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1. INTRODUCTION

THE PURPOSE of this paper is to give an outline of a fixed point theory for nonexpansive
mappings defined on some subsets of modular function spaces. The theory of nonexpansive
mappings (i.e. mappings with Lipschitz constant 1) on convex subsets of Banach spaces has
been well developed since the 1960s [4, 11, 22]. Progress is much less impressive, however, if we
consider the theory of nonexpansive mappings acting on other metric spaces, e.g. F-spaces. As
a matter of fact, we are able to note only a few results. Goebel et al. [5] considered nonexpan-
sive mappings with respect to the hyperbolic metric in the Hilbert unit ball (for more informa-
tion see Goebel and Reich [4]). In another direction Lami Dozo and Turpin [16] gave several
fixed point theorems for nonexpansive mappings in Musielak-Orlicz spaces. Musielak-Orlicz
spaces are examples of modular function spaces [15), i.e. function F-spaces defined by means
of function modulars. Since F-norms induced by the function modulars are defined indirectly,
it is much more convenient and natural to consider mappings that are nonexpansive in the
modular sense than to use the respective F-norms. The function modulars are functional that
lack homogeneity and subadditivity and, therefore, it might be surprising that we are able to use
techniques involving asymptotic centers, normal structure and uniform convexity to obtain
fixed point theorems.

The paper is divided into three sections. Section 1 is preliminary. In Section 2 we prove
several fixed point theorems using constructive methods, while in Section 3 we introduce the
notions of normal structure and uniform convexity in the modular sense and apply them to
fixed point theory.

SECTION 1

We begin by recalling some basic concepts of the theory of modular spaces. For more
information we refer the reader to the book by Musielak [18].
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Definition 1.1. Let X be an arbitrary vector space.
(a) A functional p: X — [0, + o] is called a modular if for arbitrary x,y € X,
(1) p(x) = 0 if and only if x = 0
(2) plex) = p(x) for every scalar a with |af = 1
3) plax + ) = p(x) + p(»ifa + f=1and o, = 0.
(b) If (3) is replaced by
(3 plax + By) < o’p(x) + Bp(y) for a,f =0, o’ + B =1 with an s¢€ (0, 1], the
modular p is called an s-convex modular. 1-convex modulars are called convex modulars.
(c) A modular p defines a corresponding modular space, i.e. the vector space X, given by

X, ={xeX:p(hx) > 0as i1 — 0}.
Note that in general there is no reason to expect the subadditivity of a modular p. Never-
theless, in view of (3) from definition 1.1, there holds
plx + ¥) = pG(20) + 1(29)) = p(2x) + p(2).

Let us also recall the following definitions.

Definition 1.2. A functional ||-||: € — [0, +eo] is called an F-norm if for arbitrary x, y € X,
1) |x| = 0if and only if x = 0
) llex]| = ||x|l if « is a scalar and |a| = 1

@3) lIx + ¥l = lxll + Il
@) laxx, — ax|| = 0 if a) = « and [lx, — x| = 0, where {x,} is a sequence of elements

from .

Definition 1.3. The linear metric space (X, d), where d(x, y) = llx — yll, is called an F-space if
d is a complete metric.
A modular space X, can be equipped with an F-norm defined by

lxll, = infle > 0: pla™'x) < a}.

In the case of an s-convex modular p, the formula

Il = inf{as > o:,;(f) ) 1}
o

defines an s-norm (i.e. an F-norm with the additional property [lax|| = |a[*|x|). For s = 1 this
norm is frequently called the Luxemburg norm. It is a basic fact that for every modular p, the
convergence [x,|l, = 0 is equivalent to p(ax,) — 0 for all a > 0. One can easily observe that
for every fixed x € X, the function R 3 o = p(ax) is nondecreasing. It is also clear that any
F-norm ||+|| can be regarded as a modular provided o — [lex]| is increasing for every x in X.
Since for every F-norm | - || there exists an equivalent F-norm with this property [23], we can say
that up to equivalence, every F-norm is a modular. The converse is certainly not true; as a
classical example we may give the Orlicz modular defined for every measurable real function f
by the formula:

o) = L (/1)) dm(1)
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where m denotes the Lebesgue measure in R and ¢: R = [0, +) is even, continuous, ¢(0) = 0
and @(u) — +wo as u = +o.

The modular space induced by Orlicz’s modular p, is called the Orlicz space L®. Orlicz
spaces, their generalizations and many other spaces of measurable functions belong to a large
class of function spaces called modular function spaces. We want now to present some basic
concepts and facts about these spaces. For an exposition of this theory the reader is referred to
Kozlowski {13, 14, 15].

Let X be a nonempty set and I be a nontrivial g-algebra of subsets of X. Let ® be a J-ring
of subsets of I, such that EN A € ® for any £ € ® and A € . Let us also assume that there
exists a nondecreasing sequence of sets X; € ®, such that X' = U X;. Roughly speaking, ® plays
the role of the J-ring of subsets of finite measure (in many examples this is indeed the case). By
& we denote the linear space of all simple functions with supports from @. By 1 we shall
denote the space of all measurable functions, i.e. all functions f: X — R such that there exists
a sequence of g, € 8, |g,] = |f] and g,(x) = f(x) for all x in X. The symbol 1,, denotes the

characteristic function of the set A.
Let us recall that a set function u:Z — [0, +oo] is called a g-subadditive measure if

w(@) =0, u(A) < u(B) for any ACB and u(UA,) < T u(4,) for any sequence of sets
A, € X.

Definition 1.4. (c.f. [13,14,15]). A functional p: & X T — [0, +] is called a function
modular if

(P p(0,E) =0 for any E € L.

(P, p(f, E) < p(g, E) whenever | f(x)| < |g(x)| for any x € X, f,g € & and Eel.

(Py) p(f,*): T — [0, +] is a o-subadditive measure for every f € &.

