≥ 0;−λu � x � λv for some u, v ∈ B1},

where B1 is the closed unit ball of E. It is easy to check that the normal constant of P with respect to ‖.‖+ is 1. But in general
‖.‖+ is not equivalent to ‖.‖. For more on this norm, please see [9].
Throughout, the Banach space E and the cone P will be omitted.

Definition 2. A cone metric space is an ordered pair (X, d), where X is any set and d : X × X → E is a mapping satisfying:

1. d(x, y) ∈ P , i.e. 0 � d(x, y), for all x, y ∈ X , and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, y) � d(x, z)+ d(z, y), for all x, y, z ∈ X .

Convergence is defined as follows

Definition 3. Let (X, d) be a cone metric space, let {xn} be a sequence in X and x ∈ X . If for any c ∈ P with c � 0, there is
N ≥ 1 such that for all n ≥ N , d(xn, x)� c , then {xn} is said to be convergent. We will say that {xn} converges to x and write
limn→∞ xn = x.

It is easy to show that if {xn} is convergent, then its limit is unique. Cauchy sequences and completeness are defined by

Definition 4. Let (X, d) be a conemetric space, {xn} be a sequence in X . If for any c ∈ P with c � 0, there is N ≥ 1 such that
for all n,m ≥ N , d(xn, xm) � c , then {xn} is called a Cauchy sequence. If every Cauchy sequence is convergent in X , then X
is called a complete cone metric space.

The basic properties of convergent and Cauchy sequences may be found in [1]. In fact the properties and their proofs
are identical to the classical metric ones. Since this work concerns the fixed point property of mappings, we will need the
following property.

Definition 5. Let (X, d) be a cone metric space. A mapping T : X → X is called Lipschitzian if there exists k ∈ R such that

d(Tx, Ty) � kd(x, y),

for all x, y ∈ X . The smallest constant k which satisfies the above inequality is called the Lipschitz constant of T , denoted
Lip(T ).

As we mentioned earlier cone metric spaces have a metric type structure. Indeed we have the following result:

Theorem 2.1 ([10]). Let (X, d) be a metric cone over the Banach space E with the cone P which is normal with the normal
constant K . The mapping D : X × X → [0,∞) defined by D(x, y) = ‖d(x, y)‖ satisfies the following properties

(1) D(x, y) = 0 if and only if x = y;
(2) D(x, y) = D(y, x), for any x, y ∈ X;
(3) D(x, y) ≤ K

(
D(x, z1)+ D(z1, z2)+ · · · + D(zn, y)

)
, for any points x, y, zi ∈ X, i = 1, 2, . . . , n.

Note that property (3) is discouraging since it does not give the classical triangle inequality satisfied by a distance. But
there are many examples where the triangle inequality fails (see [11] for example).
The above result suggests the following definition.
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Definition 6. Let X be a set. Let D : X × X → [0,∞) be a function which satisfies
(1) D(x, y) = 0 if and only if x = y;
(2) D(x, y) = D(y, x), for any x, y ∈ X;
(3) D(x, y) ≤ K

(
D(x, z)+ D(z, y)

)
, for any points x, y, z ∈ X , for some constant K > 0.

The pair (X,D) is called a metric type space.

Similarly we define convergence and completeness in metric type spaces.

Definition 7. Let (X,D) be a metric type space.
1. The sequence {xn} converges to x ∈ X if and only if limn→∞ D(xn, x) = 0.
2. The sequence {xn} is Cauchy if and only if limn,m→∞ D(xn, xm) = 0.

(X,D) is complete if and only if any Cauchy sequence in X is convergent.

An example of such a D is given below.

Example 1. Let X be the set of Lebesgue measurable functions on [0, 1] such that∫ 1

0
|f (x)|2dx <∞.

Define D : X × X → [0,∞) by

D(f , g) =
∫ 1

0
|f (x)− g(x)|2dx.

Then D satisfies the following properties
(1) D(f , g) = 0 if and only if f = g;
(2) D(f , g) = D(g, f ), for any f , g ∈ X;
(3′) D(f , g) ≤ 2

(
D(f , h)+ D(h, g)

)
, for any points f , g, h ∈ X .

