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Abstract

Roberts constructed a linear metric space which contains a compact convex set without any
extreme points. The space constructed by Roberts is complicated and special.

We investigate the topological property of Roberts’ example and demonstrate that the linear metric
space constructed by Roberts is an AR, therefore is homeomorphic to Hilbert space. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

One of the most difficult problems in infinite-dimensional topology is the problem
of identifying the AR-property among linear metric spaces. This problem is of special
importance because infinite-dimensional separable complete linear metric spaces with the
AR-property are homeomorphic to Hilbert space, see [3].

Observe that Cauty [2] constructed aσ -compact linear metric space which is not an
AR. By a theorem of Torunczyk [13], the completion of any non-AR-linear metric space
is still a non-AR-space. Therefore the completion of Cauty’s example provides a separable
complete linear metric space which is not an AR.

It should also be observed that while Cauty showed the existence of non-AR-linear
metric spaces, it is difficult to use his argument to obtain an intuitive picture of such a space.
In fact, Cauty’s example is based on some rather deep facts from infinite-dimensional
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topology and a more self-contained example of a non-AR-linear metric space would be
much appreciated. Naturally, it is hoped that such an example should be found among
pathological objects in linear metric spaces.

It is also hoped that an investigation for the AR-property of pathological objects in linear
metric spaces will shed light on the following question which is one of the most outstanding
open problems in infinite-dimensional topology:

Question 1. Is every compact convex set in a linear metric space an AR? Does every
compact convex set have the fixed point property?

The second part of the above question, known as “Schauder’s Conjecture”, was posed
by Schauder in early 1930’s, but is still open today.

In this context, we investigate the AR-property of the famous example due to
Roberts [12] of a linear metric space containing a compact convex set with no extreme
points. Roberts’ example contrasts with the classical theorem of Krein and Milman [5]
stating that any compact convex set in a locally convex space is the closure of the convex
hull of its extreme points. Therefore, the Krein–Milman theorem does not hold for non-
locally convex spaces.

In [10], see also [11], it was proved that the compact convex set with no extreme points
constructed by Roberts is an AR, therefore is homeomorphic to Hilbert cube. The following
question was posed in [10, Question 1]:

Question 2. Is every convex set in the linear metric space constructed by Roberts an AR?

In this paper, we provide a partial answer to the above question by demonstrating that
the whole space constructed by Roberts is an AR, therefore is homeomorphic to Hilbert
space.

Our result provides a new example of a pathological space homeomorphic to Hilbert
space. Some other pathological linear metric spaces possessing the topological structure of
Hilbert space were also obtained in [9,4].

2. Roberts’ construction and our result

We are going to describe Roberts’ construction [12] of a linear metric space containing
a compact convex set with no extreme points.

We recall the following definitions in [12]: AparanormN on a vector spaceX is a
functionN :X→[0,∞) with the following properties:

(1) N(θ)= 0,
(2) N(x)=N(−x) for everyx ∈X,
(3) N(x + y)6N(x)+N(y) for everyx, y ∈X, and
(4) limα→0N(αx)= 0 for everyx ∈X.

A paranormN onX is said to be:
(1) total if x 6= θ impliesN(x) > 0;
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(2) monotoneif N(αx)6N(x) for everyx ∈X andα ∈ [0,1];
(3) norm boundedif there exists a norm‖.‖ onX such that

N(x)6 ‖x‖ for everyx ∈X.
Let X be a finite-dimensional space with a basisB = {e1, . . . , em}, let ε > 0, h > 0, and
let e = e1 + · · · + em. We say thate is anε-needle pointof X with heighth, briefly an
(ε,h)-needle point, with respect to the paranormN and the basisB if:

(1) N is monotone, total and norm bounded.
(2) If x ∈ conv{θ,me1, . . . ,mem}, then there exists anα ∈ [0,1] such thatN(x − αe)

< ε.
(3) N(mei) < ε for i = 1, . . . ,m.
(4) N(αe)= αh for everyα ∈ [0,1].
The following fact [12, Proposition 2.6] is the key to Roberts’ construction:

Proposition 1. Givenε > 0 andh > 0, there exists anm-dimensional spaceV with basis
B = {e1, . . . , em} and a paranormN onV such thate = e1+ · · · + em is an(ε,h)-needle
point with respect to the paranormN and the basisB.

Moreover the paranormN is bounded by the norm| . | defined by

|x| =
m∑
i=1

|αi | for everyx =
m∑
i=1

αiei ∈ V. (2.1)

Proof. The fact that the paranormN is bounded by the norm| . | defined by (2.1) was not
stated explicitly in Proposition 2.6 [12], however this fact can be obtained by analyzing the
proofs of Propositions 2.1 through 2.6 given in [12].

In fact, observe that in the proof of Proposition 2.5 [12] one can take the normN ′ onV
given by

N ′(x)= 1

m

m∑
i=1

|αi | for everyx =
m∑
i=1

αiei ∈ V.