(Py) pla, A) = 0 as alO for every A€ @, where for the sake of simplicity we denote
p(d, A) = p(alA ’ A)'

(Ps) If 3 a > 0 such that p(a, A) = 0, then p(8,4) =0, vA>0.

(Ps) pla, ) is order continuous on @ (for any fixed o > 0), i.e. p(cr, A;) — 0if A, € ® and
AL D
The definition of p is then extended to all f € M by

p(f, E) = sup(p(g, E): g € &, g0} =< | f(x)| for all x € E}.

In this sense we will understand the notation p(«, E) for sets E not belonging to @; for the sake
of simplicity, we write p(f) instead of p(f, X).

Definition 1.5. A set E is said to be p-null if and only if p(a, E) = 0 for every a > 0. A property
w(x) is said to hold almost everywhere (p-a.e.) if the exceptional set {x € X; w(x) does not hold}
is p-null. For instance, we will frequently say that f,, — f p-a.e.

Let us observe that a countable union of p-null sets is still p-null. In view of (Ps), if
pla, E) = 0 for a positive number «, then E is p-null. In the sequel we will identify sets 4 and
B whose symmetric difference A AB is p-null; similarly, we will identify measurable functions
which differ only on a p-null set.

We recall now a result (c.f. [13, 14, 15]) that justifies the terminology of definition 1.4.

TueoreM 1.6. The functional p: 9 — [0, +o] is a modular in the sense of definition 1.1.
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In view of theorem 1.6 the following definition makes sense.

Definition 1.7. A modular space determined by a function modular p will be called a modular
function space and will be denoted by L,.
The F-norm induced by p will be denoted by |- ||,. By definition 1.1(c), we have

={feM;p(Af) > 0as 1 — 0}

In the following theorem we recall some of the properties of modular function spaces. For
proofs and details the reader is referred to {13, 14, 15].

THEOREM 1.8.
(1) (L,, lI-ll,) is a complete space and the F-norm |- ||, is monotone with respect to the natural
order in JW.
(2) If there is a number A > 0 such that p(A(f, — f)) — O then there exists a subsequence {g,)
of [ f,} such that g, — f p-a.e.
(3) (Egoroff’s theorem) If f, — f p-a.e. then there exists a nondecreasing sequence of sets
H, € ® such that H, 1 X and f, converges uniformly to f on every Hy.
(4) Defining L = {f € M : p(f, ) is order continuous] and E, = {fe M : Af € L, for every
A > 0} we have:

(@ L,ODL;DE,

®) E has the Lebesgue property, i.e. | flpwll, = 0 if f € E, and D(k){ &,

©) E is the closure of & (in the sense of |- ||,).
5) (Vitali’s theorem) If f, € E,, f€ L, and f, — f p-a.c., then the following conditions are
equivalent:

(i) feEp and "fn _f"p -0,

(ii) for every « > 0 the subadditive measures p(af,,*) are equicontinuous, i.e.
sup plaf,, Ex) — 0 whenever E, € X, E, | .

(6) (Lebesgue’s theorem) If f,, f € M, f, — f p-a.e. and there exists a function g € E, such
that | f,| < |g| p-a.e. for all n, then || f, — f]l, — 0.
(7) For f,, f € M the following are equivalent:

(i) p has the Fatou property, i.e. p(f,) 1 p(f) whenever | f,| 1| f] p-a.e.

(ii) p is a left continuous modular, i.e. p(4,./) t p(S) whenever 0 < 4,71.

(iii) p(f) < lim inf p(f,) whenever f, — f p-a.e.

(8) A function modular p is said to satisfy the A,-condition if sup p2fn, E;) — 0 whenever
E.l & and supp(f,.,Ek) - 0.

It was proved in [15] that A, is equivalent to the equality E, = L,. The other characteriza-
tion is as follows: p has A, if and only if F-norm convergence is equivalent to modular con-
vergence. The latter means that in order to obtain | f, — f]| » — 0it suffices to verify that there
exists A > 0 with p(4f,) — 0. An interesting connection between A, and the separability of L,,
as well as some other conditions of this type can be found in [15].

Definition 1.9. A subset B of L, is called
(a) p-bounded if sup p(f - g) < =

(b) (p-a.e.)- closed 1f from fo — f (p-a.e.), f, € B it follows that f € B;
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(c) (p-a.e.)-compact if from every sequence of functions f, € B we may extract a subsequence
{g,} such that g, — f (p-a.e.), where f belongs to B.

We use the above mentioned terminology because of its formal similarity to the metric case.
Since p is usually quite far from being a norm or F-norm, one should be extremely careful when
dealing with these notions. For instance, there is no reason for a (p-a.e.)-compact set to be
p-bounded. Nevertheless, one can easily observe that every (p-a.e.)-compact set is (p-a.c.)-
closed. Similarly, we introduce the notion of a p-ball B, by the natural formula B,(f, r) =
[geLl,:p(f -8 =r} We should not expect B,(f, r) to be p-bounded, because p in general
need not be subadditive. It is worth mentioning that for many examples (see below) all these
notions are quite natural and the conditions from definition 1.9 can be easily verified.

Example 1.10. It is easy to check that Orlicz spaces are modular function spaces. Similarly,
Musielak-Orlicz spaces, i.e. spaces determined by a modular of the form

P E) = L o, | f(O)) du()

are modular function spaces, provided ¢ belongs to the class ®. For the precise definitions and
properties of Musielak-Orlicz spaces see the book by Musielak [18], where they are called
generalized Orlicz spaces.

Example 1.11. Suppose M is a family of o-additive measures on (X, ), and ¢ € ®. One can
prove that

p(f,E) = sup E o(t, | f(O)]) du()
reEM Jp

is a function modular. As an example of function spaces determined by a function modular of
this type we can mention Lorentz type I”-spaces, where

p(f, E) = sup S | f@)I7 du,.
red E

Here u is a fixed o-finite measure on X, J is any set of measurable, invertible transformations
7: X = X and p,(E) = u(r"Y(E)).

