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Abstract

Roberts constructed a linear metric space which contains a compact convex set without any
extreme points. The space constructed by Roberts is complicated and special.

We investigate the topological property of Roberts’ example and demonstrate that the linear metric
space constructed by Roberts is an AR, therefore is homeomorphic to Hilbertspg2@@l Elsevier
Science B.V. All rights reserved.
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1. Introduction

One of the most difficult problems in infinite-dimensional topology is the problem
of identifying the AR-property among linear metric spaces. This problem is of special
importance because infinite-dimensional separable complete linear metric spaces with the
AR-property are homeomorphic to Hilbert space, see [3].

Observe that Cauty [2] constructedsacompact linear metric space which is not an
AR. By a theorem of Torunczyk [13], the completion of any non-AR-linear metric space
is still a non-AR-space. Therefore the completion of Cauty’s example provides a separable
complete linear metric space which is not an AR.

It should also be observed that while Cauty showed the existence of non-AR-linear
metric spaces, it is difficult to use his argumentto obtain an intuitive picture of such a space.
In fact, Cauty’'s example is based on some rather deep facts from infinite-dimensional
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topology and a more self-contained example of a non-AR-linear metric space would be
much appreciated. Naturally, it is hoped that such an example should be found among
pathological objects in linear metric spaces.

Itis also hoped that an investigation for the AR-property of pathological objects in linear
metric spaces will shed light on the following question which is one of the most outstanding
open problems in infinite-dimensional topology:

Question 1. Is every compact convex set in a linear metric space an AR? Does every
compact convex set have the fixed point property?

The second part of the above question, known as “Schauder’s Conjecture”, was posed
by Schauder in early 1930’s, but is still open today.

In this context, we investigate the AR-property of the famous example due to
Roberts [12] of a linear metric space containing a compact convex set with no extreme
points. Roberts’ example contrasts with the classical theorem of Krein and Milman [5]
stating that any compact convex set in a locally convex space is the closure of the convex
hull of its extreme points. Therefore, the Krein—Milman theorem does not hold for non-
locally convex spaces.

In [10], see also [11], it was proved that the compact convex set with no extreme points
constructed by Roberts is an AR, therefore is homeomorphic to Hilbert cube. The following
question was posed in [10, Question 1]:

Question 2. Is every convex set in the linear metric space constructed by Roberts an AR?

In this paper, we provide a partial answer to the above question by demonstrating that
the whole space constructed by Roberts is an AR, therefore is homeomaorphic to Hilbert
space.

Our result provides a new example of a pathological space homeomorphic to Hilbert
space. Some other pathological linear metric spaces possessing the topological structure of
Hilbert space were also obtained in [9,4].

2. Roberts’ construction and our result

We are going to describe Roberts’ construction [12] of a linear metric space containing
a compact convex set with no extreme points.

We recall the following definitions in [12]: Acaranorm N on a vector spacé is a
function N : X — [0, oco) with the following properties:

(1) N@©) =0,

(2) N(x) = N(—x) foreveryx € X,

(3) N(x+y) < N(x)+ N(y) foreveryx,y € X, and

(4) limy—o N (ax) =0 for everyx € X.
A paranormN on X is said to be:

(1) totalif x # 6 impliesN(x) > 0;
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(2) monotonef N(ax) < N(x) for everyx € X andux € [0, 1];
(3) norm boundedf there exists a nornfj.|| on X such that

N(x) < x| foreveryx e X.

Let X be a finite-dimensional space with a baBis= {e1, ..., ¢}, lete >0, h > 0, and
lete =e1+--- 4 e,. We say thak is ane-needle poinbf X with heightz, briefly an
(g, h)-needle point, with respect to the paranashand the basi® if:

(1) N is monotone, total and norm bounded.

(2) If x e cond, mex, ..., mey}, then there exists am € [0, 1] such thatV (x — ae)

<é€.

(3) N(me;) <efori=1,...,m.

(4) N(ae) =ah for everya € [0, 1].