(We adopt the notation used in the proofs of Propositions 2.1 to 2.6 of [12], and therefore
we assume that the reader has access to the paper [12] while reading this proof.) Then
we haveN ′(e) = 1. LetN0 denote the paranorm onV defined in the proof of Proposi-
tion 2.6 [12]. ThenN0(e)>M − 1> 1, andQ = inf{2N0,N

′} is a monotone total norm
bounded paranorm withQ(e)= 1. LetN1 = inf{P,2Q}, whereP is the paranorm on the
one-dimensional spaceRe = {λe: λ ∈ R} defined byP(αe) = |α| for α ∈ R. Finally ob-
serve that in the proofs of Propositions 2.5 and 2.6 [12] the paranormN onV was given by

N(x)= hN1(x) for x ∈ V.
Therefore form> 2h we have

N(x)= hN1(x)6 2hQ(x)6 2hN ′(x)= 2h

m
|x|6 |x|,

for everyx ∈ V , and the claim is proved.2
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Now we going to describe the linear metric spaceE constructed by Roberts [12]. Let
N denote the set of all positive integers. For a sequence{d(n)} ⊂ N we putm(1) = 1
and inductively definem(n + 1) = d(n)m(n). Let π1 = {[0,1)}. Assume thatπn is a
partition of [0,1) into m(n) equal length intervals of the formS = [a, b). For each
S ∈ πn, let πn+1(S) denote the partition ofS into d(n) equal length subintervals. Define
πn+1=⋃S∈πn πn+1(S).

Consider the vector space consisting of all functions on[0,1) which are finite linear
combinations of characteristic functions of the formχ[a,b). Let

En = span{χS : S ∈ πn}, and E∞ =
∞⋃
n=1

En, (2.2)

whereχS denotes the characteristic function ofS. For everyS ∈ πn, let

Bn+1(S)=
{
en+1(T ): T ∈ πn+1(S)

}
, and En+1(S)= span

{
Bn+1(S)

}
, (2.3)

whereen+1(T )=m(n+ 1)χT . Then we have

En+1=
⊕
S∈πn

En+1(S) and E1⊂ E2⊂ · · · ⊂E∞ =
∞⋃
n=1

En. (2.4)

Roberts’ construction can be summarized in the following theorem, see [12, Section 3]:

Theorem 1. For suitable sequences{d(n)} ⊂ N and {m(n + 1)} = {d(n)m(n)} ⊂ N ,
with m(1) = 1, there exist sequences{Nn}, {NSn+1: S ∈ πn} of paranorms onEn and
on En+1(S), respectively, withdimEn = m(n) and dimEn+1(S) = d(n) such that the
following conditions hold:

(i) N1(x)=
∫ 1

0 |x(t)|dt for everyx ∈E1.
(ii) For anyn ∈N andS ∈ πn, the paranormNSn+1 onEn+1(S) is constructed as in

Proposition1 with ε1 = 4, εn+1 < [m(n)]−12−n−1 for n > 2, andhn ∈ [4,5] for
everyn ∈N . Therefore
(ii-a) NSn+1(x) 6 |x| for everyx ∈ En+1(S), where| . | is the norm onEn+1(S)

given by(2.1);
(ii-b) m(n + 1)χS = ∑T ∈πn+1(S)

m(n + 1)χT is an (εn+1, hn+1)-needle point

of En+1(S) with respect to the paranormNSn+1, and the basisBn+1(S),
see(2.3).

(iii) For everyn > 1 the paranormNn+1 onEn+1 is given by

Nn+1(x)= inf

{
Nn(y)+

∑
S∈πn

NSn+1(x(S))

}
for x ∈En+1, (2.5)

where the infimum is taken over all the expressions ofx of the form

x = y +
∑
S∈πn

x(S), wherey ∈En, andx(S) ∈En+1(S).

(iv) The formula

N(x)= lim
n→∞Nn(x) for x ∈E∞ (2.6)

defines a monotoneF -norm onE∞.
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(v) If x ∈En andNn(x) < 4, thenNm(x)=Nn(x) for everym> n.
(vi) Let (E,‖ .‖) denote the completion of(E∞,N) with respect to theF -norm N

defined by(2.6). Then

C =
⋃∞

n=1
[An] ⊂E, where[An] = conv

{±m(n)χS : S ∈ πn
}
, (2.7)

is a compact convex set with no extreme points.

In [10] it was shown that the compact convex setC defined by (2.7) is an AR, therefore
is homeomorphic to the Hilbert cube. Our result in this paper is the following.

Main Theorem. E is anAR, therefore is homeomorphic to Hilbert space.

The proof of our Main Theorem will be based on Theorem 2 below, which is an
immediate consequence of Michael’s selection theorem, see for instance [1], stating that if
X is a complete linear metric space andY is a locally convex closed subspace ofX, then
there exists a continuous selectiong :X/Y →X, i.e.,g(x) ∈ π−1(x) for everyx ∈X/Y ,
whereπ :X→X/Y denotes the quotient map.

Theorem 2. LetY be a closed locally convex linear subspace of a complete linear metric
spaceX. If X is anAR, then the quotient spaceX/Y is also anAR.