Example 1.12. If {p,} is a sequence of function modulars, then one can prove that

« 2 "pa/ L E)
(LE)= L T
? L5 0.G.B)

is a function modular as well, while p°(f, E) = sup p,(f, E) is not a function modular in
general. One can ask what should be assumed to guarantee that p° satisfies (P;) through (5).
The other question is when both p and p° determine the same modular space. These and similar
problems were considered in [15] in relation to the theory of summable functions.

Example 1.13. In [15] the reader can find a construction of the domain of continuity for
disjointly additive operators defined on simple functions. It turns out that a disjointly additive
operator T induces a function modular p such that T can be extended to the whole of E, and
the extension is continuous on E,.
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SECTION 2

In this section we present some fixed point theorems for mappings that are nonexpansive or
contractive in the modular sense. Certainly, one can also consider mappings which are
nonexpansive with respect to the F-norm |- ||, induced by the function modular p. We should
like to mention that, generally speaking, there is no natural relation between these two kinds of
nonexpansiver:iess. Once again we want to emphasize our philosophy that all results expressed
in terms of modulars are more convenient in the sense that their assumptions are much easier
to verify.

Definition 2.1. Let B be a subset of a modular space L, and let T: B = B be an arbitrary
mapping.
(a) T is said to satisfy a p-Lipschitz condition with constant A if

(TN — T(g) < Ap(f — &) for all f,g € B.

(b) T is said to be p-nonexpansive if T satisfies a p-Lipschitz condition with constant 1.
(c) T is called a strict p-contraction if T satisfies a p-Lipschitz condition with constant

A< 1.

Our first fixed point theorem can be named the Banach contraction principle for modular
function spaces because of its obvious similarity to this classical result. By T"(f) we understand
the nth iterate of the point f with respect to 7. We say that f is a fixed point of T if T(f) = f
p-a.e.

THEOREM 2.2. Let p be a function modular satisfying the A,-condition and let B be a |||,
closed subset of L,. If T:B — B is a strict p-contraction and there exists f, € B with
sup pQRT™(f,)) < o, then T has a fixed point f € B.

Proof. Consider an f; € B such that R = sup p(2T"(f,)) < <. For all natural numbers n and
k we have

AT () — T"(fo)) = A'[pQRRT (/) + p(2fo)] < A"2R.

Since A < 1 and R < o, [T"(fy)} is a Cauchy sequence in the sense of modular convergence.
By the A,-condition, {T"(fp)} is a Cauchy sequence in the sense of the F-norm |-, (c.f.
theorem 1.8, part (8)). Since (L, I ,) is complete, there exists a function f in L, such that
If = T*(f)l, = 0. The function f belongs to B, because B is | -[|,-closed. We claim that f is
the desired fixed point. Indeed,

T = T < Ap(f = T ') — 0 as k = o,
and since p(fy, — T"(fp)) — 0 as n — «, we have:
PGS = T = o(TU) = T(fo)) + /(T (S) = f) =0  asn— .

Thus p($(f — T(f))) = 0, and in view of the definition of a function modular p, T(f) = f

p-a.e.
In order to obtain the uniqueness of the fixed point, we have to add an additional

assumption.
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PrROPOSITION 2.3. Under the assumptions of theorem 2.2, suppose in addition that
p(f — g) < o for all f, g € B. Then the fixed point f is unique.

Proof. Suppose T(f,) = f, and T(f;) = f,. Then
p(fy = f1) = p(T(S) — TUY) < Ap(fi - f)

Since A < 1 and p(f, — f,) is finite, this is possible only if f; = f, p-a.e.
It is worth noting that in some modular function spaces, p(f — g) < = for all fandgin L,
if p satisfies the A,-condition. For instance, this is the case when L, is an Orlicz or a

Musielak-Orlicz space.
Combining theorem 2.2 and proposition 2.3 we obtain immediately the next result.

TuEOREM 2.4. Let p satisfy the A,-condition, and let B be a |- [ ,-closed subset of L,. If
T: B — B is a strict p-contraction and B is p-bounded, then 7T has a unique fixed point.

Definition 2.5. A function modular is said to satisfy the (*)-condition if
(*) p(f, H) = limsup p(f,, H)

for every H € ® such that (f,) converges uniformly to f on H, where f, and F belong to L.

Let us note that the (*)-condition is satisfied for many function modulars. This is the case,
for example, for all modular function spaces with the Fatou property (see remark 2.6), which
is equivalent to the left-continuity of p (cf. theorem 1.8, part (7). In particular, all
Musielak-Orlicz modulars are left-continuous and, therefore, satisfy (*).

Remark 2.6.
(a) The (*)-condition is equivalent to:

(**) p(f, H) < liminf p(f,, H), where f, f, and H are the same as in (*).
(b) If p satisfies the Fatou property then p satisfies the (*)-condition.

Proof. The (**)-condition is satisfied because (*) must hold for every subsequence of (f,).
Since the other implication is obvious, we have (a). By theorem 1.8, part (7), the Fatou property
gives the (**)-condition and by part (a), the (*)-condition 1s then satisfied.

In view of remark 2.6, the (*)-condition is equivalent to the lower semi continuity of p with
respect to uniform convergence on sets from the S-ring ®. The next result characterizes
function modulars that satisfy the (*)-condition.

PRrROPOSITION 2.7.

(a) p has the Fatou property if and only if B,(r) is (p-a.e.)-closed for all r > 0, where
B,(r) = (feL,:p(f) = r}.

(b) A function modular p satisfies the (*)-condition if and only if B,(r) N L, is (p-a.e.)-
closed in L} for all r > 0.