Most of the examples in [7] will easily translate intometric type spaces; in particular, Example 28 describes a conemetric
space with examples of admissible and non-admissible subsets.

3. Topological metric type spaces

In this section we discuss a natural topology defined in any metric type space. This topology enjoys most of the metric
like properties.

Definition 8. Let (X,D) be a metric type space. A subset A ⊂ X is said to be open if and only if for any a ∈ A, there exists
ε > 0 such that the open ball Bo(a, ε) ⊂ A. The family of all open subsets of X will be denoted by τ .

The following result is easy to show.

Proposition 1. τ defines a topology on (X,D).

Next we discuss some properties of closed sets.

Proposition 2. Let (X,D) be a metric type space and τ be the topology defined above. Then for any nonempty subset A ⊂ X we
have
(1) A is closed if and only if for any sequence {xn} in A which converges to x, we have x ∈ A;
(2) if we define A to be the intersection of all closed subsets of X which contains A, then for any x ∈ A and for any ε > 0, we have

Bo(x, ε) ∩ A 6= ∅.

Proof. Let us prove (1) first. Assume that A is closed and let {xn} be a sequence in A such that limn→∞ xn = x. Let us prove
that x ∈ A. Assume not, i.e. x 6∈ A. Since A is closed, then there exists ε > 0 such that Bo(x, ε) ∩ A = ∅. Since {xn} converges
to x, then there exists N ≥ 1 such that for any n ≥ N we have xn ∈ Bo(x, ε). Hence xn ∈ Bo(x, ε) ∩ A, which leads to a
contradiction. Conversely assume that for any sequence {xn} in A which converges to x, we have x ∈ A. Let us prove that A
is closed. Let x 6∈ A. We need to prove that there exists ε > 0 such that Bo(x, ε) ∩ A = ∅. Assume not, i.e. for any ε > 0, we
have Bo(x, ε)∩ A 6= ∅. So for any n ≥ 1, choose xn ∈ Bo(x, 1/n)∩ A. Clearly we have {xn} converges to x. Our assumption on
A implies x ∈ A, a contradiction.
Let us prove (2). Clearly A is the smallest closed subset which contains A. Set

A∗ = {x ∈ X; for any ε > 0, there exists a ∈ A such that: D(x, a) < ε}.
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We have A ⊂ A∗. Next we prove that A∗ is closed. For this we use property (1). Let {xn} be a sequence in A∗ such that {xn}
converges to x. Let us prove that x ∈ A∗. Let ε > 0. Since {xn} converges to x, there exists N ≥ 1 such that for any n ≥ N we
have

D(x, xn) <
ε

2(K + 1)
,

where K is the constant associated to the triangle inequality satisfied by D. Since xn ∈ A∗, there exists a ∈ A such that

D(xn, a) <
ε

2(K + 1)
.

Hence

D(x, a) ≤ K
(
D(x, xn)+ D(xn, a)

)
< K

( ε

2(K + 1)
+

ε

2(K + 1)

)
< ε,

which implies x ∈ A∗. Therefore A∗ is closed and contains A. The definition of A will force A ⊂ A∗, which implies the
conclusion of (2). �

Next we discuss the compactness in metric type spaces.

Proposition 3. Let (X,D) be ametric type space and τ the topology defined above. Let A be a nonempty subset of X. The following
properties are equivalent

(1) A is compact.
(2) For any sequence {xn} in A, there exists a subsequence {xnk} of {xn} which converges, and limnk→∞ xnk ∈ A.

Proof. Assume that A is a nonempty compact subset of X . It is easy to see that any decreasing sequence of nonempty closed
subsets of A have a nonempty intersection. Let {xn} be a sequence in A. Set Cn = {xm;m ≥ n}. Then we have

⋂
n≥1 Cn 6= ∅.

Let x ∈
⋂
n≥1 Cn. Then for any ε > 0 and for any n ≥ 1, there existsmn ≥ n such that D(x, xmn) < ε. This clearly implies the

existence of a subsequence of {xn}which converges to x. Since A is closed, then we must have x ∈ A.
Conversely let A be a nonempty subset of X such that the conclusion of (2) is true. Let us prove that A is compact. First

note that for any ε > 0, there exist x1, x2, . . . , xn ∈ A such that

A ⊂ Bo(x1, ε) ∪ · · · ∪ Bo(xn, ε).