The following fact [12, Proposition 2.6] is the key to Roberts’ construction:

Proposition 1. Givene > 0 andh > 0, there exists am-dimensional spac& with basis
B ={e1,...,ey} and a paranormiV onV such thate = e + - - - + ¢, is an (e, h)-needle
point with respect to the paranorii and the basis.
Moreover the paranorn¥ is bounded by the norin | defined by
m m
x| = Z laj| for everyx = Zaiei ev. (2.1)
i=1 i=1

Proof. The fact that the paranorni is bounded by the norm | defined by (2.1) was not
stated explicitly in Proposition 2.6 [12], however this fact can be obtained by analyzing the
proofs of Propositions 2.1 through 2.6 given in [12].

In fact, observe that in the proof of Proposition 2.5 [12] one can take the Norom V
given by

1 m m

N'(x)==—) |a;| foreveryx=>» aje;eV.
(We adopt the notation used in the proofs of Propositions 2.1 to 2.6 of [12], and therefore
we assume that the reader has access to the paper [12] while reading this proof.) Then
we haveN’(e) = 1. Let Ng denote the paranorm ovi defined in the proof of Proposi-
tion 2.6 [12]. ThenNg(e) > M — 1> 1, andQ = inf{2Np, N’} is a monotone total norm
bounded paranorm wit@ (e¢) = 1. Let N1 = inf{ P, 20}, whereP is the paranorm on the
one-dimensional spacke = {re: A € R} defined byP (ae) = || for « € R. Finally ob-
serve that in the proofs of Propositions 2.5 and 2.6 [12] the paranoomV was given by

N(x)=hN1(x) forxeV.
Therefore form > 2h we have
2h
N(x) =hN1(x) <2hQ(x) < 2hN'(x) = —|x| < |x],
m

for everyx € V, and the claim is proved. O
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Now we going to describe the linear metric spae&onstructed by Roberts [12]. Let
N denote the set of all positive integers. For a sequdrc¢e)} C N we putm(1l) =1
and inductively definen(n + 1) = d(n)m(n). Let 71 = {[0,1)}. Assume thatr, is a
partition of [0, 1) into m(n) equal length intervals of the form§ = [a, b). For each
S € my,, let T,41(S) denote the partition of into d(n) equal length subintervals. Define
Tp+1 = USEH,, Tu+1(S).

Consider the vector space consisting of all functiond@ri) which are finite linear
combinations of characteristic functions of the fogm ;. Let

o0
E,=spariys: Semn,}, and Es = U E,, (2.2)
n=1
whereys denotes the characteristic function®fFor everys € 7, let

Buy1(S) = {ens1(D): T € muy1(S)}, and E,p1(S) =sparfB,1(S)},  (2.3)
wheree,+1(T) =m(n + 1) x7. Then we have

o0
Eny1=@D Enra(S) and E1CE2C - C Eoo=|_J En. (2.4)
SEUVL n=1

Roberts’ construction can be summarized in the following theorem, see [12, Section 3]:

Theorem 1. For suitable sequenceigi(n)} c NV and {m(n + 1)} = {d(n)m(n)} C N,
with m(1) = 1, there exist sequencd#/,}, {N;fﬂ: S € 7,} of paranorms onE,, and
on E,;+1(S), respectively, withrdimE,, = m(n) and dimE, +1(S) = d(n) such that the
following conditions hold

(i) Ni(x) = fol |x ()| dt for everyx € Ej.

(i) Foranyn e N andS € m,, the paranorml\frf+l on E,+1(S) is constructed as in
Proposition1 with e1 = 4, €,41 < [m(n)]~127"~1 for n > 2, andh, < [4, 5] for
everyn € N. Therefore
(ii-a) NnSH(x) < |x| for everyx € E,1+1(S), where|.| is the norm onE, 1(S)

given by(2.1);

(ii-b) m(n + Dxs = ZT@”H(S)m(n + Dxr is an (g,41, hyr1)-needle point
of E,1+1(S) with respect to the paranorrN,fH, and the basisB,+1(S),
see(2.3).

(iif) For everyn > 1the paranormv,1 on E, 1 is given by

Nyi1(x) = inf {Nn M+ N;f+l(x(S))} for x € Eyq1, (2.5)

Sem,

where the infimum is taken over all the expressions affthe form
x=y+ Z x(S), wherey € E,, andx(S) € E,+1(S).