Proof. (a) is evident. To prove (b), suppose that p satisfies (*). Fix an r > 0 and take a
sequence (f,), f, € B,(r) N L;, such that f, = f (p-a.e.) with fe L;. We have to show that
S € B,(r). From Egoroff’s theorem it follows that there exists a sequence of sets H, € @
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such that H, 1 X, and (f,) converges uniformly to f on each (/,). For any k € N we have

pU, Hy) < lim sup p(f,, Hy) = lir:lqsgp p(f)=r

and p(f) < p(f, Hy) + p(f, X\H,). Since feL;, we have p(f, X\H,) = 0 as k — o,
Therefore p(f) < r and then f € L; N B,(r). Assume now that B,(r) is (p-a.e.)-closed and that
(/) converges uniformly to f on a set H € ® (f,,f € L)). If (*) is not satisfied, then there
exists a subsequence (g,) of (/,) such that

limp(g,, H) < y < p(f, H)

for a positive constant y. Since g, converges uniformly to f on H, it follows that g,1, — f1y
(p-a.e.) and, because B,(y) NL; is (p-a.e.)-closed in E,, fly € B,(y) N Ly, which yields
p(f, H) < y, a contradiction.

Our next result will play an important role in the proof of a fixed point theorem for strict
p-contractions when p does not satisfy the A,-condition. If ||| is an F-norm then clearly
Wf. — gl = I.f - gl if |f, — fIl = 0. Since modulars are not subadditive in general, we
cannot expect the same result for function modulars. It turns out, however, that the (*)-
condition gives some control, namely we have the following ‘‘asymptotic center”’ [4] result.

LemMa 2.8. Let p satisfy the (*)-condition. Assume that for a sequence {f,} C L, there exists a
subsequence {4,] of {f,) such that &, — f p-a.e. Then for all g € L, such that f - g e L}, we
have

p(f - g) < limsup p(f, — g).

Proof. Let {h,} be a subsequence of {f,] with 4, — f p-a.e. By Egoroff’s theorem (theorem
1.8, part (3)) there exists then a sequence of sets H, € ®@, such that H, T X and h, converges
uniformly to f on every H,. For any k € N we have, by the (*)-condition,

p(f— g Hy) < lir:lﬁsgp pth, — 8, Hy) = lir’pﬁsgp pth, — 8 < lir:lqsgp (S — 8).

Since f — g belongs to L;, we get p(f — g, X\H,) = 0 as k - , and consequently,
p(f — g Hy) = p(f - 2)
as k — oo. The latter convergence implies that p(f — g) < lim sup p(f, — g), as claimed.
THEOREM 2.9. Let p satisfy the (*)-condition and let B be a (p-a.e.)-compact, p-bounded subset
of L,. Assume that B — BC L] (i.e. f~ ge Ly, provided f,g arein B). f T:B—~ B is a
strict p-contraction then it has a unique fixed point.
Proof. Take an arbitrary f, € B, and set f,, = T"(f,). For g € B, define

@(g) = limsup p(/f, — 8)-

Since T is a strict p-contraction, we get easily ¢(7(g)) < A¢(g) for all g € B, where 1 € (0, 1)
is the Lipschitz constant for 7. Therefore, inf{p(g): g € B] = 0. By the (p-a.e.)-compactness
of B we can choose a subsequence (h,) of (f,) which is (p-a.e.)-convergent to an f e B.
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By lemma 2.8, p(f — g) < ¢(g) for every g € B. Hence,
p(f = T@) = o(T(g)) < A"0(g)
and p(T(f) — T™(g) < Ap(f — T"'(g)) < Ap(T""'(g)) < A"@(g). Finally, we have
PRI = TOD < p(f — T™(@)) + p(T"(g) — T(f)) < 247p(g) = 24'R.

Where R = sup(p(f — 8); /, g € B) s finite in view of the p-boundedness of B. Since 2A"R = 0
as n — o, we deduce that T(f) = f p-a.e.

Remark 2.10. Let us observe that for some important modular function spaces, e.g. Orlicz
spaces or Musielak-Orlicz spaces, the fact that B — B C L; follows from

sup{p(f — g):/,g € B} < .

Indeed, order continuity of p(f — g, *) is in such spaces equivalent to p(f — g) < .
In order to prove a fixed point theorem for p-nonexpansive mappings we have first to
introduce a new condition for function modulars.

Definition 2.11. The growth function w, of a function modular p is defined as follows:
w,(f) = suplp(t/)/p(f): f € L,,0 < p(f) < ], t=0.
Observe that w,(f) < 1 for all 7 € [0, 1].

Definition 2.12. We say that p satisfies the regular growth condition if w,(f) <1 for all
t e 0, 1).

The class of function modulars that satisfy the regular growth condition is quite large. For
instance, if p is s-convex (0 < s =<1), then p(tf) < °p(f) for t <1, and consequently
w,(f) < ¢ < t < 1. Thus all s-convex function modulars satisfy the regular growth condition.
It is not hard to prove that if p is an Orlicz modular then, in the case of finite measure, p
satisfies the regular growth condition if and only if lim sup[e(ts)/¢(s)] < 1 for all te [0, 1),

§—®

where ¢ denotes the Orlicz function associated with p. If there exists a constant K > 0 such that
p(2f) = Kp(f) for all fe€ L,, then w, is submultiplicative and hence (see [19]) there is p > 1
such that w,(¢) < t* for ¢ € [0, 1). Consequently, such function modulars also satisfy the
regular growth condition.

Recall that a set B is said to be star-shaped if there exists 4 € B such that u + A(g — u)
belongs to B whenever A € [0, 1] and g € B. Such a point « is called a center of B.

THEOREM 2.13. Assume that p satisfies the (*)-condition and the regular growth condition. Let
B be a star-shaped p-bounded and (p-a.e.)-compact subset of L, such that B — BcCL;.

Assume in addition that for every sequence of functions f, € B such that f, = f p-a.e. with
f e B and for every sequence of sets G | (7,

(+) lim <sgp pSu— S, Gk)) = 0.