Assume not, then there exists ε0 > 0, such that for any finite number of points x1, x2, . . . , xn ∈ A, we have

A 6⊂ Bo(x1, ε0) ∪ · · · ∪ Bo(xn, ε0).

Fix x1 ∈ A. Since A 6⊂ Bo(x1, ε0), there exists x2 ∈ A \ Bo(x1, ε0). By induction we build a sequence {xn} such that

xn+1 ∈ A \
(
Bo(x1, ε0) ∪ · · · ∪ Bo(xn, ε0)

)
for all n ≥ 1. Clearly we have D(xn, xm) ≥ ε0, for all n,m ≥ 1, with n 6= m. This condition implies that no subsequence
of {xn} will be Cauchy or convergent. This contradicts our assumption on A. Next let {Oα}α∈Γ be an open cover of A. Let us
prove that only finitely manyOα cover A. First note that there exists ε0 > 0 such that for any x ∈ A, there exists α ∈ Γ such
that Bo(x, ε0) ⊂ Oα . Assume not, then for any ε > 0, there exists xε ∈ A such that for any α ∈ Γ , we have Bo(xε, ε) 6⊂ Oα .
In particular, for any n ≥ 1, there exists xn ∈ A such that for any α ∈ Γ , we have Bo(xn, 1/n) 6⊂ Oα . By our assumption on
A, there exists a subsequence {xnk} of {xn} which converges to some point x ∈ A. Since the family {Oα}α∈Γ covers A, there
exists α0 ∈ Γ such that x ∈ Oα0 . Since Oα0 is open, there exists ε0 > 0 such that Bo(x, ε0) ⊂ Oα0 . For any nk ≥ 1 and
a ∈ Bo(xnk , 1/nk), we have

D(x, a) ≤ K
(
D(x, xnk)+ D(xnk , a)

)
< K

(
D(x, xnk)+

1
nk

)
.

For nk large enough, we will get D(x, a) < ε0, for any a ∈ Bo(xnk , 1/nk). In other words, we have Bo(xnk , 1/nk) ⊂ Bo(x, ε0),
which implies Bo(xnk , 1/nk) ⊂ Oα0 . This is in clear contradiction with the way the sequence {xn}was constructed. Therefore
there exists ε0 > 0 such that for any x ∈ A, there exists α ∈ Γ such that Bo(x, ε0) ⊂ Oα . For such ε0, there exist
x1, x2, . . . , xn ∈ A such that

A ⊂ Bo(x1, ε0) ∪ · · · ∪ Bo(xn, ε0).

But for any i = 1, . . . , n, there exists αi ∈ Γ such that Bo(xi, ε0) ⊂ Oαi , i.e.

A ⊂ Oα1 ∪ · · · ∪ Oαn .

This completes the proof that A is compact. �
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The above proof suggests the following definition.

Definition 9. The subset A is called sequentially compact if and only if for any sequence {xn} in A, there exists a subsequence
{xnk} of {xn} which converges, and limnk→∞ xnk ∈ A. Also A is called totally bounded if for any ε > 0, there exist
x1, x2, . . . , xn ∈ A such that

A ⊂ Bo(x1, ε) ∪ · · · ∪ Bo(xn, ε).

In the above proof we showed the following result.

Theorem 3.1. Let (X,D) be a metric type space and τ the topology defined above. Let A be a nonempty subset of X.
(1) A is compact if and only if A is sequentially compact.
(2) If A is compact, then A is totally bounded.

It is amazing that the above results hold in metric type spaces when we do not know whether open balls are open and
closed balls are closed for τ .

