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Goebel and Kirk fixed point theorem for multivalued
asymptotically nonexpansive mappings

M. A. KHAMSI1,2 and A. R. KHAN2

ABSTRACT. We introduce the concept of a multivalued asymptotically nonexpansive mapping and establish
Goebel and Kirk fixed point theorem for these mappings in uniformly hyperbolic metric spaces. We also define a
modified Mann iteration process for this class of mappings and obtain an extension of some well-known results
for singlevalued mappings defined on linear as well as nonlinear domains.

1. INTRODUCTION

Let (X, dX) and (Y, dY ) be metric spaces. A mapping T : X → Y is called Lipschitzian
if there exists a constant k ≥ 0 such that

dY (T (x), T (y)) ≤ k dX(x, y),

for any x, y ∈ X . Using iterates of the mapping T , we introduce new classes of map-
pings. The ones which attracted serious attention were the classes of uniformly Lipschit-
zian mappings and asymptotically nonexpansive mappings. Recall that asymptotic no-
nexpansive mappings were introduced and studied in the fundamental paper of Goebel
and Kirk [7]. The reader interested in an alternate proof of Goebel and Kirk’s fixed point
theorem and demiclosedness principle for asymptotically nonexpansive mappings is re-
ferred to Khamsi and Kirk [13].
Many contributions have been made in relation to this important class of mappings, we
mention here a few of them:

(a) Demiclosedness principle for singlevalued asymptotically nonexpansive mappings
on CAT (0) is established by Nanjaras and Panyanak [23].

(b) The notion of total asymptotically nonexpansive mappings has been introduced
by Alber et al. [1] and they have approximated their fixed point. Further studies
have been made for this new class of mappings by Pansuwan and Sintunavarat
[24], Chang et al. [4] and Panyanak [25].

(c) Dhompongsa et al. [5] have considered a homotopy result and an ultrapower ap-
proach to establish the existence of fixed points of nonexpansive set-valued map-
pings on CAT (0) spaces and Banach spaces simultaneously.

(d) Zhang et al. [32] have studied strong convergence of multivalued Bregmann to-
tally quasi-asymptotically nonexpansive mappings.

As, to the best of our knowledge, the case of multivalued asymptotically nonexpansive
mappings has not been considered. In this work, we use the ideas developed in [12] to
tackle problems about this class of mappings (see also the references [26, 28, 29, 30]).
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For more on metric fixed point theory, we strongly recommend the books [8, 13].

2. BASIC DEFINITIONS AND RESULTS

Let T be a self-mapping on a subset A of a normed space E. We say that T is asymp-
totically nonexpansive if there exists a sequence {kn} in [1,∞) with lim

n→∞
kn = 1 such

that
‖Tn(x)− Tn(y)‖ ≤ kn ‖x− y‖,

for all x, y ∈ A and n ≥ 1. In case, kn = 1, for all n ≥ 1, T is said to be nonexpansive.
Goebel and Kirk fixed point theorem [7] states that if A is a bounded, closed and convex
subset of a uniformly convex Banach space E, then every asymptotically nonexpansive
self-mapping T on A has a fixed point (i.e. T (x0) = x0 for some x0 in A). Goebel and
Kirk fixed point theorem remains the only well-known existence result for these map-
pings. Therefore, iterative construction of fixed point of an asymptotically nonexpansive
mapping becomes essential.

Throughout this work, (X, d) stands for a metric space. Let C be a nonempty subset of
X . We denote by N(C) the collection of all nonempty subsets of C, C(C) the collection of
all nonempty closed subsets of C, and CB(C) the collection of all nonempty closed and
bounded subsets of C. For A,B ∈ CB(X), set

H(A,B) = max
{
sup
b∈B

d(b, A), sup
a∈A

d(a,B)
}
,

where d(x,A) = inf
a∈A

d(x, a) is the distance of x to A. H is known as the generalized

Pompeiu-Hausdorff distance induced by d. Note that for any A and B in CB(X), ε > 0
and a ∈ A, there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

This remark allows us to avoid use of distanceH which imposes restriction on the subsets
to be bounded.

The concept of generalized orbits was introduced by Rus [28] and has been subse-
quently used by many authors (see, for example, [12, 26, 29, 30]). We present this concept
here as it was considered in [12].

Definition 2.1. Let C be a nonempty subset of X . For the multivalued mapping T : C →
N(X) and x ∈ X , the sequence {xn}n∈N defined by x0 = x and xn+1 ∈ T (xn), for any
n ≥ 0, will be called a generalized orbit of x.