If 7: B = B is p-nonexpansive, then it has a fixed point.
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Proof. Let u be a center of the star-shaped set B. For each 4 € (0, 1), let us consider the
mapping T, : B = B defined by T,(f) = u + A(T(S) — u). Observe that p(I(f) — K (g)) =
PAIT() — T(@)) = w,(Dp(T(S) — T(g)) < w,(A)p(f — g). Since p satisfies the regular growth
condition, w,(4) < 1 and, consequently, T, is a strict p-contraction for every 4 € (0, 1). In view
of theorem 2.9 T, has a unique fixed point f,. Take a sequence of positive numbers A(n) T 1.
Denoting 7, = Ty, and f, = fy and using a compactness argument we can assume (passing
to a suitable subsequence if necessary) that there exists a function f € B such that f, — f p-a.e.
By Egoroff’s theorem there exists a sequence {H,} of sets from & such that H, T X and f,
converges uniformly to f on every H,. Observe that for every k € N

) pGIT() — TN, Hy < p(T) — T,(N)) = p(1 — AMUT(S) — u]) = 0 because
T(f) —uelL,and 1 — A(n) = 0 as n = . Moreover, we have

(i) p(T,(f) = Su» He) = p(T,(f) — fn) = 0 because f, is a fixed point for 7,. Observe
now that

(i) A(T,(f) — T.(/), Hy) < p(T,(f) - T,(f) = pA()T(S) = T = p(T(f) = T(S)) <
o(f = f) <= p(f = [, Hp) + p(f — fo, X\H,,) holds for all natural numbers n, m, and k.
Hence

(iv) p(T,(f) — T,(f)s Hy) < p(f = fns Hy) + sup pUf — frs X\Hpy,).

Since p satisfies condition (+), we have:
lim[ sup o(f — /> X\H,,,)] = 0.
m n a

Let & be an arbitrary positive number. There exists m' € N such that p(f - f,, X\H,,")
for every n € N. On the other hand, our assumption on {f,} implies that p(f - f,, H,)
for n sufficiently large. We conclude, therefore, that for k € N,

V) ,Pfl AT (f) - T.(f), H) = 0.
Using (i), (ii) and (v) we have for arbitrary k € N,
~vi) pGITU) = S, H) = pGITU) = TN He) + p(T,(f) = T.(fo), Hy)
+ (T (fo) = fu HY) 20 asn— oo

=<¢
=¢

Finally,
PELT() = 11, H) < pGIT) = ful, H) + pGLf = fa), H) = 0

which implies that 7(f) = f p-a.e. in H,. Since H, T X, we obtain 7(f) = f p-a.e. in X. The
proof is complete.

Remark. An example of a set B satisfying (+) such that B — B C L is provided by a set B
such that B - BC {fe L,:|f(x)| < |gx)|} where g € L;.

As mentioned in the introduction, one of the reasons of our interest in p-contractions is that
the contraction condition can be easily verified. Our next result shows that we have to assume
more than p-nonexpansiveness in order to obtain norm nonexpansiveness. An example of a
mapping which is p-nonexpansive but is not nonexpansive in the norm sense will be discussed
later. Recall that a modular p is called left continuous if p(Af) T p(f) as A 11. It is known (cf.
(18, theorem 1.8]) that for convex, left continuous modulars the inequalities || ]|, < 1 and
p(f) < 1 are equivalent.
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ProOPOSITION 2.14. Let p be a convex, left continuous function modular. If p(y[T(f) — T(g)]) =
p(yLf - g)) for every y > 0, then | T(f) - T(®ll, =< If - &ll,.

Proof. Suppose that there exist f, g in L, and a > O such that || f — gll, < « < || T(f) - Tl
Then |[(f - g)/all, < 1, which implies that p([f ~ gl/e) <1, and on the other hand,
1 < (T(f) = T()/all,. The left continuity of p now yields 1 < p([T(f) — T(g)]/). Finally,
setting y = a~!, we obtain p(y[f — g]) < | < p(Y[T(f) — T(g)]), a contradiction.

Example 2.15. Let X = (0, ), and let I be the g-algebra of all Lebesgue measurable subsets
of X. Let ® denote the d-ring of subsets of finite measure. Define a function modular by

1 x
pf) == E [ SO+t dm(x).
€ Jo

Let B be the set of all measurable functions f: (0, ©) — R such that 0 < f(x) < }. Define a
linear operator T by the formula

(S -, forx=1
T = {O, for x € [0, 11.

Clearly, T(B) C B. We claim that for every fixed A < 1 and for all f, g € B,
@) pAIT(S) — T(@)) = Ap(ALS — &D.
Indeed,

PATLS) — T(g)

e‘ZS AT - T dm(x)

0

e‘zrl”“lf(x - 1) - gx = DI dm(x)

1

= Ae‘zg £ — g ) - g)] dm(x)
0

< Ae"j A1) — g dm(x) = Ap(A(Sf — )
0 .

In particular, if A = 1 then (i) shows that T is nonexpansive. It is also easy to see that Bis a
(p-a.e.)-bounded subset of L,. We observe that T is not [-[,-nonexpansive. Indeed, put
f = 1j, and note that T(f) = 1y 5. We have

= ¥ 1 (! Coe-1

plef) = e‘zg e Sl dm(x) = e'zj “Hldm(x) = ; § e dm(x) = — < 1.

0 V] 0
Since p is left-continuous, the latter inequality implies that [lef ||, = 1 and therefore 2=, <
Le. On the other hand,

2 2 2 _
p(éf)=e'2j e’“dm(x)=e“'§ e‘dm(x)=e p fce—1>1,
1

and consequently |eT(NHl, > 1. Thus, |TGN, = 47N, > e, so that T is not I-1l,-
nonexpansive.
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The next example shows that sometimes an operator 7T can itself determine a function
modular pr so that T is p;-nonexpansive.

Example 2.16. Let T be the Urysohn integral operator

1
T = L klx, y, | fDWdy + fo(x),

where fj, is a fixed function and f: [0, 1] — R is measurable. For the kernel k we assume that

(@) k:[0,1] x [0, 1] X R, — R, is measurable,

(b) k(x,y,0) =0,

(©) k(x,y, ") is continuous, convex and increasing to o,

(d) fk(x,y,0)dx >0 for t > 0 and y € (0, 1).