4. KKMmaps in metric type spaces

It is well known that the Brouwer fixed point theorem, the KKM theorem (Knaster–Kuratowski–Mazurkiewicz theorem),
and other results in nonlinear analysis are equivalent. There are many extensions and many applications of KKM theorem.
The most important result for KKM mappings is the famous Fans theorem [12], which has been used as a very versatile
tool in modern nonlinear analysis. The first attempt to extend such theorems to metric spaces was done in [13], where the
underlying space was the case of hyperconvexmetric spaces. Following this extension others (see [14,15] for example) tried
to investigate the case of metric spaces. In [16] the authors were able to prove a KKM theorem and its applications in metric
spaces, and the new class calledN Rwhich extends nicely the case of hyperconvex metric spaces. Recently an extension to
conemetric spaces was done in [7,17]. This extension is stringent since it assumes that the underlying Banach spaces and its
associated cones are essential. Here wewill show that most of the stated results extends in fact nicely to metric type spaces.
Let X and Y be two topological spaces and F : X → 2Y be a multifunction with nonempty values, where 2Y denotes the

set of all subsets of Y . A multifunction F : X → 2Y is said to be:
(i) closed if its graph Gr(F) = {(x, y) ∈ X × Y , y ∈ F(x)} is closed;
(ii) compact if the closure F(X) is a compact subset of Y .

For a set X , we denote the set of all nonempty finite subsets of X by 〈X〉. Let A be a nonempty bounded subset of a metric
type space (M,D). Then
(i) co(A) =

⋂
{B ⊂ M, B is a closed ball inM such that A ⊂ B}

(ii) A(M) = {A ⊂ M, A = co(A)}, i.e. A ∈ A(M) if and only if A is an intersection of all closed balls containing A. In this
case,we say that A is an admissible set inM .

(iii) A is called subadmissible, if for each D ⊂ 〈A〉, co(D) ⊂ A. Obviously, if A is an admissible subset of M , then A must be
subadmissible.

Recall that closed and open balls ofM are defined as
B(x, r) = {y ∈ M, D(x, y) ≤ r}, Bo(x, r) = {y ∈ M, D(x, y) < r},

for any x ∈ M and r ≥ 0.
LetM be a metric type space and X a subadmissible subset ofM . A multifunction G : X → 2M is called a KKM mapping,

if for each A ∈ 〈X〉, we have co(A) ⊂ G(A) = ∪{G(a), a ∈ A}. More generally, if Y is a topological space and G : X → 2Y ,
F : X → 2Y are two multifunctions such that for any A ∈ 〈X〉, we gave F(co(A)) ⊂ G(A), then G is called a generalized KKM
mappingwith respect to F . If themultifunction F : X → 2Y satisfies the requirement that for any generalized KKMmapping
G : X → 2Y with respect to F the family {G(x), x ∈ X} has the finite intersection property, then F is said to have the KKM
property. We define

KKM(X, Y ) = {F : X → 2Y , F has the KKM property}.
Let X be a nonempty subset of a metric type space M . Then F : X → M is said to have the approximate fixed point

property if for any ε > 0, there exists an xε ∈ X such that F(xε) ∩ Bo(xε, ε) 6= ∅, i.e. there exists y ∈ F(xε) such that
D(xε, y) < ε. We now establish the approximate fixed point property of KKM-type mapping on a subadmissible subset of a
metric type space similar to the ones obtained in [16,7].

Theorem 4.1. Let (M,D) be a metric type space and X a nonempty subadmissible subset of M. Let F ∈ KKM(X, X) be such that
F(X) is totally bounded. Then F has the approximate fixed point property.

Proof. Set Y = F(X) ⊂ X . Since Y is totally bounded, then for any ε > 0, there exists a finite subset A ⊂ X such that
Y ⊂

⋃
x∈A Bo(x, ε). Define G : X → 2X by

G(x) = Y ∩ Bo(x, Kε)c,



3128 M.A. Khamsi, N. Hussain / Nonlinear Analysis 73 (2010) 3123–3129

where Z c is the complement of Z inM . Clearly G(x) is closed. Note that for any x ∈ M , we have

Bo(x, ε) ⊂ Bo(x, Kε)c
c
⊂ Bo(x, Kε).

Indeed, let y ∈ Bo(x, ε). Assume that y 6∈ Bo(x, Kε)c
c
, i.e. y ∈ Bo(x, Kε)c . From the properties of the closure in metric type

spaces, there exists a sequence {yn} ∈ Bo(x, Kε)c such that limn→∞ yn = y. Hence

Kε ≤ D(x, yn) ≤ K
(
D(x, y)+ D(y, yn)

)
.