If T is singlevalued, then generalized orbits coincide with the traditional definition of an
orbit. It is clear that for a given x ∈ X , T may have many different generalized orbits
generated by x.

Next we define the concept of a multivalued asymptotically nonexpansive mapping.

Definition 2.2. A multivalued mapping T : X → N(X) is called asymptotically nonex-
pansive mapping if there exists a sequence of positive numbers {kn} with lim

n→∞
kn = 1

such that for any x, y ∈ X , and any generalized orbit {xn} of x, there exists a generalized
orbit {yn} of y such that

d(xn+h, yh) ≤ kh d(xn, y), n, h ∈ N.
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Note that we can always assume that kn ≥ 1, for any n ∈ N.

We recall basics of a hyperbolic metric space.

In order to introduce convexity in metric spaces [22], the essential ingredient is the concept
of metric segments. Let x and y be any two points in the metric space (X, d). The metric
segment [x, y] is an isometric image of the segment [0, d(x, y)]. We will assume that for
any x and y in X , there exists a unique metric segment joining them. The unique point
z ∈ [x, y] defined by

d(x, z) = (1− t) d(x, y) and d(y, z) = t d(x, y),

for t ∈ [0, 1], will be denoted by t x ⊕ (1 − t) y. A metric space (X, d) equipped with this
class of segments is called a convex metric space. Moreover, if the following holds

d
(
t a⊕ (1− t) x, t b⊕ (1− t) y

)
≤ t d(a, b) + (1− t)(.x, y),

for all a, b, x, y in X , and t ∈ [0, 1], then X is called a hyperbolic metric space [27]. As in
the linear case, a subset C of X will be convex if [x, y] ⊂ C for any x, y ∈ C.
A natural example of hyperbolic metric spaces is given by normed vector spaces. Hada-
mard manifolds [3], the Hilbert open unit ball equipped with the hyperbolic distance [9]
and CAT(0) metric spaces [2, 17, 18, 19, 20] are examples of nonlinear hyperbolic metric
spaces.

Definition 2.3. For a hyperbolic metric space (X, d), we define the modulus of uniform
convexity by

δX(r, ε) = inf
{
1− 1

r
d
(1
2
x⊕ 1

2
y, z
)
; d(x, z) ≤ r, d(y, z) ≤ r, d(x, y) ≥ rε

}
,

for any r > 0, ε > 0 and x, y, z ∈ X . X is said to be uniformly convex provided δX(r, ε) >
0, for any r > 0 and ε > 0.

Let us recall the definition of a metric type function which plays a major role in metric
fixed point theory. These functions are also known as asymptotic centers of a sequence.
A function τ : X → [0,∞) is a type function if there exists a bounded sequence {xn} in X
such that

τ(x) = lim sup
n→∞

d(xn, x).

If X is hyperbolic, then any type function τ is convex and continuous.

We state important known results in a uniformly convex hyperbolic metric space.

Theorem 2.1. [14, 15] Let (X, d) be a uniformly convex complete hyperbolic metric space.
(i) X satisfies the property (R), i.e. for any decreasing sequence of nonempty closed, convex

and bounded subsets {Kn} in X , we have
⋂
Kn 6= ∅.

(ii) Let C be a nonempty closed and convex subset of X . Any type function τ : X → [0,∞)
has a unique minimum point z in C, i.e.

τ(z) = inf{τ(x);x ∈ C}.

Moreover, any minimizing sequence {zn} in C, i.e. lim
n→∞

τ(zn) = τ(z), is convergent.
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(iii) Let R > 0 and z ∈ X . Assume that {xn} and {yn} are two sequences in X such that
lim sup
n→∞

d(xn, z) ≤ R, lim sup
n→∞

d(yn, z) ≤ R, and

lim
n→∞

d(αxn ⊕ (1− α) yn, z) = R,

then we must have, lim
n→∞

d(xn, yn) = 0.

Let T : C → N(C) be a multivalued mapping. A point x ∈ C is called a fixed point of T
if x ∈ T (x). A generalization of Goebel and Kirk fixed point theorem for nearly uniformly
convex Banach spaces in given in [21] and a demiclosed principle for asymptotically no-
nexpansive mappings on a subclass of metric spaces, namely CAT (0) spaces, has been
established in [20]. We intend to give a multivalued version of Goebel and Kirk’s fixed
point theorem for asymptotically nonexpansive mappings on a very general nonlinear
domain. This result will be new in the literature.