Set pr(f, A) = [8(4 k(x, ¥, | f(]) dy) dx, where 4 C [0, 1] is measurable. It is easy to show
that p; is a function modular.

If the following inequality holds for almost all t € [0, 1] and all f, g e L,,

1 1
® S Uo klt, u, |k(u, v, | f0)]) ~ k(u, v, |g@)D] dv} du

0
1
= X klt, u, | flu) ~ g@)l] du,
0
then T is p-nonexpansive. Indeed, there holds

1 1 1
pAT() — T(g) < j H H kix, u, lku, v, | f()]) — k(u, v, |g)DI] dv] du} dx
0

0 0

1 1
< j Uo klx, u, | f(x) — g0)|] du} dx = p(f - 2).

0

The first inequality was obtained by Jensen’s inequality while the other one by (i). As a concrete
example of such an operator one can take, for instance,

x

TNHx) = j x| fO) dy + fo(x).

0

We conclude this part of the paper with the following remark on Alspach’s counterexample {1].
Let us define the operator:

min{2, 2f(x)} for x € [0, 1]

T(NHx) = {max{O, 2(2x - 1) -2 forxe(}, 1]

on C, a convex subset of L,, defined by
1
C= {fe L,[0,1}:0 < f(x) < 2a.e. and X Sf(x)dx = 1}.
(1]

The operator T is an isometry on C, with an empty fixed point set. It seems that the condition
fo S(x)d(x) = lis “‘responsible”” for the existence of nonexpansive, fixed point free self-mappings
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of C, since for T: B — B, where B=}fe L;:0 =< f(x) < 2a.e.], we obtain the obvious fixed
point f(x) = 0. Maurey observed in [17] that all weakly compact convex subsets of reflexive
subspaces of L, have the fixed point property (that is, any nonexpansive self-mapping has a
fixed point). Note that our theorem 2.13 gives “‘an intrinsic’’ reason why 7: B — B must have
a fixed point while T: C = C does not have to. Moreover, we do not refer to any geometrical
properties of subspaces of L, (observe that even the convexity of B is not essential here).

SECTION 3

The concept of normal structure was introduced by Brodskii and Milman [2] for the case of
linear normed spaces. It was frequently used to prove existence theorems in fixed point theory.
There were also some attempts to generalize the concept of normal structure to metric spaces
[9, 20] and more abstract sets [8, 21].

In this section we define normal structure in modular function spaces. According to the
philosophy of this paper, we introduce normal structure for function modulars, not for the
norms or the F-norms generated by them. We prove then a modular analog of Kirk’s fixed
point theorem [10], and give some natural examples of modular function spaces with normal
structure (with respect to the function modular).

First, we have to introduce some basic notions. Let B be a p-bounded subset of L,.

Definition 3.1.
(a) By the p-diameter of B, we will understand the number

8,(B) = sup{p(f — g):/,8 € B).

(b) The quantity r,(f, B) = sup{p(/ — 8): f, g € B} will be called the p-Chebyshev radius
of B with respect to f.

(c) The p-Chebyshev radius of B is defined by R,(B) = inf{r,(f, B): fe B).

(d) The p-Chebyshev center of B is defined as the set

C,(B)=1{feB:r,(f,B) = R,(B)).

Note that R,(B) < r,(f, B) < J,(B) for all fe B and observe that there is no reason, in
general, for C,(B) to be nonempty.

Definition 3.2.

(a) We say that g is a p-diametral point of B if r,(g, B) = 6,(B).

(b) The set B is called p-diametral if every g e B is a p-diamentral point.

(¢) A sequence {f,} of functions from L, is called a p-diametral sequence if there exists
¢ > 0 such that J,(f,) < c and

lim distp[f,m,conv(f,.: l=<i=sn)=c

where dist,[f, A] = inf{p(f — g): g € 4] and

convlfi: 1l =i<n}= {Z o fi;o;=0and ¥ o; = 1}.
i=1 i
Let us observe that dist,(f,,,conv(f)) = nc, while in the norm case this distance can be
estimated by the number c itself.
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Before we state our first fixed point theorem, we have to introduce the concept of
p-admissible sets and p-normal structure.

Definition 3.3. Let B be a p-bounded subset of L,.

(a) We say that A is an admissible subset of B (cf. [3)) if A = N, B,(b;, r) N B, where
bie B, r; > 0 and I is an arbitrary index set. (Recal* that B,(f,r) = {ge L,: p(f - g) < r}).

(b) If C is a subset of B we let co(C) = ;¢ B(f, r,(f, C)) N B.

(c) Bis said to have p-normal structure if each p-admissible subset A of B, not reduced to
a single point, has a p-nondiametral point (i.e. a point which is not p-diametral).

By @(B) we denote the family of all admissible subsets of B. For the proof of the analog of
Kirk’s theorem, we shall need the following lemma, as in [12).

LEMMA 3.4. Let B be a nonempty, p-bounded subset of L,. Let T: B —» B be a p-nonexpansive
mapping. Assume that B has p-normal structure. If D € Q(B) is a T-invariant set, then there
exists a nonempty admissible subset D* of D, which is T-invariant, and such that

0,(D*) < }(J,(D) + R,(D)).

