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1. Introduction

The celebrated result of the existence of a common fixed point for a nonexpansive commutative family was first
established by DeMarr [ 1] under the assumption that C is a compact convex subset of a normed space X. In 1965, Browder [2]
obtained the corresponding result under the assumption that C is a bounded, closed and convex subset of a uniformly
convex Banach space X. In 1992, Khamsi et al. [3] established the above mentioned results for a finite as well as an arbitrary
commutative family of maps in hyperconvex metric spaces. Recently, Espinola and Hussain [4] proved DeMarr’s theorem
in uniformly convex metric spaces of type (T). More recently, Chen and Li [5] have introduced the concept of symmetric
Banach operator pairs and extended DeMarr’s result to the family of these operators.

In this paper we establish DeMarr’s result for an arbitrary family of symmetric Banach operator pairs in hyperconvex
metric spaces without the compactness assumption. We also give necessary and sufficient criteria for a common fixed point
of a semigroup of isometric mappings. As an application, several results on the invariant best approximation are proved.

The notion of hyperconvexity is due to Aronszajn and Panitchpakdi [6] who proved that a hyperconvex space is a
nonexpansive absolute retract, i.e., it is a nonexpansive retract of any metric space in which it is isometrically embedded.
The interest in these spaces goes back to the results of Sine [7] and Soardi [8] who proved independently that the fixed
point property for nonexpansive mappings holds in bounded hyperconvex spaces. Since then many interesting results have
appeared in the setting of hyperconvex spaces (see [9-11]).
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2. Banach operator pairs

A metric space H is said to be hyperconvex [6] if given any family {x,} of points of H and any family {r,} of nonnegative
real numbers satisfying

d(xy, xg) < Ty + 718

it is the case that N, B(Xy; ) # 0.
An admissible subset of a metric space H is a set of the form

ﬂB(Xi; 1)

where {B(x;; r;)} is a family of closed balls centered at points x; € H with respective radii r;. It is quite easy to see that an
admissible subset of a hyperconvex metric space is hyperconvex.

Sine [7] and Soardi [8] proved that if H is a bounded hyperconvex metric space and T : H — H is nonexpansive,
ie.d(T(x), T(y)) <d(x,y) foranyx, y € H, then there exists a fixed point x € H, i.e. T(x) = x. Moreover the fixed point set
Fix(T) is hyperconvex and consequently is a nonexpansive retract of H.

Definition 2.1. The ordered pair (S, T) of two self-maps of a metric space H is called a Banach operator pair if the set Fix(T)
is S-invariant, namely S(Fix(T)) € Fix(T).

Obviously a commuting pair (S, T) is a Banach operator pair but not conversely in general; see [12-14] and Examples 2.1
and 4.1.

Lin and Sine [15] showed that if 7 is a commuting family of nonexpansive maps on any hyperconvex space which has
a nonempty set of common fixed points, then there is a nonexpansive retraction onto Fix(7") which commutes with every
member of 7. But this is not true in general for continuous, noncommuting maps as is clear from the following example.

Example 2.1. Note that [0, 1] is a compact hyperconvex metric space. Let T : [0, 1] — [0, 1] and S : [0, 1] — [0, 1] be
defined as

T(x)=x* and S(x)=1-—x.

Then T and S do not commute. (S, T) is a Banach operator pair while (T, S) is not. It is worth mentioning that Fix(T) is not
a continuous retract of [0, 1].

3. Common fixed points for Banach operator pairs

The study of a common fixed point of commuting mappings is an old one. In fact right after the first fixed point result
was published, the common fixed point problem was investigated. DeMarr’s results [1] may be considered as one of the
pioneer works in this direction (see also [ 16-19]). This problem becomes more challenging and seems to be of vital interest
in view of a historically significant and negatively settled problem that a pair of commuting continuous self-mappings on
the unit interval [0, 1] need not have a common fixed point [20]. Since then, many fixed point theorists have attempted to
find weaker forms of commutativity that may ensure the existence of a common fixed point for a pair of self-mappings on a
metric space. In this context, the notions of weakly compatible mappings [21] and Banach operator pairs [12,14] have been
of significant interest for generalizing results in metric fixed point theory for single-valued mappings.

