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The paper deals with the classical Caristi fixed point theorem in vector valued metric
spaces. The results obtained seem to be new in this setting.
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1. Introduction

In recent years, Caristi’s fixed point theorem [1–3] has been the subject of intensive research. Recall that this theorem
states that any map T : M → M has a fixed point provided that M is complete and there exists a lower semi-continuous
map φ mappingM into the nonnegative numbers such that

d(x, Tx) ≤ φ(x) − φ(Tx)
for every x ∈ M . This general fixed point theoremhas foundmany applications in nonlinear analysis. It is shown, for example,
that this theorem yields essentially all the known inwardness results [4] of geometric fixed point theory in Banach spaces.
Recall that inwardness conditions are the ones which assert that, in some sense, points from the domain aremapped toward
the domain. Possibly the weakest of the inwardness conditions, the Leray–Schauder boundary condition is the assumption
that amap points x of ∂M anywhere except to the outward part of the ray originating at some interior point ofM and passing
through x.
The proofs given for Caristi’s result vary and use different techniques (see [1,5,2,6]). It is worth mentioning that because of
Caristi’s result’s close connection to Ekeland’s [7] variational principle, many authors refer to it as the Caristi–Ekeland fixed
point result. For more on Ekeland’s variational principle and the equivalence between the Caristi–Ekeland fixed point result
and the completeness of metric spaces, the reader is advised to read [8].
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In this work we prove a vector version of this theorem in vector valuedmetric spaces. The approachwas used intensively
in [9] where a Banach Contraction Principle was proved in this setting and used to obtain a result more general than the one
obtained in [10] concerning isolated solutions of multi-point boundary value problems.

2. Caristi’s fixed point theorem

The main motivation behind this work is the main point raised in [9] that the domain of existence of a solution to a
system of first-order differential equations may be increased by considering vector valued distances. The example therein
strengthens this point. In fact this point was noted by Bernfeld and Lakshmikantham [11] who indicated that ‘‘there is more
flexibility working with generalized spaces’’ (meaning vector valued metric spaces).

Let (V, ≼) be an ordered Banach space. The cone V+ = {v ∈ V; θ ≼ v}, where θ is the zero-vector of V , satisfies the
usual properties:

(1) V+ ∩ −V+ = {θ},
(2) V+ + V+ ⊂ V+,
(3) α V+ ⊂ V+ for all α ≥ 0.

The concept of vector valued metric spaces relies on the following definition.

Definition 1. LetM be a set. A map d : M × M → V defines a distance if:

(i) d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for any x, y ∈ M ,
(iii) d(x, y) ≼ d(x, z) + d(z, y) for any x, y, z ∈ M .

The pair (M, d) is called a vector valued metric space (vvms for short).

In [9] the following theorem, seen as a generalization of the Banach Contraction Principle, is proved.

Theorem 1. Let (M, d) be a complete vvms, where V = RN . Let T : M → M. Assume there exists a positive operator
A : RN

→ RN , i.e. A(RN
+
) ⊂ RN

+
which satisfies ρ(A) < 1, where ρ(A) is the spectral radius of A, such that

d(T (x), T (y)) ≼ A d(x, y),

for any x, y ∈ M. Then:

(1) there exists ω ∈ M such that for any x0 ∈ M, the orbit {T n(x0)} converges to ω, and moreover we have

d(T n(x0), ω) ≼ An(I − A)−1d(x0, T (x0)) =


∞−
k=n

Ak


d(x0, T (x0)),

for any n ≥ 1;
(2) the point ω is the only fixed point of T in M.

As Caristi did for the case of the classical Banach Contraction Principle, let us discuss his ideas for the vvms. Under the
assumptions of Theorem 1, where V is no longer the finite dimensional space RN , we have

d(T (x), T 2(x)) ≼ Ad(x, T (x))

for any x ∈ M , which implies

d(x, T (x)) + d(T (x), T 2(x)) ≼ d(x, T (x)) + Ad(x, T (x)).

Hence

d(x, T (x)) − Ad(x, T (x)) ≼ d(x, T (x)) − d(T (x), T 2(x))

or

(I − A)d(x, T (x)) ≼ d(x, T (x)) − d(T (x), T 2(x)).

Set dA(x, y) = (I − A)d(x, y), for any x, y ∈ M . Then it is easy to check that if I − A is a positive one-to-one operator, then dA
is a vector valued distance defined onM . So if we set F(x) = d(x, T (x)), then we have

dA(x, T (x)) ≼ F(x) − F(T (x)).