Sem,

(iv) The formula
N(x)= lim N,(x) forxe Ex (2.6)
n— o0

defines a monotonE-norm onEy.
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(v) If x € E, and N, (x) < 4, thenN,, (x) = N, (x) for everym > n.
(vi) Let (E, | .]) denote the completion GfE,, N) with respect to theF-norm N
defined by(2.6). Then

szc E, Where[An]zconv{j:m(n)XS; SGJT,,}, (27)

is a compact convex set with no extreme points.

In [10] it was shown that the compact convex edlefined by (2.7) is an AR, therefore
is homeomorphic to the Hilbert cube. Our result in this paper is the following.

Main Theorem. E is anAR, therefore is homeomorphic to Hilbert space.

The proof of our Main Theorem will be based on Theorem 2 below, which is an
immediate consequence of Michael's selection theorem, see for instance [1], stating that if
X is a complete linear metric space ands a locally convex closed subspaceXfthen
there exists a continuous selectignX /Y — X, i.e.,g(x) € 7 ~1(x) for everyx € X/ Y,
wherer : X — X/Y denotes the quotient map.

Theorem 2. LetY be a closed locally convex linear subspace of a complete linear metric
spaceX. If X is anAR, then the quotient spacé/Y is also anAR.

Our proof also uses the following characterization of ANR-spaces established in [6]: Let
{U,} be a sequence of open covers of a metric spadeor a given covets,, let

meshis,) = supdiamU: U € U,}.

We say thatl{, } is a zero-approaching sequence if m@sh — 0 asn — oo.

For a given covelV let (V) denote thenerveof V, that is, the simplicial complex
whose simplices are the finite nonempty subset¥ with nonempty intersection. Note
that the elements af are the vertices ot/ (V). Let

o0 o
U= JUt, and KU = JN WU Ul1)
n=1 n=1
and foro € C(U), write

n(o)=max{n e N: 0 e N U, Ulhy41)}. (2.8)
The following characterization of ANR-spaces was established in [6], see also [8].

Theorem 3. A metric space with no isolated points is &NR if and only if exists a
zero-approaching sequen¢i, } of open covers ok and a mapg : (/) — X such that
glU — X is a selectioni.e.,g(U) € U for everyU € U, and for any sequence of simplices
{or} in KK(U) with n(oy) — oo, we havediamg(oy) — O.

The Main Theorem will be proved by demonstrating that the sgac®nstructed in
Theorem 1 is the quotient of a linear metric AR-spatever a closed locally convex
subspac& c X. Then from Theorem 2 the result follows.
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The remainder of this paper will be divided into three parts: In Section 3 we describe the
construction ofX whose AR-property will be verified by Theorem 3. A closed subspace
Y C X for which X /Y = E will be constructed in Section 4. Finally the local convexity of
the space” constructed in Section 4 will be demonstrated in Section 5.

3. The construction of X

Observe that the spade constructed in Theorem 1 is the completion of an algebraic
sum of the family of finite-dimensional spacgs,: n € A’} defined by (2.2). Each space
E, consists of linear combinations of characteristic functipns S € ,}. Our spaceX
will be the completion of the direct sum ¢X,,: n € A'}, where each spack, will be
obtained by shifting the spadg, from the intervall = [0, 1) into the intervaln — 1, n).

Precisely speaking, the spa&ewill be defined as follows: LeX1 = E; and forn > 1
define

Xnt1(S) = spa{ xpu+11: T € mar1(S)}, (3.1)
o0

Xpp1= P Xu11(S) and Xoo =P X, 3.2)
Sem, n=1

where[n + T] represents the translation of the inter¥aby n; thatis,[n + T = {n + x:
xeT}.

For everyS € m, let PS5,
that is

P,;g+1< Z a(T)X[n+T]>:le+l( Z Ol(T)XT>~ (3.3)

Temy4+1(S) Temp1(S)

denote the translation dV;fH from E,+1(S) to X, +1(S),

Let P1 = N1 and sinceX,, 11 = EBS@T” X,+1(S) forn > 1, we can define the paranorm
Pyy10nX, 1 by

Ppy1= Z PnS+1~ (3.4)

Sem,

Finally let P denote theF-norm onX ., induced by the family of paranorni®,: n € N},
that is

[o/e] [o/e]
P(x)=)_ Py(x,) foreveryx=> x,€ Xu. (3.5)
n=1 n=1

wherex, € X, with x,, # 6 for only finitely manyn e V.
Let (X, ||.]) denote the completion @ ,, P). The following theorem is the first step
in the proof of our result.