A multivalued mapping T : C → N(C) is H-continuous if whenever {xn} converges
to x in C, we have

lim
n→∞

d(an, T (x)) = 0,

for any sequence {an} such that an ∈ T (xn), for any n ∈ N. In [10, 16], it is proved
that H-continuity is equivalent to the lower and upper semi-continuity of T when T is
compact-valued. Note that if T : C → N(C) is asymptotically nonexpansive, then T is
H-continuous. Indeed, let {kn} be the Lipschitz sequence of positive numbers associated
with T . Let x, y ∈ C. Let {xn} be a generalized orbit of x. Then there exists a generalized
orbit {yn} of y such that

d(xn+h, yh) ≤ kh d(xn, y), n, h ∈ N.

In particular, we have d(x1, y1) ≤ k1 d(x, y) which implies

d(x1, T (y)) ≤ d(x1, y1) ≤ k1 d(x, y),

for any x1 ∈ T (x). Clearly, this implies that T is H-continuous.

Theorem 2.2. Let (X, d) be a complete uniformly convex hyperbolic metric space. Let C be a
nonempty closed, bounded and convex subset of X . Let T : C → C(C), i.e. T (x) is nonempty and
closed subset of C, for any x ∈ C. If T is asymptotically nonexpansive, then T has a fixed point.

Proof. Let x0 ∈ C and {xn} be a generalized orbit of x0. Since C is bounded, the se-
quence {xn} is bounded. Consider the type function generated by {xn}, i.e. τ(x) =
lim sup
n→∞

d(xn, x). By (ii) of Theorem 2.1, τ has a unique minimum point z in C. Since T

is asymptotically nonexpansive, there exists a sequence of positive numbers {kn} with
lim
n→∞

kn = 1 and a generalized orbit {zn} of z such that

d(xn+h, zh) ≤ kh d(xn, z), n, h ∈ N.

This will imply τ(zh) ≤ kh τ(z), for any h ∈ N. Since lim
n→∞

kn = 1, we conclude that {zn}
is a minimizing sequence of τ . Using again (ii) of Theorem 2.1, we conclude that {zn}
converges to z. Since T is H-continuous and zn+1 ∈ T (zn), for any n ∈ N, therefore we get

lim
n→∞

d(zn+1, T (z)) = 0.

As T (z) is closed, and {zn} converges to z, so we conclude that z ∈ T (z), i.e. z is a fixed
point of T . �
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Once an analogue of Goebel and Kirk’s fixed point theorem is established for multiva-
lued asymptotically nonexpansive mappings, it is natural to ask whether Schu’s iterative
approximation [31] (through modified Mann iteration process), may be extended to the
multivalued case. Let (X, d) be a complete uniformly convex hyperbolic metric space. Let
C be a nonempty closed, bounded and convex subset of X . Let T : C → C(C) be asymp-
totically nonexpansive. Assume that p ∈ C is a fixed point of T such that T (p) = {p}.
Fix α ∈ (0, 1) and x1 ∈ C. Since T is asymptotically nonexpansive, there exists {kn} with
lim
n→∞

kn = 1. We will assume that kn ≥ 1, for any n ∈ N. Let {x1n} be a generalized orbit

of x1. Set x2 = α x1 ⊕ (1− α) x11. Let {x2n} be a generalized orbit of x2 such that

d(x1n+h, x
2
h) ≤ kh d(x

1
n, x2), for n, h ∈ N.

By induction, we construct a sequence {xn} in C and for any m ≥ 1, a sequence {xmn }
which is a generalized orbit of xm such that

d(xm−1n+h , x
m
h ) ≤ kh d(x

m−1
n , xm), for n, h ∈ N,

and

(MMI) xm+1 = α xm ⊕ (1− α) xmm.

In view of T (p) = {p}, we have d(xmn+h, p) ≤ kh d(x
m
n , p), for any n, h ∈ N and m ∈ N.

Using (MMI) and the hyperbolicity of X , we get

d(xm+1, p) ≤ α d(xm, p) + (1− α) d(xmm, p)
≤ α d(xm, p) + (1− α) km d(xm, p)
≤ km d(xm, p),

since km ≥ 1, for any m ∈ N. This will imply

d(xm+1, p)− d(xm, p) ≤ (km − 1) d(xm, p) ≤ (km − 1) δ(C),

for any m ∈ N, where δ(C) = {d(a, b); a, b ∈ C} is the diameter of C. Assume that∑
m
(km − 1) is convergent. Then we have

d(xm+h, p)− d(xm, p) ≤ δ(C)
m+h−1∑
i=m

(ki − 1),

for any m,h ∈ N. If we let h go to infinity, we get

lim sup
n→∞

d(xn, p)− d(xm, p) ≤ δ(C)
∞∑
i=m

(ki − 1),

for any m ∈ N. Now we let m go to infinity to get

lim sup
n→∞

d(xn, p) ≤ lim inf
m→∞

d(xm, p),

which implies that {d(xn, p)} is convergent. Set R = lim
n→∞

d(xn, p). Since α ∈ (0, 1), we

easily deduce that lim
n→∞

d(xnn, p) = R as well. If R = 0, then we have lim
n→∞

d(xnn, xn) = 0.
Otherwise, assume R > 0. Then we have

lim
n→∞

d(xn+1, p) = lim
n→∞

d(αxn ⊕ (1− α)xnn, p) = R.