As Caristi did, one may wonder under what assumptions on any vvms (M, d) and F : M → V+, any map T : M → M which
satisfies

d(x, T (x)) ≼ F(x) − F(T (x)),
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for any x ∈ M , has a fixed point. We will approach this question through Brønsted order. Indeed the map F defines an order
onM as follows:

x ≼ y ⇐⇒ d(x, y) ≼ F(y) − F(x)

for any x, y ∈ M . Using this order, any map T : M → M which satisfies

d(x, T (x)) ≼ F(x) − F(T (x)),

for any x ∈ M , will fix any minimal point. Therefore the fixed point problem shifts to the existence of minimal points of
the order ≼ in M . Throughout the remainder of this work we will assume that V is a complete Banach lattice which is
order continuous. Let {xα; α ∈ Γ } be a chain in M . Then {F(xα); α ∈ Γ } is a chain in V+. Since V is order complete, then
v = inf{F(xα); α ∈ Γ } exists in V+. Assume there exists α0 ∈ Γ such that F(xα0) = v. Then it is easy to see that α0 ≼ α, for
any α ∈ Γ . Assume then that F(xα) ≠ v, for any α ∈ Γ . Since V is order continuous then we have infα∈Γ ‖F(xα) − v‖ = 0.
Then for any n ≥ 1, there exists αn ∈ Γ such that ‖F(xαn) − v‖ < 1

n . Since {xα; α ∈ Γ } is a chain inM , there exists βn such
that xβn = min{xαi , i = 1, 2, . . . , n}, for any n ≥ 1. Clearly {F(xβn)} is a decreasing sequence which converges in norm to v.
Since

d(xβn+1 , xβn) ≼ F(xβn+1) − F(xβn), n = 1, 2, . . . ,

then we have

d(xβn+h , xβn) ≼

h−1−
k=1

d(xβn+k , xβn+k+1) ≼

h−1−
k=1

F(xβn+k) − F(xβn+k+1)

or

d(xβn+h , xβn) ≼ F(xβn) − F(xβn+h)

for any n, h ≥ 1. Hence the series of positive vectors
∑

d(xβn+1 , xβn) is order bounded. Since V is order continuous, then∑
d(xβn+1 , xβn) is convergent in norm. This forces the sequence {xβn} to be Cauchy. Therefore if we assume (M, V) to be

complete, then {xβn} will converge to some point x ∈ M . Next we show that x is a lower bound of {xα; α ∈ Γ }. In order to
prove that, we will need the function F to be lower semi-continuous (lsc for short). Then we must have

F(x) ≼ lim inf
n→∞

F(xβn).

In particular, we have x ≼ xβn , for any n ≥ 1. Next we fix α ∈ Γ . If there exists n0 ≥ 1 such that xn0 ≼ xα , then we will
have x ≼ xα . Assume otherwise that for any n ≥ 1, we have xα ≼ xβn , which implies F(xα) ≼ F(xβn), for any n ≥ 1. By
the definition of v, we can easily deduce that F(xα) = v, which contradicts our assumption above. Hence {xα; α ∈ Γ } has a
lower bound. Therefore Zorn’s lemma will ensure the existence of a minimal element for ≺ inM . This proves the following:

Theorem 2. Let (M, d) be a complete vvms over an order complete and order continuous Banach lattice V . Let F : M → V+ be
a lsc map. Then any T : M → M such that

d(x, T (x)) ≤ F(x) − F(T (x)),

for any x ∈ M, has a fixed point.

Note that if (M, d) is a complete vvms, then the vector valued distance dA(x, y) = (I −A)d(x, y), where I −A is a positive
one-to-one operator, is also complete. As a corollary we obtain the following:

Corollary 1. Let (M, d) be a complete vvms over an order complete and order continuous Banach lattice V . Let T : M → M be
a continuous map such that

d(T (x), T 2(x)) ≤ Ad(x, T (x))

for any x ∈ M, where I − A is a positive one-to-one operator. Then T has a fixed point.

Proof. Indeed we proved that

dA(x, T (x)) = (I − A)d(x, T (x)) ≼ d(x, T (x)) − d(T (x), T 2(x))

holds for any x ∈ M . Since (M, dA) is complete and F(x) = d(x, T (x)) is continuous, then Theorem 2 implies the existence
of a fixed point of T . �

The above corollary may be seen as an improvement to the main result of [9]. Indeed if we take V = l2, the Hilbert space,
and A : V → V such that

A(xn) = ((1 − εn)xn),

where εn ∈ (0, 1) and limn→∞ εn = 0, then (I − A) is a positive nonsingular operator such that its spectral radius ρ(A) = 1.
Next we prove a result similar to the main theorem of [12] which generalizes many known extensions to Caristi’s fixed

point theorem (see the references therein).
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Theorem 3. Let (M, d) be a complete vvms over an order complete and order continuous Banach lattice V . Let F : M → V+ be
a lsc map. Let T : M → M be such that

d(x, T (x)) ≤ φ(x)(F(x) − F(T (x))),

for any x ∈ M, where φ(x) is an operator which satisfies θ ≼ φ(x)(v) if and only if θ ≼ v. Moreover we assume that there exist
x0 ∈ M and a positive operator A of V such that φ(x) ≼ A whenever F(x) ≼ F(x0). Then T has a fixed point.

Proof. Set

M0 = {x ∈ M; F(x) ≼ F(x0)}.