Our proof also uses the following characterization of ANR-spaces established in [6]: Let
{Un} be a sequence of open covers of a metric spaceX. For a given coverUn, let

mesh(Un)= sup{diamU : U ∈ Un}.
We say that{Un} is a zero-approaching sequence if mesh(Un)→ 0 asn→∞.

For a given coverV let N (V) denote thenerveof V , that is, the simplicial complex
whose simplices are the finite nonempty subsets inV with nonempty intersection. Note
that the elements ofV are the vertices ofN (V). Let

U =
∞⋃
n=1

Un and K(U)=
∞⋃
n=1

N (Un ∪ Un+1)

and forσ ∈K(U), write

n(σ)=max
{
n ∈N : σ ∈N (Un ∪ Un+1)

}
. (2.8)

The following characterization of ANR-spaces was established in [6], see also [8].

Theorem 3. A metric space with no isolated points is anANR if and only if exists a
zero-approaching sequence{Un} of open covers ofX and a mapg :K(U)→ X such that
g|U→X is a selection; i.e.,g(U) ∈U for everyU ∈ U , and for any sequence of simplices
{σk} in K(U) with n(σk)→∞, we havediamg(σk)→ 0.

The Main Theorem will be proved by demonstrating that the spaceE constructed in
Theorem 1 is the quotient of a linear metric AR-spaceX over a closed locally convex
subspaceY ⊂X. Then from Theorem 2 the result follows.
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The remainder of this paper will be divided into three parts: In Section 3 we describe the
construction ofX whose AR-property will be verified by Theorem 3. A closed subspace
Y ⊂X for whichX/Y ∼=E will be constructed in Section 4. Finally the local convexity of
the spaceY constructed in Section 4 will be demonstrated in Section 5.

3. The construction ofX

Observe that the spaceE constructed in Theorem 1 is the completion of an algebraic
sum of the family of finite-dimensional spaces{En: n ∈N } defined by (2.2). Each space
En consists of linear combinations of characteristic functions{χS : S ∈ πn}. Our spaceX
will be the completion of the direct sum of{Xn: n ∈ N }, where each spaceXn will be
obtained by shifting the spaceEn from the intervalI = [0,1) into the interval[n− 1, n).

Precisely speaking, the spaceX will be defined as follows: LetX1= E1 and forn> 1
define

Xn+1(S)= span
{
χ[n+T ]: T ∈ πn+1(S)

}
, (3.1)

Xn+1=
⊕
S∈πn

Xn+1(S) and X∞ =
∞⊕
n=1

Xn, (3.2)

where[n+ T ] represents the translation of the intervalT by n; that is,[n+ T ] = {n+ x:
x ∈ T }.

For everyS ∈ πn let PSn+1 denote the translation ofNSn+1 from En+1(S) to Xn+1(S),
that is

PSn+1

( ∑
T ∈πn+1(S)

α(T )χ[n+T ]
)
=NSn+1

( ∑
T ∈πn+1(S)

α(T )χT

)
. (3.3)

Let P1=N1 and sinceXn+1 =⊕S∈πn Xn+1(S) for n> 1, we can define the paranorm
Pn+1 onXn+1 by

Pn+1=
∑
S∈πn

P Sn+1. (3.4)

Finally letP denote theF -norm onX∞ induced by the family of paranorms{Pn: n ∈N },
that is

P(x)=
∞∑
n=1

Pn(xn) for everyx =
∞∑
n=1

xn ∈X∞, (3.5)

wherexn ∈Xn with xn 6= θ for only finitely manyn ∈N .
Let (X,‖ .‖) denote the completion of(X∞,P ). The following theorem is the first step

in the proof of our result.

Theorem 4. X is anAR.
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Proof. We are going to verify the conditions of Theorem 3. Our proof uses an idea of [7,
Theorem 3.1]. Since dimXn <∞, for eachn ∈N there exists aδn ∈ (0,2−n) such that for
any finite setA⊂Xn,

diamA< 2δn imples diam(convA) < 2−n. (3.6)

Let rn :X→Xn denote the projection onto theXn-component. For everyx ∈X andn ∈
N takek(x,n) > n such that‖rk(n,x)(x)− x‖< 2−n. Let V (x) be an open neighborhood
of rk(n,x)(x) in Xk(n,x) with diamV (x) < δk(n,x). Then from (3.6) we get

diam
(
convV (x)

)
< 2−k(n,x) < 2−n.

Denote

U(x)= {y ∈ r−1
k(n,x)

(V (x)): ‖rk(n,x)(y)− y‖< 2−n
}
, (3.7)

Un =
{
U(x): x ∈X} and U =

∞⋃
n=1

Un.

We claim that the sequence{Un} satisfies the conditions of Theorem 3. First, since
diamV (x) < δk(n,x) < 2−n, from (3.7) we have

diamU < 3(2−n) for everyU ∈ Un,
and so{Un} is a zero-approaching sequence.

Observe that for everyU ∈ U, U ∈ Un for somen ∈ N , henceU = U(x) for some
x ∈X. We defineg(U)= rk(n,x)(x) ∈ V (x)⊂Xk(n,x), and extendingg overK(U) by the
convexity we get a mapg :K(U)→X, with g|U :U→X a selection.