We first prove the following fixed point result.

Lemma 3.1. Let H be a hyperconvex metric space. Let T : H — H be continuous such that T (H) is compact. Then there exists
K C H compact and hyperconvex such that T(K) C K. Moreover Fix(T) is not empty and is compact.

Proof. Define K, = T(H). Then any hyperconvex hull K of Ky in H will be compact. The first part follows from T(K) C
T(H) C Ky C K. Next we know from the main result of [22] that T has a fixed point in K. This implies that Fix(T) is not
empty. The compactness of Fix(T) follows from the fact that it is a closed subset of T(H). O

Definition 3.1. The mapping T : H — H is called an R-map if Fix(T) is a continuous retract of H.

Note that the fixed point set of continuous functions defined on any compact hyperconvex metric spaces may not be a
continuous retract (see the example above).

Theorem 3.1. Let H be a hyperconvex metric space. Let T : H — H be a continuous R-map such that T(H) is compact. Let
S : H — H be continuous such that (S, T) is a Banach operator pair. Then F (S, T) is not empty.

Proof. From the above lemma, we know that Fix(T) is not empty and is a compact subset of H. Since T is an R-map, then
there exists a continuous retract R : H — Fix(T). Since (S, T) is a Banach pair of operators, then S(Fix(T)) C Fix(T).
Hence S o R : H — H is continuous and such that S o R(H) C Fix(T). Hence S o R(H) is compact. The above lemma
implies the existence a fixed point of S o R. Clearly such a fixed point is a fixed point of S which belongs to Fix(T). Hence
Fix(T) N Fix(S) = F(S, T) isnotempty. O
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Note that if T is nonexpansive and H is bounded, then Fix(T) is hyperconvex which implies that Fix(T) is a nonexpansive
absolute retract of H.

If both operators are nonexpansive, then we have a result in hyperconvex metric spaces which does not involve
compactness and provides a nonlinear version of a recent result (Theorem 2.1) from [5].

Theorem 3.2. Let H be a bounded hyperconvex metric space. Let T : H — H be nonexpansive. Let S : H — H be nonexpansive
and such that (S, T) is a Banach operator pair. Then F (S, T) is not empty.
Another similar result which does not involve compactness nor boundedness is found in complete trees [23].

Theorem 3.3. Let H be a complete R-tree, and suppose that K is a closed convex subset of H which does not contain a geodesic
ray. Let S, T : H — H be nonexpansive maps such that (S, T) is a Banach operator pair. Then F(S, T) is not empty.

4. The fixed point of a Banach operator family

The aim of this section is to study the class of symmetric Banach operator pairs which properly contains the class of
commuting maps and is different from the class of weakly compatible maps. We will prove DeMarr’s result for this newly
defined class in the setting of hyperconvex metric space without the compactness of the domain. We also characterize
necessary and sufficient conditions for a common fixed point of an invertible semigroup of isometric mappings.

Definition 4.1. Let T and S be two self-maps of a metric space H. The pair (S, T) is called a symmetric Banach operator pair
if both (S, T) and (T, S) are Banach operator pairs, i.e., T (Fix(S)) C Fix(S) and S(Fix(T)) < Fix(T).

It is easy to see that the pair (S, T) is a symmetric Banach operator pair if and only if T and S are commuting on
Fix(T) | Fix(S). The maps S and T are called weakly compatible [21] if they commute at their coincidence points, i.e., if
STx = TSx whenever Sx = Tx. We say that S and T are nontrivially weakly compatible if and only if they are weakly
compatible and S(x) = T(x) for at least one x € X. The author in [21] obtained the common fixed point of the family

K, = {f : X — X; fis continuous and nontrivially weakly compatible with g}
in the setting of the Hausdorff topological space X. It is worth to note here that the class of symmetric Banach operator pairs
is different from that of weakly compatible maps as is clear from the following example.

Example 4.1. Consider X = R? with the usual norm. Define T and S on X as follows:

3/4,2 31
T(x,y) = <x3+x— 1, x+3y>’

S(x,y) = <x3+x—1, 3x2+y3—1>.

