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(Communicated by David R. Larson)

Abstract. It is shown that a set-valued mapping T ∗ of a hyperconvex metric
space M which takes values in the space of nonempty externally hyperconvex
subsets of M always has a lipschitzian single valued selection T which satisfies
d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y)) for all x, y ∈M . (Here dH denotes the usual
Hausdorff distance.) This fact is used to show that the space of all bounded
λ-lipschitzian self-mappings of M is itself hyperconvex. Several related results
are also obtained.

1. Introduction

Hyperconvex spaces are of interest for a number of reasons. In [1] it is shown
that a metric space is hyperconvex if and only if it is injective. (A metric space
H is injective if given metric spaces M and N with M a subspace of N and a
nonexpansive mapping f : M → H, there exists a nonexpansive extension f̃ of f
such that f̃ : N → H.) Since it is known that every metric space has an injective
hull [4], it follows that every metric space is isometric with a subspace of a (minimal)
hyperconvex superspace. Also it is known that a real Banach space is hyperconvex
if and only if it is isometrically isomorphic to a space of continuous real-valued
functions defined on a stonian space. Thus hyperconvex Banach spaces include the
L∞ spaces. (See, e.g., [3], [4], [5], [8] for classical results.)

This paper focuses on external hyperconvexity, a concept which was also in-
troduced by Aronszajn and Panitchpakdi in their fundamental paper [1]. Our
main result, which extends the principal result of Sine [12], yields the fact that a
lipschitzian set-valued mapping of a hyperconvex metric space into itself, taking
externally hyperconvex values, always has a single valued selection which is lips-
chitzian for the same constant. This is used to show that the family of all bounded
λ-lipschitzian mappings of a hyperconvex space into itself is itself hyperconvex. It
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is also shown that if the set-valued mapping is nonexpansive, then a nonexpan-
sive selection exists which has precisely the same fixed point set. Several related
intersection theorems and fixed point theorems are also obtained.

We begin by describing the relevant notation and terminology. For a subset A
of a metric space M we use Nε(A) to denote the closed ε-neighborhood of A. Thus

Nε(A) = {x ∈M : dist(x,A) ≤ ε}.

An admissible subset of M is a set of the form⋂
i

B(xi; ri)

where {B(xi; ri)} is a family of closed balls centered at points xi ∈M with respec-
tive radii ri. The paper focuses on the following two fundamental concepts.

Definition 1. A metric space M is said to be hyperconvex if given any family
{xα} of points of M and any family {rα} of real numbers satisfying

d(xα, xβ) ≤ rα + rβ

it is the case that
⋂
αB(xα; rα) 6= ∅.

Definition 2. A subset E of a metric space M is said to be externally hyperconvex
(relative to M) if given any family {xα} of points in M and any family {rα} of real
numbers satisfying

d(xα, xβ) ≤ rα + rβ and dist(xα, E) ≤ rα

it follows that
⋂
αB(xα; rα) ∩ E 6= ∅.

The fundamental result of [1] asserts that a metric space M is hyperconvex if
and only if it is injective. Thus M is hyperconvex if given any two metric spaces X
and Y with Y a subspace of X, and any nonexpansive mapping f : Y → M, then
f has a nonexpansive extension f̃ : X → M. Basic results about injective metric
spaces can be found in [4]. (Also see [14].)

Regarding externally hyperconvex spaces, it is shown in [1] that any admissible
subset of a hyperconvex space M is externally hyperconvex relative to M, and
that the externally hyperconvex subsets of M are proximinal in M (thus if H is
externally hyperconvex in M and if x ∈ M , then there exists h ∈ H such that
d(x, h) = dist(x,H)). This fact is used below in the proof of Theorem 1. (It is
known [6] that a hyperconvex subset of M need not be proximinal in M.)

In what follows we use A(M) to denote the family of all nonempty admissible
subsets of M and E(M) to denote the family of all nonempty bounded subsets of
M which are externally hyperconvex, in both instances endowed with the usual
Hausdorff metric dH . Recall that the distance between two closed subsets A,B of
a metric space in the Hausdorff sense is given by

dH(A,B) = inf{ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}.

It is well known (and easy to see) that an admissible subset of a hyperconvex
space is itself hyperconvex.
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2. Main results

Our main result is the following selection theorem. Using a different method,
Sine [12] (Theorem 1) obtained this result in the special case T ∗ : H → A(H) with
T ∗ nonexpansive.