Theorem 4. X is anAR.
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Proof. We are going to verify the conditions of Theorem 3. Our proof uses an idea of [7,
Theorem 3.1]. Since dirk,, < oo, for eachn € A there exists 8, € (0, 2~") such that for
any finite setA C X,,,

diamA < 2§, imples dianiconvA) < 27", (3.6)

Letr,: X — X, denote the projection onto thg,-component. For every € X andn €
N takek(x,n) > n such that|rg ) (x) — x| < 27". Let V(x) be an open neighborhood
Of ri(n.x) (¥) IN Xp(n.x) With diamV (x) < Sk(n.x). Then from (3.6) we get

diam(convV (x)) < 27K < 27,
Denote

U@ ={y € o (VD ko) =yl <27}, (3.7)

Up={U(x): xex} and U=|JU,.

n=1

We claim that the sequend@/,} satisfies the conditions of Theorem 3. First, since
diamV (x) < 8kn,x) < 27", from (3.7) we have

diamU < 3(27") foreveryU €U,

and sofl, } is a zero-approaching sequence.

Observe that for every e U, U € U, for somen € N, henceU = U (x) for some
x € X. We defineg(U) = rrp.x)(x) € V(x) C Xrm,x), and extending over IC(UA) by the
convexity we geta map: KU) — X, with g|U/ : U/ — X a selection.

Now, for everyo = (Ui, ..., Uy,) € KU), U; € Uno)y U Un(o)+1 fori=1...,m,
wheren (o) was defined by (2.8). We are going to compute dége). By (3.7)

Ui ={y € 1y (VD 7k 0) — ¥l < 27}, (3.8)
wheren =n(o) orn =n(o) + 1. Denote

ki=k(n,x;); Vi=V(x), and yi=r,(x)eXy fori=1....m, (3.9)
mo=minfk;: i=1,...,m}, and m;=min{k;: k; >m;_1} forj>1

Then we get a finite sequengey, ..., m,} C N with

mo<---<mp, and {m;:i=0,...,pl=1{k:i=1...,m}.
By the definition ofg,

gWUp)=rm(xj))=y;i € Xy, foreveryi=1...,m.
Theng(o) =cony;: i =1, ..., m}, and for every € g(o) we have

p—1 miy1

X = ikm = Z Z Xjyj, wherex; >0 andi,\i =1
i=1 =

i=0 j=m;+1
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Let

mj+1

Aj fori=0,...,p—1
=y P

Jj=m;+1
andforj =m; +1,...,m;y1, denote
{ (Oli)il)»j if j >0;
Wij = .
0 if ; =0.
Then we have

mi41

X = Zal Z HijYj,
j=m;+1

where

p—1 mj41 .

if j > 0;

Zal_l and Z Ml]—{ if o; = 0.

i=0 j=mi+1
From (3.8) and (3.9) we get

Ui_{yerk (Vi) llrg () —yll <27} fori=1,...,m. (3.10)
Takea € (7, U;, and denote

mi+1
ai=rm(@e (| V;CXp fori=0...p-1
Jj=mi+1

Observe that for every € g(o) we have

P— miy1 p—1
x—a=y o Y wi(y;—a)+ ) aila —a). (3.11)
i=0  j=m;+1 i=0

Claim 1. | Y/ o ai(ai —a)| <27,

Proof. Observe that

i(ai—a)| = i[rm; (@) —al| = [Fm; (0ja) — e;all|. (3.12)

i=0
Write
Imgo(@oa) — apa = [rmo(ocoa) - rml(aoa)] +
+ [rim,_o(@0a) = 1, 4 (@0a) | + [rm,_, (@0a) — aoal;
Fmy(@1a) — @1a = [, (@1a) — rmy(@1a) | +

+ [rim,_p(@10) = i, s (@10) | + [rim,_; (@10) — a1a];

rmp,z(ap—Za) —0p-2a = [rmp,z(ap—Za) - rmp,l(ap—Za)]

