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Let { T, , . . . . T,) be a finite commuting family of nonexpansive maps of a hyper- 
convex space such that each T, has bounded orbits. We show: (i) Each point has 
a bounded orbit under the semigroup generated by {T,}; (ii) There is a common 
lixed point for the family if (and only if) T= T,T2 ... TN has a fixed point; (iii) For 
each E z 0, there is a nonempty set of common s-approximate fixed points for the 
family. Some additional related results are also given. G 1992 Academic Press, Inc. 

A metric space A4 is called hyperconvex if for any collection of closed 
balls, { R(x,; r,) : LYE A}, satisfying d(x,, xp) < rm + rg for any pair of 
indices, we have n {p(x,; r,) : 6! E A} is nonempty. 

The Nachbin-Kelley-Goodner theorem [La, p. 921 asserts: A Banach 
space is hyperconvex if and only if it is linearly isometric to C(Y) for some 
Stonian (extremally disconnected) compact Hausdorff space Y. Thus, Z,(Z) 
for any set I, and L,(p) for a finite measure p, are examples of such spaces. 
Any hyperconvex space, indeed, any metric space, embeds isometrically in 
some l,(Z). 

Aronszajn and Panitchpakdi [AP] introduced hyperconvex spaces and 
proved that a hyperconvex space is a nonexpansive retract of any metric 
space in which it is isometrically embedded. (This is analogous to the P, 
property of hyperconvex Banach spaces.) 
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COMMUTING NONEXPANSIVEMAPS 373 

A map T on a metric space M is called nonexpansive if 
d( TX, Ty) < d(x, y) holds for any pair of points. Sine [S,] and Soardi [So] 
proved independently that a nonexpansive map on a bounded hyperconvex 
space has a common fixed point. Lin and Sine [LS] showed that if Y is 
a commuting family of nonexpansive maps on any hyperconvex space 
which has a nonempty set of common fixed points, then there is a 
nonexpansive retraction onto Fix(Y) which commutes with every member 
of Y. 

DEFINITION. If Y is a semigroup of maps of M, the Y-orbit of x in M 
istheset {T~:T~Y}.InthecaseY={T”:n21} wewillsimplyreferto 
this as the orbit of x. 

It is obvious that if a nonexpansive map has a fixed point, then all orbits 
are bounded. The following example of Prus [P] shows that the bounded- 
ness of the space assumed in the Sine-Soardi fixed point theorem cannot 
be replaced by the weaker assumption of bounded orbits. 

EXAMPLE [Prus]. There exists a Iixed point free nonexpansive map of 
I, with bounded orbits. 

Let A denote a Banach limit and define for each a = (a,, a,, . ..) in I,(N) 

T(a,, a2, . ..) = (1 + n(a), a,, a,, . ..). 

Then the orbit of 0 is bounded since 

T”(0, 0, 0, . ..)= (1, . . . . 1, 0, 0, . ..) 

with 1 in the first n coordinates. It is easily checked that T is fixed point 
free. It is also easily checked that T is nonexpansive, in fact, is an order 
preserving, a&e isometry. 

Remark. Any probability measure supported on BN-N will work as well 
here as a Banach limit. 

LEMMA 1. Let 9 be a commutative family of nonexpansive maps on a 
hyperconvex metric space M. Let z be a topology on M for wlhich balls are 
closed. If there exists a bounded set A so that A is contained in the z-closure 
of T(A) for every T in 9, then Fix(Y) # fa. 

Proof: Let 6=dia(A) and set .J= fi {B(x; 6) : XEA). Then J is a 
bounded hyperconvex set which contains A. Let y be in J and T in Y. 
Then for x in A we have d( Ty, TX) < d( y, x) < 6. Hence T(A) c B( Ty; 6). 
Since balls are z-closed we have 

A c r-closure T(A) c B( Ty; 6). 
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Now J is invariant under Y so Baillon’s result implies the existence of a 
common fixed point in J. 

Remark. If A is bounded and T(A) = A for every T in 9’ then we can 
take the metric topology for z. 

For completeness we include the following result of [KR]. Convexity, 
assumed there, is superfluous. 

THEOREM 2. Let T be nonexpansive on (all of) a hyperconvex dual 
Banach space (e.g., L,(p) or I,(I)). Suppose there is a nonempty 
w*-compact set C which is T-invariant. Then Fix(T) # 0. 

Proof: The assumption and Zorn’s lemma imply that there is a minimal 
w*-compact T-invariant set A. Let A’ be the w*-closure of T(A). Then 
A’ c A since A is w*-closed. Thus T(A’) c T(A) c A’ which shows A’ is T 
invariant. By minimality A’ = A and we can now apply Lemma 1 with the 
w*-topology playing the role of t. 

Remark. The condition in the Theorem is clearly necessary, for any ball 
centered at a fixed point is both w*-compact and T invariant. 