Theorem 1. Let H be a hyperconvex metric space, let S be any set, and let T ∗ :
S → E(H). Then there exists a mapping T : S → H for which T (x) ∈ T ∗(x) for
each x ∈ S and for which d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y)) for each x, y ∈ S.

Proof. Let F denote the collection of all pairs (D,T ), where D ⊆ S, T : D → H,
T (d) ∈ T ∗(d) ∀ d ∈ D, and d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y)) for each x, y ∈ D.

Notice that F 6= ∅ since ({x0}, T ) ∈ F for any choice of x0 ∈ S and T (x0) ∈
T ∗(x0). Define an order relation on F by setting

(D1, T1) � (D2, T2)⇔ D1 ⊂ D2 and T2 |D1 = T1.

Let {(Dα, Tα)} be an increasing chain in (F,�) . Then it follows that (
⋃
αDα, T ) ∈ F

where T |Dα = Tα. By Zorn´s Lemma, (F,�) has a maximal element, say (D,T ) .
Assume D 6= S and select x0 ∈ S\D. Set D̃ = D ∪ {x0} and consider the set

J =
⋂
x∈D

B(T (x); dH(T ∗(x), T ∗(x0))) ∩ T ∗(x0).

Since T ∗(x0) ∈ E(H) for each x0 ∈ S, J 6= ∅ ⇔ for each x ∈ D
dist(T (x), T ∗(x0)) ≤ dH(T ∗(x), T ∗(x0)).

Also, since T ∗(x0) is a proximinal subset of H, the above is true ⇔ for each x ∈ D,
B(T (x); dH(T ∗(x), T ∗(x0))) ∩ T ∗(x0) 6= ∅.

By the definition of Hausdorff distance for each ε > 0

T ∗(x) ⊂ NdH(T∗(x),T∗(x0))+ε(T ∗(x0)).

However by assumption T (x) ∈ T ∗(x), so it must be the case that for each ε > 0,

B(T (x); dH(T ∗(x), T ∗(x0)) + ε) ∩ T ∗(x0) 6= ∅.
Since T ∗(x0) is proximinal in H, this in turn implies

B(T (x); dH(T ∗(x), T ∗(x0))) ∩ T ∗(x0) 6= ∅.
Thus we conclude J 6= ∅. Choose y0 ∈ J and define

T̃ (x) =
{

y0 if x = x0;
T (x) if x ∈ D.

Since

d(T̃ (x0), T̃ (x)) = d(y0, T (x)) ≤ dH(T ∗(x), T ∗(x0)),

we conclude that (D∪{x0}, T̃ ) ∈ F, contradicting the maximality of (D,T ). There-
fore D = S.

Corollary 1. Let H be a hyperconvex metric space, let (M,ρ) be a metric space,
and suppose T ∗ : M → E(H) is nonexpansive in the sense:

dH(T ∗(x), T ∗(y)) ≤ ρ (x, y) for each x, y ∈M.

Then there exists a nonexpansive mapping T : M → H for which T (x) ∈ T ∗ (x)
for each x ∈M.
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Proof. If T ∗ is nonexpansive, then the selection T assured by Theorem 1 is as
well.

Corollary 2. Let H be bounded and hyperconvex, and suppose T ∗ : H → E(H)
is nonexpansive. Then T ∗ has a fixed point, that is, there exists x ∈ H such that
x ∈ T ∗(x).

Proof. The existence of a fixed point for the nonexpansive selection T of T ∗ follows
from the well-known fixed point theorem of Sine [10] and Soardi [13].

In the following theorem Fix(T ∗) = {x ∈ H : x ∈ T ∗(x)}. Corollary 2 implies
Fix(T ∗) 6= ∅ if H is bounded.

Theorem 2. Let H be hyperconvex, let T ∗ : H → E(H) be nonexpansive and
suppose Fix(T ∗) 6= ∅. Then there exists a nonexpansive mapping T : H → H with
T (x) ∈ T ∗(x) for each x ∈ H and for which Fix(T ) = Fix(T ∗).

Proof. Let F denote the collection of all pairs (D,T ), where D ⊃ Fix(T ∗), T : D →
H, T (d) ∈ T ∗(d) for all d ∈ D, T (x) = x for all x ∈ Fix(T ∗), and d(T (x), T (y)) ≤
d(x, y) for all x, y ∈ D. By assumption (Fix(T ∗), Id) ∈ F, so F 6= ∅. The argument
is now a simple modification of the proof of Theorem 1. Define an order relation
on F by setting

(D1, T1) � (D2, T2)⇔ D1 ⊂ D2 and T2 |D1 = T1.