Using (iii) of Theorem 2.1, we conclude that lim
n→∞

d(xnn, xn) = 0. In fact, from the choice of
our generalized orbits, we have

lim
n→∞

d(xn1 , xn) = 0,
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i.e., {xn} is an approximate fixed point sequence of T since xn1 ∈ T (xn). Indeed, we have

d(xn, x
n
1 ) ≤ d(xn, x

n
n) + d(xnn, x

n−1
n ) + d(xn−1n , xn1 )

≤ d(xn, x
n
n) + kn d(xn, xn−1) + k1 d(x

n−1
n−1, xn)

≤ d(xn, x
n
n) + kn (1− α)d(xn−1n−1, xn−1) + k1 αd(x

n−1
n , xn−1)

≤ d(xn, x
n
n) +

(
sup
m∈N

km

)
d(xn−1n−1, xn−1),

for any n ≥ 1. This clearly implies

lim
n→∞

d(xn1 , xn) = 0,

as claimed.

We summarize what we have just proved.

Theorem 2.3. Let (X, d) be a complete uniformly convex hyperbolic metric space. Let C be a
nonempty closed, bounded and convex subset of X . Let T : C → C(C) be an asymptotically
nonexpansive mapping. Let {kn}n∈N be the Lipschitz sequence associated with T and assume that∑
n∈N

(kn − 1) is convergent. Fix x1 ∈ C and α ∈ (0, 1). Consider the sequence {xn} generated by

(MMI). Then
lim
n→∞

d(xn1 , xn) = 0,

which implies lim
n→∞

d(xn, T (xn)) = 0, i.e. {xn} is an approximate fixed point sequence of T .

As a consequence of Theorem 2.3, we obtain a result amazingly similar to Theorem 2.2
in [31] for multivalued mappings. First, we give a definition of what it means for an iterate
of T to be compact. Let m ≥ 1 be fixed. We say that T : C → C(C) is m-compact if there
exists a nonempty compact subset K of C such that for any x ∈ C and any generalized
orbit {xn} of x, we have xn ∈ K for any n ≥ m.

Theorem 2.4. Let (X, d) be a complete uniformly convex hyperbolic metric space. Let C be a
nonempty closed, bounded and convex subset of X . Let T : C → C(C) be an asymptotically
nonexpansive mapping which is m-compact for some m ≥ 1. Let {kn}n∈N be the Lipschitz se-
quence associated with T and assume that

∑
n∈N

(kn− 1) is convergent. Fix x1 ∈ C and α ∈ (0, 1).

Consider the sequence {xn} generated by (MMI). Then {xn} has a subsequence which converges
to a fixed point of T .

Proof. Let K be a nonempty compact subset of C associated with the m-compactness of
T . For n ≥ m, we have xnn ∈ K. Hence, there exists a subsequence {xφ(n)} of {xn} such
that {xφ(n)φ(n)} converges to some z ∈ K. Using Theorem 2.3, we get

lim
n→∞

d(xφ(n), x
φ(n)
φ(n)) = lim

n→∞
d(xφ(n), x

φ(n)
1 ) = 0.

Hence {xφ(n)} and {xφ(n)1 } also converge to z. Since xφ(n)1 ∈ T (xφ(n)), we get

d(x
φ(n)
1 , T (z)) ≤ k1 d(xφ(n), z),

for any n ∈ N. Hence d(z, T (z)) = 0, i.e. z ∈ T (z) since T (z) is closed. �

Remark 2.1. We observe that:
(i) Theorem 2.2 provides multivalued version of Goebel and Kirk fixed point theorem

on a very general nonlinear domain, namely uniformly convex hyperbolic metric
space.
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(ii) Theorem 2.2 extends ([6], Corollary 2.1) and provides an analogue of ([11], Theo-
rem 3.1) for multivalued mappings;

(iii) Theorem 2.4 generalizes, Theorem 2.2 of Schu [31] for multivalued mappings on a
nonlinear domain.
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