+ [rmpfl(oepfza) — apfza)].
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Since)"/_ya; <1forj=0,..., p—1, from (3.12) we get

p—1
Z a;i(a; —a)
i=0

< ||@olrimg (@) = rmy (@] + || (@0 + @) [rmy (@) = rmy (@)]

ot @0+ oy 2)rm, (@) = rm, (@]
+ @0+ +ap-1)lrm, (@) —al|
< lrmo(@ =rmy @] + -+ 1, 5 (@) =1, 1 @]
+ ||rmp71(a) —a ||
Observe that,,; (@) — rm;+1(a) € X, fori =0, ..., p — 1, hence from (3.5) we obtain
[rmo@ = al = rmo(@) = rimy @) +---
+ [, 2@ =1, 1 @] + [, 1 (@) = al.
Sincel|r,(a) —all < 27", see (3.8), the claim is proved O
Now, observe that;; = ry, (a) € ﬂTjﬂiiH Vifori=0,...,p—1andy; e V; for
j=m;+ 1, ...,miy1. Therefore
diam{a; — y;, j=m; +1,...,miy1}
<2maxdiamV;, j=m; +1,...,mit1} <26,
fori =0,..., p— 1, which by (3.6) yields
diam(conia; — yj, j=m; +1,...,miz1}) <27™ fori=0,...,p—1

Sincemo <my < --- <mp_1, from (3.10) we obtain

p—1 mi+1
e —all <3| Y wijvj—an|+27"
i=0 Il j=m;+1
p—1
<24 )y 2 <2 g2t
i=0

for everyx € g(o).
Observe thatng > n andn =n(o) + 1. Hence

lx —al < 2~ @)+l | o—n(@)+1 _ 5—n(0)+2

for everyx € g(o). Therefore
diamg(c) < 27" *2  for everys € K(U).

Consequentl is an AR by Theorem 3, and the proof of Theorem 4 is complete.

4. The construction of Y and proof of the Main Theorem

We are going to construct a closed locally convex subspaafeX for whichX/Y = E.
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For everyn € N andS € m,,, denote

Yu(S) = {Xin—1+51 — Xikas1: k=n,n+1,...},
and define¥ by

Yoozspar{ Uy Yn(S)} and Y=Yy CX. (4.1)

n=1 SEUVL

The following theorem, proved in Section 5, is a crucial step in our proof.
Theorem 5. Y is a locally convex space.

We are going to show th&/Y = E. For everyn € N let f, : X,, — E, denote the map
that movesX,, back toE,, i.e., the linear map induced by

fu(Xm-1+51) = xs foreveryS e m,.

Finally, let fo : Xoo — E~ denote the linear map induced pyj,: n € N'}. Then for every
X € Xoo,

o0
x=) "> w(S)an(S) wherea,(S) =m(n)xin-1+s).
n=1Sem,
we have
[ee)
foo®) =YY" xu(S)en(S) € Ene Wheree, (S) =m(n)xs.
n:lSEUn
By definition,

N(fso(x)) < P(x) foreveryx € Xe.

SinceX is dense inX, the mapf. : Xoco = Ex Can be extended to a linear continuous
map f : X — E such that

N(f(x)) < P(x) foreveryx e X. (4.2)

We claim that
Proposition2. f~1@#) =Y and f(X)=E.

Proof. Observe that for every € Y,

x=3 "% k() (X145 — Xiers1);  see (4.1)

n=1k=n Sem,
where only finitely manyX (S) are non-zero. By definition,
fe(xikes) = xs  foreveryk >n,

which yields f (x) = 6. SinceY,, is dense it we getY c f~1(6).
Conversely, to verifyf ~1(9) c Y, it suffices to establish the following fact.
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Claim2. f~1(0) N X0 C Yoo.
Proof. First observe that every element X, can be written uniquely in the form

o0
X = an wherex, € X, with x, # 0 for only finitely manyn € NV.

n=1
We say that is of lengthm, denoted(x) = m, if x,,, £ 60 andx, =6 for anyn > m. We
let¢(9) =0.