Let {(Dα, Tα)} be an increasing chain in (F,�) . Then it follows that (
⋃
αDα, T ) ∈ F

where T |Dα = Tα. By Zorn´s Lemma, (F,�) has a maximal element, say (D,T ) .
Assume D 6= H and select x0 ∈ H\D. Set D̃ = D ∪ {x0} and consider the set

J =
⋂
x∈D

B(T (x); d(x, x0)) ∩ T ∗(x0).

Since T ∗(x0) ∈ E(H) for each x0 ∈ H , J 6= ∅ ⇔ for each x ∈ D,

dist(T (x), T ∗(x0)) ≤ d(x, x0).

Also, since T ∗(x0) is a proximinal subset of H, the above is true ⇔ for each x ∈ D,
B(T (x); d(x, x0)) ∩ T ∗(x0) 6= ∅.

Using the definition of Hausdorff distance and the fact that T ∗ is nonexpansive, for
each ε > 0

T ∗(x) ⊂ NdH(T∗(x),T∗(x0))+ε(T ∗(x0)) ⊂ Nd(x,x0)+ε(T ∗(x0)).

However by assumption T (x) ∈ T ∗(x), so it must be the case that for each ε > 0,

B(T (x); d(x, x0) + ε) ∩ T ∗(x0) 6= ∅.
Since T ∗(x0) is proximinal in H, this in turn implies

B(T (x); d(x, x0)) ∩ T ∗(x0) 6= ∅.
Thus we conclude J 6= ∅. Choose y0 ∈ J and define

T̃ (x) =
{

y0 if x = x0;
T (x) if x ∈ D.

Since

d(T̃ (x0), T̃ (x)) = d(y0, T (x)) ≤ d(x, x0),
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we conclude that (D∪{x0}, T̃ ) ∈ F, contradicting the maximality of (D,T ). There-
fore D = H.

This in turn gives Corollary 3 of [12].

Corollary 3. Let H be hyperconvex, let T ∗ : H → E(H) be nonexpansive, and
suppose Fix(T ∗) 6= ∅. Then Fix(T ∗) is hyperconvex.

Proof. The same conclusion holds for nonexpansive T : H → H.

In view of Corollary 3 Fix(T ∗) is a nonexpansive retract of H, and an approach
of Lin and Sine [9] can be used to show that a retraction R of H onto Fix(T ∗)
exists which commutes with the selection T of Theorem 2.

Theorem 1 also yields a set-valued ‘Schauder’ theorem.

Corollary 4. Let H be compact and hyperconvex, and suppose T ∗ : H → E(H) is
continuous. Then T ∗ has a fixed point.

As another application of Theorem 1 we show that the family of all bounded
λ-lipschitzian functions of a hyperconvex space M into itself is itself hyperconvex.
For two such functions we define distance in the usual way, that is, if f, g : M →M,
set

d(f, g) = sup
x∈M

d(f(x), g(x)).

For this result we also need the following lemma due to R. Sine [11].

Lemma 1. If M is hyperconvex and if D =
⋂
αB(zα; rα), then for any ρ > 0

Nρ(D) =
⋂
α

B(zα; rα + ρ).

Theorem 3. Let M be hyperconvex and for λ > 0 let Fλ denote the family of
all bounded λ-lipschitzian functions of M into M. Then Fλ is itself a hyperconvex
space.

Proof. Suppose {fα} ⊂ Fλ and {rα} ⊂ R satisfy d(fα, fβ) ≤ rα+ rβ . Then for each
x ∈M

d(fα(x), fα(x)) ≤ rα + rβ ,

so in view of the hyperconvexity of M

J(x) :=
⋂
α

B(fα(x); rα) 6= ∅.

We show that dH(J(x), J(y)) ≤ λd(x, y) for each x, y ∈ M. To see this it clearly
suffices to show that for each x, y ∈M

J(x) ⊂ Nλd(x,y)(J(y)).

However if z ∈ J(x), then for each α

d(z, fα(y)) ≤ d(z, fα(x)) + d(fα(x), fα(y))

≤ d(z, fα(x)) + λd(x, y)

≤ rα + λd(x, y).