Proof. Set r = 2'1(6p(D) + R,(D)). We can assume that 6,(D) > 0, otherwise we can take
D* = D. Since B has p-normal structure, we have R,(D) < §,(D). Therefore, the set
A ={feD:DC B,(f, )} is a nonempty admissible subset of B (4 = ﬂfeDBp(f, r ND).
A priori there is no reason for A to be T-invariant. Put §F = M e Q(B): A C M and
T(M) C M} and L =y .M. Note that § is nonempty, since B € F. The set L is an
admissible subset of B which contains A. Using the definition of ¥, we deduce that L is
T-invariant. Consider C = A U T(L), and observe that co(C) = L. Indeed, since C C
T(L) C L and L € Q(B), we have co(C) C L. From this we obtain T(co(C)) C T(L) C C and
C C co(C), hence co(C)e F, and L C co(C). This gives the desired equality. Define
D* = {fe L:L C B,(f, r)}; weclaim that D* is the desired set. Observe that D* is nonempty
since it contains 4 (by definition of 4). Using the same argument we can prove that D* is an
admissible subset of B. On the other hand, it is clear that J,(D*) < r. To complete the proof,
we have to show that D* is T-invariant. Let fe D*. By definition of D* we have
L C B,(f,r). Since T is p-nonexpansive, we have T(L) C B,(T(f), r). For any g € A there
holds L C B,(g,r). But 7(f)e L, so that T(f) e B,(g,r), which is equivalent to
g € B,(T(f), r). This implies that A C B,(7(/f), r). Since C = A U T(L), we deduce from what
we have proved above that C C B,(T(f), r). Therefore, we have co(C) = L C B,(T(f), r). By
the definition of D*, it follows that 7(f) € D*. In other words, D* is T-invariant.

We are now ready to prove the analog of Kirk’s theorem in modular function spaces.

THEOREM 3.5. Let p have the Fatou property. Suppose that a p-bounded, (p-a.e.)-compact
B C L, has p-normal structure. If 7: B — B is p-nonexpansive, then it has a fixed point. =

Proof. Let§ = (D e Q(B): D # ¢ and T(D) C D). The family F is not empty since B € F.
Since p has the Fatou property, we deduce from proposition 2.7(a) that the admissible subsets
of B are {p-a.e.)-closed, hence (p-a.e.)-compact. This implies that any decreasing sequence of
nonempty elements of F has a nonempty intersection (recall that § is stable by intersection).



Fixed point theory in modular function spaces 949

Define J,: F — [0, ) by 6,(D) = inf{d,(F): F € ¥ and F C D|. Put D, = B, and define
D, € § by 3,(D,) < do(Dy) + & and D, C D,, where [, is a sequence of positive numbers
such that ¢, = 0 as n = . Assume that D; have been constructed for i < n, and define
D,. €5 by D,., CD,and 6,(D,.,) = (D)) + &,. Such sets exist by the definition of dq.
By our previous remarks on &, we deduce that the intersection of (D,) is a nonempty element
of F. Denote this intersection by C. Let us assume that C is not reduced to a single point. Since
C satisfies all the hypotheses of lemma 3.4, there exists C* in F, contained in C, such that

(++) 3,(C*) = 271(3,(C) + R,(C)).

We have 5,(C*) < d,(C) = 8,(Dys1) < 60(Dy) + &4 for all n € N. By the definition of &, we
also have &o(D,) < 6,(C*). Since n is arbitrary and ¢, tends to 0 as n — o, we deduce that
6,(C*) = 9,(C). Then the inequality (++) implies that J,(C) < R,(C), a contradiction.
Consequently, C is reduced to a single point which is then a fixed point for T.

Following [15], we say that a positive o-finite measure x4 on £ (finite on @) is absolutely
continuous with respect to the function modular p (u <€ p) if u(A) = 0 for any p-null set A
(recall that A4 is p-null if p(ce14) = 0 for all « > 0). For every mapping T: B — B, F(T) denotes
the set of all fixed points of T.

Using a similar technique to that used in [8], we can prove the following result.

THEOREM 3.6. Let p have the Fatou property and let u be a o-finite measure on ¥. Suppose that
a p-bounded, (p-a.e.)-closed B C L, is compact in the sense of convergence in measure on
sets of finite measure and B has p-normal structure. Then any commutative family of
p-nonexpansive self-mappings of B has a common fixed point.

The rest of the paper is devoted to some special cases and examples that show possible
applications of theorems 3.5 and 3.6. We will start with an analog of the Brodskii-Milman
theorem. First, we have to prove the following technical result.

LemMa 3.7. Let p be a convex function modular and B be a convex, p-bounded subset of L,.
Assume that B is p-diametral and not reduced to a single point. Then B contains a p-diametral
sequence. More precisely, if B is p-diametral, then there exists a sequence [ f,} in B such that

( - n—jr—l>5,,(3) < dist,(fys1, cONV(S; 1 1 < i < 1) < G,(B).

Proof. Since B is p-diametral, r,(f, B) = J,(B) for any f € B. Therefore, for each ¢ > 0, we
can find a function g, € B such that (I — £)J,(B) < p(f — &) Fix an arbitrary f; € B. Then
there exists f, € B such that p(f, — f2) = (1 — $)8,(B). Since B is convex, 1(fy + f>) belongs
to B, and therefore we can find f; € B such that pEUfi+f))-f)=0 -~ 4)0,(B). Thus we
can inductively construct a sequence { f,) of elements of B such that

fl+f2+'”+fn = _ 1
1) P< n+l 7 > . <1 Gt 17 1)2>5p(3)-

Let geconv(f;; 1 <i<n). Theng = L;cna.f;, witha; = 0 and Yia; =1




950 M. A. KHAMsI ef al.

Note that (1/n) ¥7_, fi = (I/na)g + Yi-1((1/n) - (o;/na))f;, where o = max{e;]. Since
(1/n) - (;/na) = 0 and Y1, ((1/n) — (a;/na)) + (1/ne) = 1, we have

l n 1 N 1 n
;_"p(g_fn+l)+ Z <__’;i;)p(fi—fn+l)2p< E .fi_fn+1>‘

i=1\" ni=

By (#) we get
1 n 1 «; no
ap(g —fa)+ X (‘ = —>5p(3) = (1 - m)Jp(B)-

i=1\1 no
By simple arithmetic we then obtain {l — [na/(n + 1)2]}6,,(3) < p(g ~ fas1)- Since an <
n + 1and o, ..., a, are arbitrary, we obtain the desired inequality.

THEOREM 3.8. Let p be a convex function modular and let B be convex and compact in the sense
of the norm || [lp. If B is p-bounded and not reduced to a single point, then B contains a
p-nondiametral point.