Then
Fix(T) = {(1,0)}; Fix(S) = {(1,y) : y € R'};
CS.T)={(xy) :y=V1-2 xeR);
T(Fix(S)) = {T(1,y) : y € R'} = {(1 %’) ye Rl] C{(1,y):y € R'} = Fix(S)
S(Fix(T)) = S({(1,0)}) = {(1, 0)} = Fix(T).

Obviously, (S, T) is a symmetric Banach operator pair. It is easy to see that T and S do not commute on the set of coincidence
points, C(S, T), of S and T. Thus S and T are not weakly compatible and hence not commuting.

Let H be a hyperconvex metric space and 7~ be a family of mappings defined on H. Then the family 7~ has a common fixed
point if it is the fixed point of each member of 7.

Theorem 4.1. Let H be a hyperconvex metric space. Let 7 be a family of nonexpansive mappings defined on H. Assume that any
two mappings from 7 form a symmetric Banach operator pair. Then the family T has a common fixed point provided one map
from 7 has a bounded nonempty fixed point set. Moreover the common fixed point set F(7") is hyperconvex.

Proof. Let Ty € 7 be the map for which F(T;) = Hy is nonempty and bounded. Clearly Hy is hyperconvex since Ty is
nonexpansive. Since any two mappings from 7 form a symmetric Banach operator pair, then for any T € 7, we have
T(Hp) C Hy. Since Hy is bounded, T has a fixed point in Hy. The fixed point set of T in Hg is F(T) N F(Tp) and is hyperconvex.

Suppose that S € 7. Then S(F(T) N F(To)) C F(T) N E(Typ). Since F(T) N F(Ty) is bounded and hyperconvex, then S

has a fixed point in F(T) N F(Ty). The fixed point set of S in F(T) N F(Ty) is F(S) N F(T) N F(Ty) which is bounded and
hyperconvex. By induction, we will prove that any finite subfamily Ty, . .., T,, of 7 has a nonempty common fixed point set
F(Ty) N---NF(Ty,) N Ho in Hp which is hyperconvex. Baillon’s main theorem [24] implies that (");., F(T) N Hp is not empty
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and is hyperconvex. Since
F(T)NHy =F(T)

we conclude that F(7") is not empty and is hyperconvex. 0O

Remark 4.1. One may relax the boundedness assumption and obtain a similar conclusion when H is an R-tree. This is an
extension of Theorem 4.3 of [23].

Note that in DeMarr’s result, the domain is assumed to be compact, as in [5, Theorem 3.5].

Lemma 4.1. Let H be a hyperconvex metric space. Let 7 be a family of nonexpansive mappings defined on H. Let t be a topology
on H for which the closed balls are t-closed. Assume that there exists a bounded subset A C H such that A C mr, for any
T € T, where mt is the t-closure of T(A). Assume that any two mappings from 7 form a symmetric Banach operator pair.
Then the family 7 has a common fixed point.

Proof. Define § = diam(A). Consider the subset
C=()B@?).
aeA
Clearly we have A C C. Suppose that T € 7; then
T(C) C[\B(T(@), ),
acA
since T is nonexpansive. This implies
TA) C [ B(d).
ceT(0)
Since the closed balls are t-closed, we get
T@A) c () B(.9).
ceT(C)
Our assumption implies
Ac () B(.3).
CceT(C)
Hence
T(C) C [ )B(a,8) =C.
acA

Since C is a bounded hyperconvex metric space, the theorem above implies that 7 has a common fixed point. O

Definition 4.2. Let H be a metric space. Let 7 be a family of mappings defined on H. The family 7 is called a semigroup if
SoT € 7 whenever S, T € 7. We will call the semigroup 7 an invertible semigroup if and only if any element in 7 is
invertibleand T~! € 7 forany T € 7. For any x € H, define the orbit of x by

Tx ={Tx);TeT}.

Theorem 4.2. Let H be a hyperconvex metric space. Let T be an invertible semigroup of isometric mappings defined on H such
that any two mappings from J form a symmetric Banach operator pair. Then the family 7 has a common fixed point if and only
if Nrey T(M) is not empty and T -orbits are bounded.