If we let n→∞, we get Kε ≤ KD(x, y), or ε ≤ D(x, y). This is a contradiction to y ∈ Bo(x, ε). Hence

Bo(x, ε) ⊂ Bo(x, Kε)c
c
.

Next let y ∈ Bo(x, Kε)c
c
. Let us prove that y ∈ Bo(x, Kε). Assume not, i.e. y 6∈ Bo(x, Kε). Hence y ∈ Bo(x, Kε)c which implies

y ∈ Bo(x, Kε)c . This is a contradiction with y ∈ Bo(x, Kε)c
c
. Therefore we have

Bo(x, Kε)c
c
⊂ Bo(x, Kε).

On the other hand, since Y ⊂
⋃
x∈A Bo(x, ε), then we have

⋂
x∈A G(x) = ∅. So G is not a generalized KKM mapping with

respect to F . Since F ∈ KKM(X, X), there exists a finite nonempty subset B ⊂ X such that F(co(B)) 6⊂
⋃
x∈B G(x). So

there exists xo ∈ F(co(B)) such that xo 6∈ G(x) for any x ∈ B. In other words, we have xo ∈ Bo(x, Kε)c
c
, for any x ∈ B.

Hence xo ∈ Bo(x, Kε) for any x ∈ B or B ⊂ Bo(xo, Kε). By the definition of co(B) we deduce that co(B) ⊂ B(xo, Kε). Since
xo ∈ F(co(B)), there exists xε ∈ co(B) such that xo ∈ F(xε). But xε ∈ co(B) ⊂ B(xo, Kε), gives D(xo, xε) ≤ Kε. Therefore we
have proved

F(xε) ∩ B(xε, Kε) 6= ∅.

Since ε was arbitrary, the proof of the theorem is complete. �

As a direct consequence of this result, we get the following fixed point result.

Theorem 4.2. Let (M,D) be a metric type space and X a nonempty subadmissible subset of M. Let F ∈ KKM(X, X) be closed
and compact. Then F has a fixed point, i.e. there exists x ∈ X such that x ∈ F(x).

Proof. Since F is compact, then F(X) is compact. Hence F(X) is totally bounded. The previous theorem implies the existence
of xε ∈ X such that

F(xε) ∩ B(xε, ε) 6= ∅,

for any ε > 0. In particular, for any n ≥ 1, there exists xn ∈ X such that

F(xn) ∩ B(xn, 1/n) 6= ∅.

Hence there exists yn ∈ F(xn) such that D(xn, yn) < 1/n, for any n ≥ 1. Since F is compact, there exists a subsequence {ynk}
which is convergent to y. Clearly we have {xnk} is also convergent to y. Since {(xn, yn)} ∈ Gr(F) and Gr(F) is closed, then
(y, y) ∈ Gr(F), i.e. y ∈ F(y). �

The following lemma will be useful to prove Schauder’s type fixed point theorem for metric type spaces.

Lemma 4.1. Let (M,D) be a metric type space and X a nonempty subadmissible subset of M. Suppose that Y is a topological
space, F ∈ KKM(X, Y ) and f : Y → X is continuous, then f ◦ F ∈ KKM(X, X).

Proof. Let G : X → 2X be generalized KKM mappings with respect to f ◦ F such that G(x) is closed for each x ∈ X .
Then, for any finite subset {x1, x2, . . . , xn} of X , since G is a generalized KKM mapping with respect to f ◦ F we have
f ◦ F(co{x1, x2, . . . , xn}) ⊂

⋃
1≤i≤n G(xi). Hence

F(co{x1, x2, . . . , xn}) ⊂
⋃
1≤i≤n

f −1
(
G(xi)

)
.

Therefore, f −1(G) is a generalized KKMmapping with respect to F . Since F ∈ KKM(X, Y ), then the family {f −1(G(x)), x ∈ X}
has the finite intersection property since f is continuous. This will imply that the family {G(x), x ∈ X} has the finite
intersection property. This shows that f ◦ F ∈ KKM(X, X). �

Theorem 4.3. Let (M,D) be ametric type space and X a nonempty subadmissible subset of M. Suppose that the identitymapping
I : X → X belongs to KKM(X, X), then any continuous mapping f : X → X such that f (X) is compact, has a fixed point.

More results similar to the ones found in [7] can be proved in this context.
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