Using Sine’s Lemma we now have

z ∈
⋂
α

B(fα(y); rα + λd(x, y)) = Nλd(x,y)(J(y)).
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In view of Theorem 1 it is possible to select f(x) ∈ J(x) for each x ∈ M so that
f ∈ Fλ. Since f ∈

⋂
αB(fα; rα), Fλ is hyperconvex.

This leads to the following.

Corollary 5. Let M be a bounded hyperconvex metric space and let f ∈ F1. Then
the family

R := {r ∈ F1 : r(M) ⊂ Fix(f)}

is a nonexpansive retract of F1.

Proof. The mapping Tf : F1 → F1 defined via the formula Tf (g) = f ◦ g is nonex-
pansive and has a nonempty fixed point set which is a nonexpansive retract of F1

([2]). However, r ∈ fix(Tf)⇔ r ∈ R.

We conclude this section with the following observation.

Proposition 1. Let M be a hyperconvex metric space and suppose A is an exter-
nally hyperconvex subset M. Then Nε(A) is externally hyperconvex (in M) for each
ε > 0.

Proof. Let {xα} ⊂M and {rα} ⊂ R satisfy d(xα, xβ) ≤ rα+rβ and dist(xα, Nε(A))
≤ rα. The latter inequality implies dist(xα, A) ≤ rα + ε. Since A is externally
hyperconvex, this in turn implies

A ∩
(⋂

α

B(xα; rα + ε)

)
6= ∅.

By Sine’s Lemma ⋂
α

B(xα; rα + ε) = Nε(
⋂
α

B(xα; rα));

thus

A ∩Nε(
⋂
α

B(xα; rα)) 6= ∅.

Therefore

Nε(A) ∩ (
⋂
α

B(xα; rα) 6= ∅

and we conclude that Nε(A) is externally hyperconvex in M.

3. Hyperconvex intersections

While the intersection of two admissible subsets of a given hyperconvex space is
again admissible, in general it is not the case that the intersection of two hyper-
convex subspaces of a hyperconvex space is itself hyperconvex, even if one of them
is admissible. However the following is true.

Lemma 2. Let H be a hyperconvex metric space. Suppose E ⊂ H is externally
hyperconvex relative to H and suppose A is an admissible subset of H. Then E ∩A
is externally hyperconvex relative to H.
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Proof. Suppose {xα} and {rα} satisfy d(xα, xβ) ≤ rα+rβ and dist(xα, E∩A) ≤ rα.
Since A is admissible, A =

⋂
i∈I B(xi; ri), and since B(xα; rα) ∩ A 6= ∅, it follows

that d(xα, xi) ≤ rα + ri for each i ∈ I. Also, since A ⊂ B(xi; ri), it follows that
dist(xi, E ∩ A) ≤ ri and that d(xi, xj) ≤ ri + rj for each i, j ∈ I. Therefore by
external hyperconvexity of E

(
⋂
i

B(xi; ri)) ∩ (
⋂
α

B(xα; rα)) ∩ E =
⋂
α

B(xα; rα) ∩ (A ∩ E) 6= ∅.

This leads to the following.

Theorem 4. Let {Hi} be a descending chain of nonempty externally hyperconvex
subsets of a bounded hyperconvex space H. Then

⋂
iHi is nonempty and externally

hyperconvex in H.

Proof. A result of Baillon [2] assures that D :=
⋂
iHi 6= ∅. To see that D is ex-

ternally hyperconvex let {xα} ⊂ H and {rα} ⊂ R satisfy d(xα, xβ) ≤ rα + rβ and
dist(xα, D) ≤ rα. Since H is hyperconvex, we know that A :=

⋂
αB(xα; rα) 6= ∅.

Also, since dist(xα, D) ≤ rα, we have dist(xα, Hi) ≤ rα for each i; so by external
hyperconvexity of Hi we conclude A ∩Hi 6= ∅ for each i. By Lemma 2 {A ∩Hi}
is a descending chain of nonempty hyperconvex subsets of H, so again by [2]⋂
i(A ∩Hi) = A ∩D 6= ∅.

Another consequence of Lemma 2 provides yet further evidence of the ubiquitous
nature of hyperconvexity.

Theorem 5. Let H be a hyperconvex metric space and suppose T ∗ : H → E(H).
Then the family S(T ∗), consisting of all mappings T : H → H for which T (x) ∈
T ∗(x) and d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y)) for each x, y ∈ H, is hyperconvex.