Proof. Clearly if 7 has a fixed point, then we have that (";., T(M) is not empty and 7 -orbits are bounded. So let us assume
that (). T(M) is not empty and 7 -orbits are bounded. Suppose that x € [y T(M). The orbit 7 (x) is bounded. Set
A = 7 (x). Note that T(A) = A for any A € 7. Indeed, by definition of the orbit 7 (x), we have T(A) C A. Suppose that

a € A; then there exists S € 7 such that a = S(x). Clearly we have a = T(T‘l o S(x)). Since T"' oS € 7, we conclude

that a € T(A). Next we consider the admissible subset C = (7,4 B(a, §), where § = diam(A). Obviously A C C and C is
bounded and hyperconvex. As in the proof of the lemma above, one can easily show that T(C) C C,forany T € 7. So from
the above theorem we conclude that 7 has a common fixed point and its fixed point set Fix(7) is hyperconvex. 0O
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5. The invariant approximation

In [25] Al-Thagafi proved some results on invariant approximations for commuting maps in normed spaces. Hussain [13],
Jungck and Hussain [26], Pathak and Hussain [14,27], and Khan and Akbar [28] have extended the work of Al-Thagafi [25]
to compatible, C;-commuting maps, Banach operator pairs and J#-operator pairs.

Let H be a hyperconvex metric space. Let C be a nonempty admissible subset of H. Then we know that for any x € H, the
subset

Pc(x) ={y e G;d(x,y) =d(x,0) = incfd(x, 0}

is not empty, i.e. C is a proximinal set. In fact this conclusion is still valid even when C is an externally hyperconvex subset
of H. Clearly we have

Pc(x) = C N B(x,d(x, C)).

This shows that P¢(x) is an admissible subset of H. In particular, Pc (x) is hyperconvex. In [25], the author obtained invariant
approximation results in the linear case. We have here similar results for hyperconvex metric spaces.

Theorem 5.1. Let H be a hyperconvex metric space and C be a nonempty admissible subset of H. Let T : H — H be a mapping
such that Fix(T) is not empty. Suppose that x € Fix(T). Assume that the restriction of T to B(x, d(x, C)) is nonexpansive and
T(C) C C. Then we have:

(i) T(Pc(x)) C Pc(x);
(ii) Fix(T) N Pc(x) is not empty and is hyperconvex.

Proof. Since x € Fix(T) and the restriction of T to B(x, d(x, C)) is nonexpansive, we get T(B(x, d(x, C))) C B(x, d(x, C)).
Using the assumption T(C) C C, we conclude that

T(Pc(x)) C Pc(x).

The restriction of T to P¢(x) is nonexpansive. Since P (x) is a bounded hyperconvex subset of H, we deduce that T has a fixed
point in Pc(x). Since the fixed point set of a nonexpansive map defined on a hyperconvex metric space is hyperconvex, we
conclude that Fix(T) N Pc(x) is hyperconvex. O

The conclusion of the above theorem improves Al-Thagafi’s result since we do not assume compactness. Next we look at
the above conclusion for Banach operator pairs.

Theorem 5.2. Let H be a hyperconvex metric space and C be a nonempty admissible subset of H. Let T : H — H be a mapping
such that Fix(T) is not empty. Suppose that x € Fix(T). Let S : H — H be a mapping such that (S, T) is a Banach operator
pair on B(x, d(x, C)). Assume that the restrictions of T and S to B(x, d(x, C)) are nonexpansive, T(C) C C and S(C) C C. Then
Fix(S, T) N Pc(x) is not empty and is hyperconvex.

Proof. From the above theorem we know that Fix(T) N Pc(x) is nonempty and hyperconvex. Note that Pc(x) is a subset of
B(x, d(x, C)). Hence Fix(T) N Pc (x) is bounded. Since S (Fix(T) N Pc (x)) C Fix(T) N Pc(x) and is nonexpansive, we conclude
that S has a fixed point in Fix(T) N Pc(x), i.e.

Fix(S, T) N Pc(x) = Fix(S) N Fix(T) N Pc(x) # 0.

The fact that Fix(S, T) N Pc(x) is hyperconvex follows from known results. O
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