Now, for everyσ = 〈U1, . . . ,Um〉 ∈ K(U), Ui ∈ Un(σ ) ∪ Un(σ )+1 for i = 1, . . . ,m,
wheren(σ) was defined by (2.8). We are going to compute diamg(σ). By (3.7)

Ui =
{
y ∈ r−1

k(n,xi)
(V (xi)): ‖rk(n,xi)(y)− y‖< 2−n

}
, (3.8)

wheren= n(σ) or n= n(σ)+ 1. Denote

ki = k(n, xi); Vi = V (xi), and yi = rki (xi) ∈Xki for i = 1, . . . ,m, (3.9)

m0=min{ki : i = 1, . . . ,m}, and mj =min{ki : ki > mj−1} forj > 1.

Then we get a finite sequence{m0, . . . ,mp} ⊂N with

m0< · · ·<mp, and {mi : i = 0, . . . , p} = {ki: i = 1, . . . ,m}.
By the definition ofg,

g(Ui)= rmi (xi)= yi ∈Xki for everyi = 1, . . . ,m.

Theng(σ)= conv{yi: i = 1, . . . ,m}, and for everyx ∈ g(σ) we have

x =
m∑
i=1

λiyi =
p−1∑
i=0

mi+1∑
j=mi+1

λj yj , whereλi > 0 and
m∑
i=1

λi = 1.
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Let

αi =
mi+1∑

j=mi+1

λj for i = 0, . . . , p− 1,

and forj =mi + 1, . . . ,mi+1, denote

µij =
{
(αi)
−1λj if αi > 0;

0 if αi = 0.
Then we have

x =
p−1∑
i=0

αi

mi+1∑
j=mi+1

µij yj ,

where
p−1∑
i=0

αi = 1 and
mi+1∑

j=mi+1

µij =
{

1 if αi > 0;
0 if αi = 0.

From (3.8) and (3.9) we get

Ui =
{
y ∈ r−1

ki
(Vi): ‖rki (y)− y‖< 2−n

}
for i = 1, . . . ,m. (3.10)

Takea ∈⋂m
i=1Ui , and denote

ai = rmi (a) ∈
mi+1⋂

j=mi+1

Vj ⊂Xmi for i = 0, . . . , p− 1.

Observe that for everyx ∈ g(σ) we have

x − a =
p−1∑
i=0

αi

mi+1∑
j=mi+1

µij (yj − ai)+
p−1∑
i=0

αi(ai − a). (3.11)

Claim 1. ‖∑p−1
i=0 αi(ai − a)‖< 2−n.

Proof. Observe that∥∥∥∥∥
p−1∑
i=0

αi(ai − a)
∥∥∥∥∥=

∥∥∥∥∥
p−1∑
i=0

αi [rmi (a)− a]
∥∥∥∥∥=

∥∥∥∥∥
p−1∑
i=0

[rmi (αia)− αia]
∥∥∥∥∥. (3.12)

Write

rm0(α0a)− α0a =
[
rm0(α0a)− rm1(α0a)

]+ · · ·
+ [rmp−2(α0a)− rmp−1(α0a)

]+ [rmp−1(α0a)− α0a
];

rm1(α1a)− α1a =
[
rm1(α1a)− rm2(α1a)

]+ · · ·
+ [rmp−2(α1a)− rmp−1(α1a)

]+ [rmp−1(α1a)− α1a
];

...

rmp−2(αp−2a)− αp−2a =
[
rmp−2(αp−2a)− rmp−1(αp−2a)

]
+ [rmp−1(αp−2a)− αp−2a)

]
.
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Since
∑j
i=0αi 6 1 for j = 0, . . . , p− 1, from (3.12) we get∥∥∥∥∥
p−1∑
i=0

αi(ai − a)
∥∥∥∥∥ 6 ∥∥α0[rm0(a)− rm1(a)]

∥∥+ ∥∥(α0+ α1)[rm1(a)− rm2(a)]
∥∥

+· · · + ∥∥(α0+ · · · + αp−2)[rmp−2(a)− rmp−1(a)]
∥∥

+∥∥(α0+ · · · + αp−1)[rmp−1(a)− a]
∥∥

6
∥∥rm0(a)− rm1(a)

∥∥+ · · · + ∥∥rmp−2(a)− rmp−1(a)
∥∥

+∥∥rmp−1(a)− a
∥∥.

Observe thatrmi (a)− rmi+1(a) ∈Xmi for i = 0, . . . , p− 1, hence from (3.5) we obtain∥∥rm0(a)− a
∥∥= ∥∥rm0(a)− rm1(a)

∥∥+ · · ·
+ ∥∥rmp−2(a)− rmp−1(a)

∥∥+ ∥∥rmp−1(a)− a
∥∥.