We prove the claim by induction on the lengthxaflf £(x) =0, thenx = 6, hence the

claim holds. Assume that the claim has been proved oy < m. Letx € f~1(0) N X
with £(x) <m + 1. Then

m+1 m+1
x=3" ) xa®xp-1rs, and f) =Y D x(S)xs =0. (4.3)
n=1 Sem, n=1 Sem,

Thus, forx;;+1 = ZSean Xm+1(S) X[m+s) We have

fOmi) = Y Xm1Sxs=—Y_ Y xa(S)xs € En. (4.4)

Semn41 n=1Semn,

Hencef (x,,+1) can be rewritten in the form

fOmi) =Y £n(S)xs. (4.5)
N
Let
(S if k <m;
yk(S)_{xm(S)+)Em(S) if k=m, (4.6)

Y= () Xin-1ts1.

n=1Sem,

From (4.4)—(4.6) we have

FO) =23 m®xs=Y_ > xal®xs+ > £n(Sxs

n=1Sem, n=1Semr, Semn,
m m
=YY aSxs— Y. Y x(Sxs=06.
n=1Sem, n=1Sem,

Hencey € f~1(0) and¢(y) < m. Therefore by inductive assumption we have Y.
Consequently by (4.1),

X =y= Y Zn(S)Xim-151+ Y En(S)Ximis)

Semy, Semy,
=y- Z T () (Xpm—1451 = Xim+s1) € Yoo-
Sem,

The claim is proved. O
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We now show that the quotient mg§ : X/Y = X/f~1(0) — E is an isometry; that is

lx+Y[l=inf{llx —yll: yeY} =] f(x)| foreveryx e X.

It suffices to show that
x4+ Yool =inf{llx — yl: y € Yoo} = | f(x)| for everyx € Xu.

Sincey € Y, We havef (x — y) = f(x). Hence from (4.2) we get
| f@] <l =yl foreveryy € Yo,

which yields
| £ < llx + Yool foreveryx € Xoo.

To prove that the above inequality must be an equality, we assume on the contrary that
| f)| < llx + Yool for somex € X.

Then for eachh € NV, S €, andT € 7, 1(S) there exists,1(T) € R such that

F@=3"%" > xra(Mepa(T) wheree, 1(T) =m(n +xr,

n=1Sem, Tem,+1(S)

and

22 Nial X xn+1<T)en+1<T>) < % + Yool (4.7)

n=1Sem, Tem,+1(S)

Observe that, for

00
= Z Z Z Xn+1(T)an+1(T) Wherea,,+1(T) =m(n+ 1)X[n+T]»

n=1Sem, Tem,1+1(S)

we havef(z —x) =6, and soz — x € f~1(0) N Xo = Yoo. Hencez € x + Yo, and
from (4.7) we get

HESSS P,;ll( > xnﬂ(T)anH(T))

n=1Semn, Tem,+1(S)
o0

=> > N,f+1< > xn+1<T>en+1<T>) < Ix + Yool
n=1Semn, Tem,+1(S)

a contradiction.
Finally we claim thatf(X) = E. In fact, sincef*:X/f~1(0) — E is an isometry,
F*(X/f~1(®)) is complete, thereforg*(X/f~1(0)) = E. Hence

fX) = f*(x/f1©)=E.

Consequently the proof of Proposition 2 is completel

Now we are able to complete the proof of our Main Theorem: From Proposition 2 we
getE = X/Y. By Theorem 5Y = f~1(0) is locally convex, and by Theorem %, is an
AR. HenceX/Y is an AR by Theorem 2. ConsequenHyis an AR and the Main Theorem
is demonstrated.
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5. Proof of Theorem 5

In this section we prove Theorem 5, the final step in the proof of our result in this paper.
Observe that for any € X, the expression

x=Y"3" > xppa(Mana(T) wherea,1(T) =m(n + Dxpuiry. (5.1)

n=1Sem, Ten,+1(S)

is unique. Therefore as in (2.1) we can define

|x|=iz Y @, (52)

n=1Sem, Te€m,+1(S)

There is no guarantee thiatl < co even if||x|| < co.
The proof of Theorem 5 will be divided into two steps. The first is the following:

Lemma 1. For anye > O there exist$ > 0 such that|x| < ¢ whenevetx| < 8.