THEOREM 3. Let Y be an abelian semigroup of isometries on a hyper- 
convex space 44. Then Fix(Y) # @ if (and only if) Y has bounded orbits 
and n {T(M): TEY}#@. 

Proof Clearly Fix(Y) is contained in n {T(M) : TE Y} so necessity is 
obvious, To show sufficiency we let x be a point of n {T(M) : TE 9). 
Then for each T in 9’ there exists a point x T with TX T = x. Since T is one- 
to-one, xT is unique. Let 6 be the diameter of {TX : TE 9’}. Then, since T 
is an isometry, 

d(x,, x) = d( TX,, TX) = d(x, TX) < 6. 

Now for T and S in Y we obtain TX, = xs, since S( TxTs) = x. Also 

4 TX,, x) = d(STx,, Sx) = d( Tx, Sx) < 6. 

For the convenience of presentation we may assume that the identity map, 
I, is in Y. Then x,=x. Let A={Tx,:T,SEY’}. Then T(A)cA for T 
in Y. By the above computations, A c B(x; 6). 

Let y = T,(x,) be in A. Then TX, = xs implies 

y= T,x,= T,Tx,= T(T,x,), 

so y is in T(A). Thus T(A) = A for every T in Y. Lemma 1 now implies 
Fix(Y) # 0. 
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COROLLARY 4. Let Y be an abelian group of nonexpansive maps on a 
hyperconvex space M, with Y-bounded orbits. Then Fix(Y) # 0. 

Proof: The group identity is a nonexpansive retract U. Apply 
Theorem 3 to the restriction of Y to U(M), which is hyperconvex. 
(A direct proof from Lemma 1 can be obtained by taking A = {TX : TE Y} 
for some x in U(M).) 

Remark. The example of translations on If2 shows that boundedness of 
the orbits cannot be dropped from the hypothesis of the corollary nor from 
the sufficiency part of Theorem 3. 

THEOREM 5. Let {T1,..., TN} be commuting nonexpansive maps of a 
hyperconvex space and assume that each Ti has a bounded orbit. Then: 

(i) Each point x has a bounded orbit under the semigroup Y 
generated by {T,, . . . . T,}. 

(ii) n (Fix(T,) : 1 < i< N) # @ if (and only $) Fix(T,T, . . . TN) # 0. 

Proof (i) The argument is by induction on the number of maps. 
Suppose that for n maps, the generated semigroup, Y”, has bounded orbits. 
Hence there exists CI > 0 so that d( Wx, x) <U for every map W in Yn. By 
assumption, the orbit { Tz+ 1 x: k>O} is also bounded, so d(TE+lx, x)</? 
for all k>O and some /X With Win Sp, and k>O we have 

W:, 1 Wx,x),<d(Tf:+, Wx, Wx)fd(Wx,x) 

6W:+, x,x)+d(Wx,x)<cr+fi 

using commutivity and nonexpansiveness. 
(ii) Let x,, be a fixed point of the map T= T1T2. .. TN and let A be 

the orbit of x0 under 9’. Then A is bounded by (i). Now A = 
VT’ . ..T?x.: kj>O). For x= Tf1TF...T2xo we have x= Tf1+1T2’1 
. . . T”,Nt’xg=T,[T~lk~+l...T~f’xO] since x0 is T=T,T,...T, fixed. 
Hence T,A = A. Now apply Lemma 1. 

EXAMPLE. There is a sequence { T, : i 2 1 } of commuting nonexpansive 
maps on I, satisfying 

(i) The semigroup generated by { Tj} has bounded orbits. 
(ii) For each n, fl {Fix(Ti) : 1 <i<n) # 0. 

(iii) (7 { Fix( Ti) : i 2 1 > = 0. 

Let T be a nonexpansive fixed point free map with bounded orbits (e.g., 
Prus’ example). Let H, = {x E I o. : d(x, TX) < l/n). It is shown in [KR] 
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(see also Theorem 8 below) that there exists a closed, nonempty, convex, 
bounded set C which is T-invariant. We can apply the well known techni- 
que of replacing T with a strict contradiction which also leaves C invariant. 
The fixed point for the strict contraction is an s-fixed point for T. Thus for 
each n, H, n C# a. By [S,] the set H, is hyperconvex. Let P, be the 
nonexpansive retract of I, onto H, and then define T, = P,,P,- , ... P,. It 
is easily seen that { Tn} is a commuting family of nonexpansive maps and 
T, is a nonexpansive retraction onto N,. Thus n (Fix( T,) : 1 9 id n) = 
H, # 0. Since T is fixed point free n { Fix( T,) : i 2 I> = 0. 