Since‖rm0(a)− a‖< 2−n, see (3.8), the claim is proved.2
Now, observe thatai = rmi (a) ∈

⋂mi+1
j=mi+1Vj for i = 0, . . . , p − 1 andyj ∈ Vj for

j =mi + 1, . . . ,mi+1. Therefore

diam{ai − yj , j =mi + 1, . . . ,mi+1}
6 2 max{diamVj , j =mi + 1, . . . ,mi+1}< 2δmi ,

for i = 0, . . . , p− 1, which by (3.6) yields

diam
(
conv{ai − yj , j =mi + 1, . . . ,mi+1}

)
< 2−mi for i = 0, . . . , p− 1.

Sincem0<m1< · · ·<mp−1, from (3.10) we obtain

‖x − a‖ 6
p−1∑
i=0

∥∥∥∥∥
mi+1∑

j=mi+1

µij (yj − ai)
∥∥∥∥∥+ 2−n

6 2−n +
p−1∑
i=0

2−mi < 2−n + 2−m0+1,

for everyx ∈ g(σ).
Observe thatm0> n andn= n(σ)+ 1. Hence

‖x − a‖6 2−n(σ )+1+ 2−n(σ )+1= 2−n(σ )+2,

for everyx ∈ g(σ). Therefore

diamg(σ)6 2−n(σ )+3 for everyσ ∈K(U).
ConsequentlyX is an AR by Theorem 3, and the proof of Theorem 4 is complete.2

4. The construction ofY and proof of the Main Theorem

We are going to construct a closed locally convex subspaceY ofX for whichX/Y ∼=E.
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For everyn ∈N andS ∈ πn, denote

Yn(S)=
{
χ[n−1+S] − χ[k+S]: k = n,n+ 1, . . .

}
,

and defineY by

Y∞ = span

{ ∞⋃
n=1

⋃
S∈πn

Yn(S)

}
and Y = Y∞ ⊂X. (4.1)

The following theorem, proved in Section 5, is a crucial step in our proof.

Theorem 5. Y is a locally convex space.

We are going to show thatX/Y ∼=E. For everyn ∈N let fn :Xn→En denote the map
that movesXn back toEn, i.e., the linear map induced by

fn
(
χ[n−1+S]

)= χS for everyS ∈ πn.
Finally, letf∞ :X∞→E∞ denote the linear map induced by{fn: n ∈N }. Then for every
x ∈X∞,

x =
∞∑
n=1

∑
S∈πn

xn(S)an(S) wherean(S)=m(n)χ[n−1+S],

we have

f∞(x)=
∞∑
n=1

∑
S∈πn

xn(S)en(S) ∈E∞ whereen(S)=m(n)χS.

By definition,

N
(
f∞(x)

)
6 P(x) for everyx ∈X∞.

SinceX∞ is dense inX, the mapf∞ :X∞→E∞ can be extended to a linear continuous
mapf :X→E such that

N
(
f (x)

)
6 P(x) for everyx ∈X. (4.2)

We claim that

Proposition 2. f−1(θ)= Y andf (X)=E.

Proof. Observe that for everyx ∈ Y∞,

x =
∞∑
n=1

∞∑
k=n

∑
S∈πn

xkn(S)
(
χ[n−1+S] − χ[k+S]

); see (4.1)

where only finitely manyxkn(S) are non-zero. By definition,

fk(χ[k+S])= χS for everyk > n,
which yieldsf (x)= θ . SinceY∞ is dense inY we getY ⊂ f−1(θ).

Conversely, to verifyf−1(θ)⊂ Y , it suffices to establish the following fact.
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Claim 2. f−1(θ)∩X∞ ⊂ Y∞.

Proof. First observe that every elementx ∈X∞ can be written uniquely in the form

x =
∞∑
n=1

xn wherexn ∈Xn with xn 6= 0 for only finitely manyn ∈N .

We say thatx is of lengthm, denoted̀ (x)=m, if xm 6= θ andxn = θ for anyn > m. We
let `(θ)= 0.

We prove the claim by induction on the length ofx. If `(x)= 0, thenx = θ , hence the
claim holds. Assume that the claim has been proved for`(x)6m. Let x ∈ f−1(θ) ∩X∞
with `(x)6m+ 1. Then

x =
m+1∑
n=1

∑
S∈πn

xn(S)χ[n−1+S], and f (x)=
m+1∑
n=1

∑
S∈πn

xn(S)χS = θ. (4.3)

Thus, forxm+1=∑S∈πm+1
xm+1(S)χ[m+S] we have

f (xm+1)=
∑

S∈πm+1

xm+1(S)χS =−
m∑
n=1

∑
S∈πn

xn(S)χS ∈Em. (4.4)

Hencef (xm+1) can be rewritten in the form

f (xm+1)=
∑
S∈πm

x̂m(S)χS. (4.5)

Let

yk(S)=
{
xk(S) if k <m;
xm(S)+ x̂m(S) if k =m, (4.6)

y =
m∑
n=1

∑
S∈πn

yn(S)χ[n−1+S].

From (4.4)–(4.6) we have

f (y) =
m∑
n=1

∑
S∈πn

yn(S)χS =
m∑
n=1

∑
S∈πn

xn(S)χS +
∑
S∈πm

x̂m(S)χS

=
m∑
n=1

∑
S∈πn

xn(S)χS −
m∑
n=1

∑
S∈πn

xn(S)χS = θ.