Proof. Assume to the contrary that B is p-diametral. By lemma 3.7, B contains a p-
diametral sequence (f,). Since B is | -[|,-compact, there exists a subsequence {f,] which is
|-l ,~convergent to f € B. We have

P Sy = Sm) =pQUp =N+ 0QUm — SN0 asn’,m — .
On the other hand, if n' < m' we have
diStp(fm’ ] COHV(_f,‘ i< ml)) = p(fm' - fn’)'

Since dist, (f,,r , conv(f;: i < m")) = 8,(f;) as m' — oo, this contradicts the fact that §,(f;) > 0
(see definition 3.2(c)).

We can obtain more interesting examples of sets with p-normal structure if we use a
“‘uniform convexity’’ concept for function modulars. This is not surprising because of the well
known connection between normal structure and uniform convexity in Banach spaces
[10, 11, 24].

Some authors generalized the notions of normal structure and uniform convexity to metric
spaces [9, 11, 20], but there had been no concrete examples until the paper by Goebel ef al. [5]
(for more information see Goebel and Reich [4]).

We will define uniform convexity of function modulars, will prove that uniform convexity of
p implies p-normal structure and give a concrete example of a uniformly convex function
modular.

Definition 3.9.
(a) For any nonzero u € L, and r > 0, we define the r-modulus of uniform convexity of p in

the direction of u to be:
1 /.1
or,u) = inf{l - —p(f+ —u>} s
r 2

where the infimum is taken over all f € L, such that p(f) < rand p(f + u) < r.
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(b) We say that a convex function modular p is uniformly convex in every direction
(U.C.E.D.) if &(r, u) > 0 for every nonzero u € L, and all r > 0.
(c) We say that p is uniformly convex (U.C.) if for each ¢ > 0 and r > 0,

inf(d(r, u): u € L, and p(u) = re} > 0.

Note the formal similarity of our definition to the relevant concept introduced for metric
spaces [4, 5]. Musielak {18, definition 11.5] defined uniform convexity for modulars in exactly
the same way as for norms. Such a concept of uniform convexity does not seem to be an
appropriate tool for dealing with p without the A,-condition, which is of particular interest to
us (see example 3.11 below).

ProposiTioN 3.10. Let p be a U.C.E.D. function modular, and let B C L, be star-shaped,
p-bounded and not reduced to a single point. Then B has a p-nondiametral point.

Proof. Let f be a center of B. Take any g € B, with g # f and put ¢ = Jp(B)"p(%(f - 2).
Observe that 0 < ¢ < o, because f # g and B is p-bounded and not reduced to a single point.
Let us fix temporarily any he B and set u=f—g, w=g—h and r = d,(B). Then
p(w) = p(g — h) < rand p(w + u) = p(f — h) < r. In view of the U.C.E.D. of p, we have then

pw + tuy) = H(1 = 6(r,w)), i€ p<%§ - h> < (1 - &(r, ).

Hence, sup pl((f + g)/2) — h] < 0,(B)(1 — &(r,u)) and since o(r,u) > 0, the function
(f + g)/2 is not a p-diametral point.

Example 3.11.
(i) Let us recall that a nonnegative, real function ¢ is said to be strictly convex (S.C.) if for

u # v there holds

v+ v o) + o(v)
o)<y

(i) Similarly, we can say that a convex function modular p is S.C. if f = g whenever
p(f) = p(g) and

<f+q _p(f) + p(g)
A2 ) 2

(iii) A convex function g is called uniformly convex (U.C.) if for every a € (0, 1), there exists
d(a) € (0, 1) such that:

(1 + b) o(u) + p(bu)
N2

s(l—é(a))f foreveryu >0and 0 < b < a.

Let @: R — [0, ) be an even, continuous and convex function such that ¢(0) = 0 and
o(u)/u — o as u — =, Let us consider the Orlicz space L*, i.e. the modular function space
determined by the function modular:

pe(f) = S P(f(x)) dm(x).
R
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One can prove (cf. [7]) that p, is U.C.E.D. if and only if ¢ is S.C. (as a matter of fact, this is
also equivalent to the strict convexity of p,). We also know that the uniform convexity of
the Orlicz modular p, is equivalent to the very convexity of ¢. (Recall that a function ¢ is said
to be very convex (V.C.) if for each £ > 0, there exists 6 > 0 such that d((x + v)/2) <
(1 — e(w) + (v)/2 whenever p((u — v)/2) = e(p(u) + P(v))/2.)

Using theorem 3.5 and ihe above remarks one can easily prove the following result.

ProPosITION 3.12. Let L? be an Orlicz space with ¢ S.C. Assume that B C L? is star-shaped,
p-bounded, (p-a.e.)-closed and compact in the sense of convergence in measure. If 7: B € B is
p-nonexpansive, then F(T) # J.

It is clear that ¢ is S.C. if ¢ is V.C. (the converse is not true). It was also proved that ¢ is V.C.
if and only if p is U.C. (cf. [7]). As an example of a very convex Orlicz function one can take
o(u) = e™ — |u| - 1. Proposition 3.10 shows an advantage of our theory in comparison with
the fixed point results in the norm sense, since it was proved by Kaminska {[6], that the
Luxemburg norm in L? is U.C. if and only if ¢ is U.C. and verifies the A,-condition. Thus for
@ without A, (e.g. o(u) = e — |u] - 1) we cannot use the classical results in order to obtain
fixed points of norm nonexpansive mappings. Let us also recall that the A,-condition is also
necessary for the strict convexity of the Luxemburg norm [25], and for uniform convexity of
L* with the Orlicz norm (see e.g. [18]). Using different methods, Lami Dozo and Turpin [16]
obtained a similar result to our proposition 3.11 for the case of Musielak-Orlicz spaces. Instead
of strict convexity of ¢ they assumed some growth condition and B C L§ was assumed to
satisfy a stronger kind of p-boundedness (sup{p(A(f — g)):f, g € B} < o for some 1 > 1).
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