Proof. We first consider the following special case:
xp41(T) >0 foreveryT € m,11(S), Sem, andn e N. (5.3)

Now givene > 0, takeng € N such that 2" < ¢/4. For anyx € X of the form (5.1)
we define

no
o)=Y > Y xura(Dapsa(T);

n=1 Semn, Ten,4+1(S)

o= Y D D xpa(Dagpa(T).

n=no+1 Sem, Temn,+1(S)
Take 8o > 0 such that||x(no)|| < £/2 whenever|x(ng)| < §o. We claim thats =
min{do, £ /20} satisfies the required condition.
In fact, letx € X with |x| < 8. Then, sincdx(ng)| < |x| < 8, we have|x(ng)| < &/2.
Therefore it suffices to show thit - (n0) || < £/2 whenevetxt(ng)| < |x| < § < £/20.
For everyn > ng, denote

ayy =Y {an1(T): T € 11 ()} = m(n + D Xints).

Since(E,+1(S), N;fﬂ) and(X,+1(S), PnSH) are isometrically isomorphic, see (3.3), from
Theorem 1(ii-b) it follows thata;fH is an (&,+1, hy,+1)-needle point ofX,1(S) with
respectto the paranonﬁ';f+l and to the basi&, +1(T) =mm + D) xpu411: T € mp42(S)}.
LetxS = Y remyas) Xn+1(T), and

T {xn+1(T>[x,f+l]—1 if x3 ;>0;

= : (5.4)
0 if x3 , =0.

O5n+1 -
Then we have

T 1 if xrf_H > 0;
D = 0 ifxS. =0
Tem11(S) n+l
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Therefore there exists a:er € [0, 1] such that

T N N
Pn+l< Z (xn+1an+1(T) — an+lan+l) < &n41. (5.5)
Tem,4+1(5)

Since|x |x] <8 <e/20< 1 and by Theorem 1(iiy,+1 < 5, we obtain

n+1|

PS

m( > an(T)anH(T))— ,f+l( HEEE Y aLlanH(T))

Ten41(5) T e 41(S)

S N T N S N N N S
< Pn+1 (xn+1|: z : Oln—&—la"l+l(T) - O5n+1an+1:|> + Pn+l(xn+1an+1an+l)
T emy+1(S)

s s
Pn+1< E n+la"+l(T) n+1an+1> +P; L (x n+lan+1)
Tem,+1(S)

N S
<ént1+ X, q|hnt1 < Eng1 + 31X ]
Since

ens1 < [mm] 27771 and |xt(no)| < Ix| < 8 < /20,

we have
|xt@mo) | = Z Z n+l< Z xn+1(T)an+1(T)>
no+1Sen, Temy4+1(S)
o
< Z Z(Sn+1+5|xrf+1|)
n=ng+1Sen,
o o
< Z mn)en1+5 Z Z|x5+1|
n=ng+1 n=ng+1Sem,
o o0
< > 245 3 N 3w
n=ng+1 n=no+1Sem, Temn,11(S)

= 270 + 5|x(ng)|
< ¢/445(¢/20) =¢/2.

Consequently the lemma is proved in the special case of (5r3).

To see how the general case follows from the special case we denote

= Z Z Z Xp41(T)ay1(T);

n=1Sem, x,41(T)>0

=200 Y wnaMana(D).

n=1Sem, x,41(T)<0
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Then by the special case we hae’| < ¢/2 and|x~|| < ¢/2 whenevelx| < §. Since
x=xT4+x",we have|x| <. The lemma is demonstrated.

Lemma 2. For everyy € Y with ||y|| < 1we havdy| < ||y]l.

Before proving Lemma 2 let us observe that the following reformulation of Theorem 5
is an easy consequence of Lemmas 1 and 2.

Theorem 5. For everye > 0 there existss > 0 such that]|| Zf‘zlaiy" I < & whenever
yi e Y with |y’ <8, ande; > Owith Y5 oy = 1.

Proof. Givene > 0, first takes € (0, 1) satisfying the condition of Lemma 1, and let

k
Yievwith [y <s<1, and o >0, with Y o =1.
i=1

Then by Lemma 2,y’| < ||y!| < & for everyi =1, ..., k. Since

k k k
Zaiyi < Zailyil < Zai5 =4,
i=1 i=1 i=1

from Lemma 1 we gett Zle a;y'|| < e. Theorem 5 is proved. O

Accordingly our final step is to prove Lemma 2. Clearly it suffices to verify Lemma 2
for y € Y. We will proceed with a proof by induction on the lendity) of y.