Hencey ∈ f−1(θ) and`(y) 6 m. Therefore by inductive assumption we havey ∈ Y∞.
Consequently by (4.1),

x = y −
∑
S∈πm

x̂m(S)χ[m−1+S] +
∑
S∈πm

x̂m(S)χ[m+S]

= y −
∑
S∈πm

x̂m(S)
(
χ[m−1+S] − χ[m+S]

) ∈ Y∞.
The claim is proved. 2
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We now show that the quotient mapf ∗ :X/Y =X/f−1(θ)→E is an isometry; that is

‖x + Y‖ = inf
{‖x − y‖: y ∈ Y}= ∥∥f (x)∥∥ for everyx ∈X.

It suffices to show that

‖x + Y∞‖= inf
{‖x − y‖: y ∈ Y∞}= ∥∥f (x)∥∥ for everyx ∈X∞.

Sincey ∈ Y∞, we havef (x − y)= f (x). Hence from (4.2) we get∥∥f (x)∥∥6 ‖x − y‖ for everyy ∈ Y∞,
which yields∥∥f (x)∥∥6 ‖x + Y∞‖ for everyx ∈X∞.
To prove that the above inequality must be an equality, we assume on the contrary that∥∥f (x)∥∥< ‖x + Y∞‖ for somex ∈X∞.
Then for eachn ∈N , S ∈ πn andT ∈ πn+1(S) there existsxn+1(T ) ∈ R such that

f (x)=
∞∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

xn+1(T )en+1(T ) whereen+1(T )=m(n+ 1)χT ,

and
∞∑
n=1

∑
S∈πn

NSn+1

( ∑
T ∈πn+1(S)

xn+1(T )en+1(T )

)
< ‖x + Y∞‖. (4.7)

Observe that, for

z=
∞∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

xn+1(T )an+1(T ) wherean+1(T )=m(n+ 1)χ[n+T ],

we havef (z − x) = θ , and soz − x ∈ f−1(θ) ∩ X∞ = Y∞. Hencez ∈ x + Y∞, and
from (4.7) we get

‖z‖ =
∞∑
n=1

∑
S∈πn

P Sn+1

( ∑
T ∈πn+1(S)

xn+1(T )an+1(T )

)

=
∞∑
n=1

∑
S∈πn

NSn+1

( ∑
T ∈πn+1(S)

xn+1(T )en+1(T )

)
< ‖x + Y∞‖,

a contradiction.
Finally we claim thatf (X) = E. In fact, sincef ∗ :X/f−1(θ)→ E is an isometry,

f ∗(X/f−1(θ)) is complete, thereforef ∗(X/f−1(θ))=E. Hence

f (X)= f ∗(X/f−1(θ)
)=E.

Consequently the proof of Proposition 2 is complete.2
Now we are able to complete the proof of our Main Theorem: From Proposition 2 we

getE ∼= X/Y . By Theorem 5,Y = f−1(θ) is locally convex, and by Theorem 4,X is an
AR. HenceX/Y is an AR by Theorem 2. ConsequentlyE is an AR and the Main Theorem
is demonstrated.
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5. Proof of Theorem 5

In this section we prove Theorem 5, the final step in the proof of our result in this paper.
Observe that for anyx ∈X, the expression

x =
∞∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

xn+1(T )an+1(T ) wherean+1(T )=m(n+ 1)χ[n+T ], (5.1)

is unique. Therefore as in (2.1) we can define

|x| =
∞∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

∣∣xn+1(T )
∣∣. (5.2)

There is no guarantee that|x|<∞ even if‖x‖<∞.
The proof of Theorem 5 will be divided into two steps. The first is the following:

Lemma 1. For anyε > 0 there existsδ > 0 such that‖x‖< ε whenever|x|< δ.

Proof. We first consider the following special case:

xn+1(T )> 0 for everyT ∈ πn+1(S), S ∈ πn andn ∈N . (5.3)

Now givenε > 0, taken0 ∈N such that 2−n0 < ε/4. For anyx ∈ X of the form (5.1)
we define

x(n0)=
n0∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

xn+1(T )an+1(T );

x⊥(n0)=
∞∑

n=n0+1

∑
S∈πn

∑
T ∈πn+1(S)

xn+1(T )an+1(T ).

Take δ0 > 0 such that‖x(n0)‖ < ε/2 whenever|x(n0)| < δ0. We claim that δ =
min{δ0, ε/20} satisfies the required condition.

In fact, letx ∈ X with |x|< δ. Then, since|x(n0)|6 |x|< δ, we have‖x(n0)‖< ε/2.
Therefore it suffices to show that‖x⊥(n0)‖< ε/2 whenever|x⊥(n0)|6 |x|< δ 6 ε/20.

For everyn > n0, denote

aSn+1=
∑{

an+1(T ): T ∈ πn+1(S)
}=m(n+ 1)χ[n+S].