Now take x, in H,nC so 6=dia(x,}<co. Then d(T,x,,x,)< 
d(x,,x,). Also d(T,x,,x,)~d(T,x,,x,)+d(x,,x,)#2d(x,,x,)~2S. 
Hence { T,?x,} is bounded. Since {T,} is a semigroup it has bounded 
orbits. 

THEOREM 6. Let Y = {T, : t = (t,, . . . . tn) E rWT } be an n-parameter 
abelian semigroup of nonexpansive maps of a hyperconvex space. Assume 
that Y has bounded orbits. Then Fix(Y) # (21 if (and only if) there exists 
r E RN, with ri > 0 for 1~ i < N so that Fix( T,) # 0. 

Proof: Let x0 be in Fix(T,) for some r with strictly positive com- 
ponents. Let A = { T,x ,, : t E RT) be the orbit of x0. For any s in RN, we 
have T,(A) c A. But by taking n > 0 so that nr - s is in rW”, (as we may do 
as the components of r are strictly positive) we obtain 

TAT,,-,+,)x0= T,Tn,xo= Ttxo. 

So T,(A) = A for every s in ll4: and Lemma 1 now applies. 

Remark. The case N = 1 is proved in [KR]. 

Theorems 5 and 6 can be applied in a hyperconvex dual Banach space 
if there exists a nonempty w*-compact set C which is invariant under the 
semigroup Y, by applying Theorem 2. 

THEOREM 7. Let Y be an abelian semigroup of nonexpansive maps on a 
hyperconvex dual Banach space. Assume there exists a nonempty w*-compact 
set C which is Y-invariant. If Fix(T) is w*-closed for each T in 9’ then 
Fix( 9’) # 0. 

Proof. Let K be a minimal nonempty w*-compact Y-invariant set 
(which exists by the assumptions on C). Let 6 be the diameter of K. Fix T 
in 9’ and let K, be a minimal w*-compact, T-invariant, nonempty subset 
of K of diameter 6,. By the construction of Lemma 1 as applied in 
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Theorem 2 we see that T has a fixed point z in fl {B(x; dT) : x E KT). For 
a point y in K we have 

d(z, y) < d(z, x) + d(x, y) 6 a,+ 6 < 26 

when x is in K,. Thus Fix(T) n B(y; 28) # /zl for any T in 9’. 
Fix y in K and let E= (J {B(Ty; 26) : TE 9). Then E is bounded and 

Y-invariant. Also for any T in Y the set Fix(T) n E is nonemtpy. 
Let T, , . . . . TN be in 9’ and let T= T, T2.. . TN. Then the set Fix(T) n E is 
nonempty and the constructions of Theorem 5 and Lemma 1 show that the 
set 

n {Fix(T,):l<ii,<N}n(E+j3) 

is nonempty where /I is the diameter of E (and E + /I is the /?-parallel 
set of E). Thus there is a bounded set D so that D meets 
(J { Fix( Ti) : 1~ i < N) for each N. We can replace D with a larger closed 
ball. The ball is w*-compact so the w*-closed assumption now yields 
fl {Fix(T) : TE 9’) # 0 by the finite intersection property. 

Remark. Fix(T) will be w*-closed under the (very unreasonable) 
assumption that T is w*-continuous. 

Problem. Can the assumption that Fix(T) be w*-closed be removed 
from Theorem 7? The situation is analogous to common fixed points for 
commuting families gives some normal structure. Belluce and Kirk [BK] 
showed if X is an arbitrary Banach space and C is a weakly compact, non- 
empty, convex set with normal structure, invariant under a finite commut- 
ing family of nonexpansive maps, then there is a common fixed point. The 
question for arbitrary commuting families remained open for some time 
until resolved in the affirmative by Lim [Li]. This last result, together with 
Baillon’s result [B], is included as special cases of a recent abstract 
approach to the problem [KP]. Another result on common fixed points 
under different hypotheses was given by Bruck [Br]. 

DEFINITION. Let T be a map on a metric space M. A point x is an 
s-approximate fixed point for T if d( TX, x) GE. We will denote the set of 
s-approximate fixed points of T by F,(T). 

If T is nonexpansive on a hyperconvex space M and F,(T) # Qr then 
F,(T) is itself hyperconvex (and hence a nonexpansive retract of M) [S,]. 