Observe that iZ(y) = 1, theny = 6, and Lemma 2 holds. Assume that Lemma 2 has
been proved fof(y) < k. Lety € Y with || y| <1 andl(y) <k+ 1. Then

k
Y=Y > wra(Mana(D), (5.6)

n=1Sem, Ten,+1(S)

and

k
FM=Y"3" > yaMena(T) =6. (5.7)

n=1Sem, Tem,+1(S)

Observe that, for

Vitl = Z Z Vir1(Tag1(T) € Xiy1, (5.8)

Semy Temgy1(S)

from (5.8) we have

forD =Y Y wraMea(T)

Sem, Ten,41(S)

k
_ Z Z Z Ynt1(T)en1(T) € Ey. (5.9)

n=1Semn, Ten,+1(S)
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Hencef (yr+1) can be rewritten in the form
fOrs) =Y Fu(Dex(T) whereey(T) =m(k)xr. (5.10)

T emy

which implies

Vi1 = Z Y (Tal  wherea] = m k) xx+7). (5.11)
T emy
Let
N vi(T) ifi <k;
(1) = v i i 5.12
() {Yk(T)-i-yk(T) ifi =k, ( )

k-1
=33 Y Swsa(Mana(T) wherea,1(T) =m( + 1) xpi1)-

n=1Sem, Tem,+1(S)

Then¢(y) < k, y € Yoo, and from Theorem 1(v) and from (3.3), (3.5), (5.13) we get
[¥Il < llyll < 1. Hence by inductive assumption,

k-1
IS1=191=">" > [$wra(M].

n=1Sem, Tem,+1(S)

Since
|31(T)| = |y (T)| = [7x(T)| for everyT € m(S), see (5.13)

andm, = UsEnH 1 (S), we have

k-1
131=Y3" >0 M= > Y )], (5.13)

n=1Sem, Tem,+1(S) Semp_1 Temnp(S)

From (5.7), (5.9), (5.12) and (5.13) we get
y=35= Y > WDa(l)+yn

Semr_1 Temr(S)

k—2
Z Z Z 5]7!+1(T)an+1(T)

n=1Sem, Tem,+1(S)

+ O Y [ = F(D]a(T) + Y 55 (S)ai.-

Semr_1 Teni(S) Semy

From (3.5) we have

k—2
Iyl =>>" Pnil( > ﬁnH(T)anH(T))

n=1Sem, Temy4+1(S)

+ ) Plf( > [mT)—yk(T)]ak(T))

Semp_1 Teni(S)

+ > PEAGi(S)a)). (5.14)

Semy
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From Theorem 1(ii-a) and from (3.3) we obtain

P,f( Z yk(T)ak(T)>< Z |54(T)| for everysS e my.

Temi(S) Tem(S)

It follows that

> P,f( > [&km—yk(makm)

Semg_1 Temnr(S)
>y <P,§< > 9k(T)ak(T)>—PkS< > MT)ak(T)))
Semp_1 T emi(S) T emi(S)
> ) (P,f( > yk(T)ak(T)>— > ka(T)|>. (5.15)
Sem_1 Temi(S) Temi(S)

Observe that for ever§ € my, a,f =m (k) X[k+s) IS @nek+1, hiy1-needle point o4 1(S)
with respect to the paranorrﬁkﬂl, and by Theorem 1(ii)},, > 4 for everyn € N.
Moreover sincelly|| < 1, from (3.3), (3.5) we havéy,(S)| < 1 for every S € my.
Consequently

PEA(Fe(S)ag) = |, (S) |1 = 47(S)|  for everys e .

Now, since
Y= > Y @l (5.16)
Semy Semy_1 Ten(S)

from (5.15), (5.16) and from (3.4), (3.5) we get

k=2

Iyl >ZZP5+1< > §n+1<T>an+1(T)>
n=1Sem, Tem,+1(S)
+ ) (P,f( > MT)ak(T))— > !?km!)
Sem_1 Temnr(S) Temnr(S)
+4 ) D m=131+3 Y. DY @]
Semp_1 Ten(S) Semp_1 Tenr(S)

Therefore from (5.14), (5.17) we obtain

k-1
=Y > a2 Y wkaD)]

n=1Sem, Tem,+1(S) Semy Temgy1(S)
k
> >0 > =1yl
n=1Sem, Ten,+1(S)

The proof of Lemma 2 is complete.0
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