Since(En+1(S),N
S
n+1) and(Xn+1(S),P

S
n+1) are isometrically isomorphic, see (3.3), from

Theorem 1(ii-b) it follows thataSn+1 is an (εn+1, hn+1)-needle point ofXn+1(S) with
respect to the paranormPSn+1 and to the basis{an+1(T )=m(n+1)χ[n+T ]: T ∈ πn+1(S)}.
Let xSn+1=

∑
T ∈πn+1(S)

xn+1(T ), and

αTn+1=
{
xn+1(T )[xSn+1]−1 if xSn+1> 0;
0 if xSn+1= 0.

(5.4)

Then we have∑
T ∈πn+1(S)

αTn+1=
{

1 if xSn+1> 0;
0 if xSn+1= 0.
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Therefore there exists anαSn+1 ∈ [0,1] such that

PSn+1

( ∑
T ∈πn+1(S)

αTn+1an+1(T )− αSn+1a
S
n+1

)
< εn+1. (5.5)

Since|xSn+1|6 |x|< δ 6 ε/20< 1 and by Theorem 1(ii)hn+16 5, we obtain

PSn+1

( ∑
T ∈πn+1(S)

xn+1(T )an+1(T )

)
= PSn+1

(
xSn+1

∑
T ∈πn+1(S)

αTn+1an+1(T )

)

6 PSn+1

(
xSn+1

[ ∑
T ∈πn+1(S)

αTn+1an+1(T )− αSn+1a
S
n+1

])
+ PSn+1

(
xSn+1α

S
n+1a

S
n+1

)
6 PSn+1

( ∑
T ∈πn+1(S)

αTn+1an+1(T )− αSn+1a
S
n+1

)
+ PSn+1

(
xSn+1a

S
n+1

)
< εn+1+ |xSn+1|hn+16 εn+1+ 5|xSn+1|.

Since

εn+1<
[
m(n)

]−12−n−1 and
∣∣x⊥(n0)

∣∣6 |x|< δ 6 ε/20,

we have∥∥x⊥(n0)
∥∥ = ∞∑

n=n0+1

∑
S∈πn

P Sn+1

( ∑
T ∈πn+1(S)

xn+1(T )an+1(T )

)

<

∞∑
n=n0+1

∑
S∈πn

(
εn+1+ 5|xSn+1|

)
<

∞∑
n=n0+1

m(n)εn+1+ 5
∞∑

n=n0+1

∑
S∈πn

∣∣xSn+1

∣∣
<

∞∑
n=n0+1

2−n−1+ 5
∞∑

n=n0+1

∑
S∈πn

∑
T ∈πn+1(S)

∣∣xn+1(T )
∣∣

= 2−n0 + 5
∣∣x⊥(n0)

∣∣
< ε/4+ 5(ε/20)= ε/2.

Consequently the lemma is proved in the special case of (5.3).2
To see how the general case follows from the special case we denote

x+ =
∞∑
n=1

∑
S∈πn

∑
xn+1(T )>0

xn+1(T )an+1(T );

x− =
∞∑
n=1

∑
S∈πn

∑
xn+1(T )<0

xn+1(T )an+1(T ).
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Then by the special case we have‖x+‖ < ε/2 and‖x−‖ < ε/2 whenever|x|< δ. Since
x = x+ + x−, we have‖x‖< ε. The lemma is demonstrated.

Lemma 2. For everyy ∈ Y with ‖y‖< 1 we have|y|6 ‖y‖.

Before proving Lemma 2 let us observe that the following reformulation of Theorem 5
is an easy consequence of Lemmas 1 and 2.

Theorem 5. For everyε > 0 there existsδ > 0 such that‖∑k
i=1αiy

i‖ < ε whenever
yi ∈ Y with ‖yi‖< δ, andαi > 0 with

∑k
i=1αi = 1.

Proof. Givenε > 0, first takeδ ∈ (0,1) satisfying the condition of Lemma 1, and let

yi ∈ Y with ‖yi‖< δ < 1, and αi > 0, with
k∑
i=1

αi = 1.

Then by Lemma 2,|yi |6 ‖yi‖< δ for everyi = 1, . . . , k. Since∣∣∣∣∣
k∑
i=1

αiy
i

∣∣∣∣∣6
k∑
i=1

αi |yi |<
k∑
i=1

αiδ = δ,

from Lemma 1 we get‖∑k
i=1αiy

i‖< ε. Theorem 5 is proved.2
Accordingly our final step is to prove Lemma 2. Clearly it suffices to verify Lemma 2

for y ∈ Y∞. We will proceed with a proof by induction on the length`(y) of y.
Observe that if̀ (y)= 1, theny = θ , and Lemma 2 holds. Assume that Lemma 2 has

been proved for̀(y)6 k. Let y ∈ Y∞ with ‖y‖< 1 and`(y)6 k + 1. Then

y =
k∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

yn+1(T )an+1(T ), (5.6)

and

f (y)=
k∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

yn+1(T )en+1(T )= θ. (5.7)

Observe that, for

yk+1=
∑
S∈πk

∑
T ∈πk+1(S)

yk+1(T )ak+1(T ) ∈Xk+1, (5.8)

from (5.8) we have

f (yk+1) =
∑
S∈πn

∑
T ∈πn+1(S)

yk+1(T )ek+1(T )