ClearlyM0 is not empty. Since F is lsc, thenM0 is a closed subset ofM . HenceM0 is a complete vvms. It is clear also that we
must have F(T (x)) ≼ F(x), for any x ∈ M . Therefore we must have T (M0) ⊂ M0. If we denote by T0 the restriction of T to
M0, then T0 satisfies

d(x, T (x)) ≤ A(F(x) − F(T (x))),

for any x ∈ M0. The new vector function F∗
: M0 → V+ defined by F∗(x) = AF(x) is lsc. Theorem 2 ensures the existence of

a fixed point of T0 in M0, which happens to be also a fixed point of T . �

3. Kirk’s problem

The next result is similar to the main theorem found in [13] which extends Caristi’s classical fixed point theorem and
gives a partial positive answer to Kirk’s problem [3,6]. Indeed Kirk asked whether a map T : M → M such that

η(d(x, Tx)) ≤ φ(x) − φ(Tx),

for all x ∈ M , for some positive function η, has a fixed point. In fact the original question of Kirk was stated for when
η(t) = tp, for some p > 1. This was discussed in [13]. In particular, a negative answer to this problem is given. Also it is
shown that if η : [0, ∞) → [0, ∞) is nondecreasing and continuous, such that there exist c > 0 and δ0 > 0 such that for
any t ∈ [0, δ0]we have η(t) ≥ c t , then Kirk’s problem has a positive answer. Note that under the above assumptions, since
η is continuous, there exists ε0 > 0 such that η−1([0, ε0]) ⊂ [0, δ0].

The extension of this result to vvms is the main drive of this section. Indeed let (M, d) be a complete vvms, over a Banach
lattice V which is order complete and order continuous. Let η : V+ → V+ be continuous and such that there exist a
one-to-one positive operator A of V and δ0 > 0 such that

A v ≼ η(v),

for any v ∈ V such that ‖v‖ < δ0. Since η is continuous, there exists ε0 > 0 such that

η−1(B0(0, ε0)) ⊂ B0(0, δ0),

where B0(0, r) = {x ∈ V, ‖x‖ < r} is the open ball in the Banach space V . We have the following result.

Theorem 4. Let M be a complete vvms, over a Banach latticeV which is order complete and order continuous. Define the relation
≺η by

x≺η y ⇐⇒ η(d(x, y)) ≼ φ(y) − φ(x)

where η satisfies all the above assumptions, and φ : M → V+ is lsc. Then (M, ≺η) has a minimal element x∗, i.e. if x≺η x∗ then
we must have x = x∗.

Proof. Since V is order complete, then v = inf{φ(x); x ∈ M} exists in V+. Since V is order continuous then we have
infx∈M ‖φ(x) − v‖ = 0. Therefore there exists x0 ∈ M such that ‖φ(x0) − v‖ < ε0. Set

M0 = {x ∈ M; φ(x) ≼ φ(x0)}.

ClearlyM0 is a nonempty closed subset ofM . Hence (M0, d) is complete. Let x, y ∈ M0, with x≺η y. Hence

v ≼ φ(x) ≼ φ(y) ≼ φ(x0)

which implies φ(y) − φ(x) ≼ φ(x0) − v. So

‖φ(y) − φ(x)‖ ≤ ‖φ(x0) − v‖ < ε0.

Since η(d(x, y)) ≼ φ(y) − φ(x), we obtain that ‖η(d(x, y))‖ < ε0. Our assumptions on η imply

Ad(x, y) ≼ η(d(x, y)) ≼ φ(y) − φ(x).
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OnM0 we define the new relation ≺∗ by

x≺∗ y ⇐⇒ Ad(x, y) ≤ φ(y) − φ(x).

Clearly (M0, ≺∗) is a partially ordered set with all assumptions necessary to secure the existence of a minimal element x∗

for ≺∗. Let us see that x∗ is also a minimal element for the relation ≺η in M . Indeed let x ∈ M be such that x≺η x∗. Then we
have η(d(x, x∗)) ≼ φ(x∗)−φ(x). In particular we have φ(x) ≼ φ(x∗) which implies φ(x) ≤ φ(x0); i.e. x ∈ M0. As before, we
have ‖η(d(x, x∗))‖ < ε0 which implies

Ad(x, x∗) ≼ η(d(x, x∗)) ≼ φ(x∗) − φ(x)

which in turn implies x≺∗ x∗. Since x∗ is minimal in (M0, ≺∗) we get x = x∗. This completes the proof of Theorem 4. �

This is an amazing result because the relation ≺η is not a partial order. Of course if one assumes η to be subadditive,
i.e. η(v1 + v2) ≼ η(v1) + η(v2) for any v1, v2 ∈ V , then ≺η is a partial order onM .

Using Theorem 4 we are ready to state the vvms version of the main result of [13].

Theorem 5. Let M be a complete vvms, over a Banach lattice V which is order complete and order continuous. Let T : M → M
be a map such that for all x ∈ M

η(d(x, Tx)) ≼ φ(x) − φ(Tx),

where the functions η and φ satisfy the assumptions described above, then T has a fixed point.

Proof. Define the relation≺η as in Theorem 4. Obviously we have T (x) ≺η x for any x ∈ M . Theorem 4 ensures the existence
of x∗, a minimal element for ≺η . Clearly we must have T (x∗) = x∗. �
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