THEOREM 8. Let .T be a nonexpansive map with bounded orbits on a 
hyperconuex space. For x in 44, set 6, = dia{ T”x : n > O}. Then 

F,(T) n W; 2 8,) Z 0 
for every .s > 0. 
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Proof: It is well known that M is isometric to a subset of Z,(M). Since 
the assertion and the assumptions of the theorem are invariant under 
isometries we may assume M is contained in Z,(Z) for some index set I. 
Since M is hyperconvex there is a nonexpansive retraction R of Z,(Z) onto 
M. Let f= TR. Then f: Z,(Z) -+ M c I,(Z) is nonexpansive with bounded 
orbits (since p=T”R). Let A,=n (B(T”x;1/26,):m6n<co). By 
hyperconvexity of Z,(Z) we see that A, # @ and clearly this is a closed 
convex set in Z,(Z). Now (A,} is an increasing sequence, and 
mJ~~,+I? so F(iJ {A,:06m<co))c{A,:06m<o0). By con- 
tinuity of T, the set K defined by closure U {A, : 0 < m < co } is F invariant 
and is clearly closed and convex. But A, c B(x; 3/2 6,) so K must be 
contained in this ball as well. Again we can use the Banach contraction 
principle to see that for each E > 0 there is a y, in K with lITyE -y,ll GE. 
Let x, = fy, so that x, is in both M and K. Thus x, is in 
F,(T) n [B(x; (3/2) 6) n M] which is the assertion of the theorem. 

Remark. For T nonexpansive on a closed convex set in an arbitrary 
Banach space a similar result holds but the estimate is not as good. We 
give that result next for comparison purposes. The argument is quite 
different. 

PROPOSITION 9. Let 9 be an abelian semigroup of nonexpansive maps on 
a closed convex set C of a Banach space having Y-bounded orbits. For x in 
C let 6, =dia{ TX : TE 9 ), Then B(x; 26,) contains a nonempty closed 
convex set K which is Y-invariant. 

Proof: Let I be an invariant mean on the semigroup 9, Define K to be 
{y~C:A(I\Tx-yll)<6} with 6=6,. Clearly x is in K. If y is in K then 
inf{ I)Tx - yJI : TE Y} < 6 by the positivity of A. Hence 1) y-xl1 Q 
inf(II y- Txll + )ITx--1111 : TEY} <26. It is not difficult to check that K is 
closed and convex. Let y be ‘in K and T, in 9. Then, using the translation 
invariance of I, we obtain 

Thus K is Y-invariant. 

THEOREM 10. Let T, , T,, . . . . T, be a commuting family of nonexpansive 
maps of a hyperconvex space h4, such that each Ti has bounded orbits. Then 
for every E > 0 we have that n {F,( T,) : 1 d i < N} is a nonempty hyper- 
convex subset of M. 

Proof: For N = 1 we have F,( T,) # fa by Theorem 8 and the hyper- 
convexity by [S,]. We proceed by induction on N. Suppose 
H = n (F,( T,) : 1 G i < N - 1 } is nonempty and hyperconvex. But by com- 
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mutivity, TN leaves F,( Ti) invariant for 1 < i < N - 1. Thus H is invariant 
under TN. So we can apply Theorem 8 and [S,] to the restriction of T, 
to H to give the result. 

Remark. Theorem 10 cannot be generalized to a sequence {T, : i 2 1) of 
commuting nonexpansive maps with bounded orbits (under the generated 
semigroup). For the counterexample we take T on 1, to be Prus’ map. 
The diameter of any orbit is at least 1. For if x = (xk) is in I,, we 
take c = L{ak}. The first k coordinates of Tkx are 1 + c. Let 6 be the 
diameter of {TX). Then IITkx--xJI ,<6 which implies 11 +c-aa,( 66. 
Thus 1 -t c- 6 < ak < 1 + c+ 6 for every k which, in turn, implies 
1 +c-d<A({a,})= c. Hence 6 3 1. But then for E < 1 there are no 
common s-approximate fixed points of {T”}. 

EXAMPLE. A modification of the Prus map can be used to answer 
another open question. If J= n B(x a : r,) is a nonempty ball intersection in 
a hyperconvex space A4 and w is a point in M, then there exists a point y 
in J so that d(w, J) = d(w, y). This is an easy ball intersection argument. 
The question is whether there is still such a point y if the ball intersection 
is replaced with a hyperconvex subset H of A4. We will show that the 
answer is no. Recall that the shift operation on the positive integers N 
induces a homomorphism h of fiN\N. Banach limits correspond to prob- 
ability measures on /?N\N which are h-invariant. There will be minimal 
nonempty closed invariant subsets of PN\N for the dynamical system. It is 
known that each such minimal set, D, supports an uncountable set of 
invariant probability measures [Al]. If we take 1, and A2 to be distinct 
extreme invariant probabilities supported on D then I, and Rz have the 
same closed support in BN\N but also have disjoint measurable supports. 
Let (T= (1/2)(A, --A,). We now define Ton I,(N) by 

T({Xl, x2, . ..>.= {o(x), Xl, x2, . ..}. 

Then for w = (1, 0, 0, . ..} it is not difficult to see that d(w, Tl,) = l/2 but 
this distance is not achieved for cr is a norm 1 functional which does not 
achieve its norm. As T is an isometry, the set H, defined to be Tl,, is 
hyperconvex. 
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