= −
k∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

yn+1(T )en+1(T ) ∈Ek. (5.9)
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Hencef (yk+1) can be rewritten in the form

f (yk+1)=
∑
T ∈πk

yk(T )ek(T ) whereek(T )=m(k)χT , (5.10)

which implies

yk+1=
∑
T ∈πk

yk(T )a
T
k whereaTk =m(k)χ[k+T ]. (5.11)

Let

ŷi(T )=
{
yi(T ) if i < k;
yk(T )+ yk(T ) if i = k, (5.12)

ŷ =
k−1∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

ŷn+1(T )an+1(T ) wherean+1(T )=m(n+ 1)χ[n+T ].

Then `(ŷ) 6 k, ŷ ∈ Y∞, and from Theorem 1(v) and from (3.3), (3.5), (5.13) we get
|ŷ‖6 ‖y‖< 1. Hence by inductive assumption,

‖ŷ‖> |ŷ| =
k−1∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

∣∣ŷn+1(T )
∣∣.

Since∣∣ŷk(T )∣∣> ∣∣yk(T )∣∣− ∣∣yk(T )∣∣ for everyT ∈ πk(S), see (5.13)

andπk =⋃S∈πk−1
πk(S), we have

‖ŷ‖>
k−1∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

∣∣yn+1(T )
∣∣− ∑

S∈πk−1

∑
T ∈πk(S)

∣∣yk(T )∣∣. (5.13)

From (5.7), (5.9), (5.12) and (5.13) we get

y = ŷ −
∑

S∈πk−1

∑
T ∈πk(S)

yk(T )ak(T )+ yk+1

=
k−2∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

ŷn+1(T )an+1(T )

+
∑
S∈πk−1

∑
T ∈πk(S)

[
ŷk(T )− yk(T )

]
ak(T )+

∑
S∈πk

yk(S)a
S
k .

From (3.5) we have

‖y‖ =
k−2∑
n=1

∑
S∈πn

P Sn+1

( ∑
T ∈πn+1(S)

ŷn+1(T )an+1(T )

)

+
∑

S∈πk−1

PSk

( ∑
T ∈πk(S)

[ŷk(T )− yk(T )]ak(T )
)

+
∑
S∈πk

P Sk+1

(
yk(S)a

S
k

)
. (5.14)
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From Theorem 1(ii-a) and from (3.3) we obtain

PSk

( ∑
T ∈πk(S)

yk(T )ak(T )

)
6

∑
T ∈πk(S)

∣∣yk(T )∣∣ for everyS ∈ πk.

It follows that∑
S∈πk−1

PSk

( ∑
T ∈πk(S)

[ŷk(T )− yk(T )]ak(T )
)

>
∑

S∈πk−1

(
PSk

( ∑
T ∈πk(S)

ŷk(T )ak(T )

)
− PSk

( ∑
T ∈πk(S)

yk(T )ak(T )

))

>
∑

S∈πk−1

(
PSk

( ∑
T ∈πk(S)

ŷk(T )ak(T )

)
−

∑
T ∈πk(S)

∣∣yk(T )∣∣
)
. (5.15)

Observe that for everyS ∈ πk, aSk =m(k)χ[k+S] is anεk+1, hk+1-needle point ofXk+1(S)

with respect to the paranormPSk+1, and by Theorem 1(ii),hn > 4 for every n ∈ N .
Moreover since‖y‖ < 1, from (3.3), (3.5) we have|yk(S)| 6 1 for every S ∈ πk .
Consequently

PSk+1

(
yk(S)a

S
k

)= ∣∣yk(S)∣∣hk+1> 4
∣∣yk(S)∣∣ for everyS ∈ πk.

Now, since∑
S∈πk

∣∣yk(S)∣∣= ∑
S∈πk−1

∑
T ∈πk(S)

∣∣yk(T )∣∣, (5.16)

from (5.15), (5.16) and from (3.4), (3.5) we get

‖y‖ >
k−2∑
n=1

∑
S∈πn

P Sn+1

( ∑
T ∈πn+1(S)

ŷn+1(T )an+1(T )

)

+
∑

S∈πk−1

(
PSk

( ∑
T ∈πk(S)

ŷk(T )ak(T )

)
−

∑
T ∈πk(S)

∣∣yk(T )∣∣
)

+ 4
∑
S∈πk−1

∑
T ∈πk(S)

∣∣yk(T )∣∣= ‖ŷ‖ + 3
∑
S∈πk−1

∑
T ∈πk(S)

∣∣yk(T )∣∣.
Therefore from (5.14), (5.17) we obtain

‖y‖ >
k−1∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

∣∣yn+1(T )
∣∣+ 2

∑
S∈πk

∑
T ∈πk+1(S)

∣∣yk+1(T )
∣∣

>
k∑
n=1

∑
S∈πn

∑
T ∈πn+1(S)

∣∣yn+1(T )
∣∣= |y|.

The proof of Lemma 2 is complete.2
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