Proof. Suppose {Tα} ⊂ S(T ∗) and {rα} satisfy d(Tα, Tβ) ≤ rα + rβ . Then since
T ∗(x) is hyperconvex,

J(x) := (∩αB(Tα(x); rα)) ∩ T ∗(x) 6= ∅

for each x ∈ H. Moreover, by Lemma 2, J(x) ∈ E(H). Therefore by Theo-
rem 1 the mapping x 7−→ J(x) has a selection T which satisfies d(T (x), T (y))
≤ dH(T ∗(x), T ∗(y)) for each x, y ∈ H. Thus T ∈

⋂
αB(Tα; rα) ∩ S(T ∗).

In [7] it is shown that a complete metric space M is hyperconvex and has unique
metric segments if and only if it is an R-tree. Using this it is easy to see that
the intersection of two hyperconvex subspaces of a hyperconvex space is always
hyperconvex if the underlying space has unique metric segments. This fact yields
the following result.

Theorem 6. Suppose M is a hyperconvex metric space which has unique metric
segments, and suppose H is a bounded hyperconvex subspace of M . Then any
nonexpansive mapping T : H →M which satisfies

inf{d(x, T (x)) : x ∈ H} = 0

always has a fixed point.
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Proof. Since M is hyperconvex, T has a nonexpansive extension T̃ : M →M. Let

Fn := {x ∈M : d(x, T̃ (x)) ≤ 1/n}, n = 1, 2, · · ·.
It is known [11] that each of the sets Fn is a hyperconvex subspace of M, and
clearly Hn := Fn ∩H 6= ∅ for each n. Since H has unique metric segments, Hn is
hyperconvex, so

⋂∞
n=1Hn 6= ∅ ([2]). Clearly each point of

⋂∞
n=1Hn is a fixed point

of T.

We conclude this section with a simple observation about admissible sets which
is another easy consequence of Sine’s Lemma.

Proposition 2. Suppose M is hyperconvex, and let U =
⋂
i∈I B(xi; ri) and V =⋂

i∈I B(yi; ri). Then

dH(U, V ) ≤ sup{d(xi, yi) : i ∈ I}.
Proof. Let ρ := sup{d(xi, yi) : i ∈ I} and let x ∈ U. Then

d(x, yi) ≤ d(x, xi) + d(xi, yi) ≤ ri + ρ.

Thus

x ∈
⋂
i

B(yi; ri + ρ) = Nρ(
⋂
i

B(yi; ri)) = Nρ(V )

and we conclude U ⊂ Nρ(V ). Reversing the roles of U and V gives the conclusion.

4. Examples

It might be interesting to note that Theorem 6 fails without the assumption of
unique metric segments, even if H is an admissible set.

Example 1. Let B denote the unit ball in `∞ and let H = B(z1; 1) ∩ B(z2; 1)
where

z1 = (1, 0, 0, · · ·) and z2 = (−1, 0, 0, · · ·).
Let x = (0, x2, x3, · · ·) ∈ H and define T : H → B by the formula

T (x) = (1− sup
2≤i<∞

(1 − 1
i
) |xi| , (1−

1
2

)x2, · · ·, (1−
1
n

)xn, · · ·).

Then T is both nonexpansive and fixed point free. However, if en denotes the
standard unit vector basis, then

‖en − T (en)‖ =
1
n
, n = 2, 3, · · ·.

Several facts about externally hyperconvex subsets can easily be deduced from
simple examples in R2

∞. As we mentioned earlier, it is shown in [1] that every ad-
missible subset of a hyperconvex space is externally hyperconvex. It is not difficult
to show that an externally hyperconvex subset of R2

∞ is necessarily an admissible
subset of R2

∞. However it is easy to see that an externally hyperconvex subset of a
hyperconvex space need not always be admissible.

Example 2. Let H be the solid rectangle in R2
∞ with corners (±2,±1), and let

E be the line interval [−2, 2]. Then E is externally hyperconvex relative to H but
E is not an admissible subset of H (although clearly E is an admissible subset of
R2
∞). Notice that H itself is hyperconvex because it is an admissible subset of the

hyperconvex space R2
∞.
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The following example exhibits another curious property of external hypercon-
vexity.

Example 3. Let H = {(x, x) : 0 ≤ x ≤ 1}. Then H is not externally hyperconvex
relative to R2

∞. On the other hand, H is externally hyperconvex relative to H ∪
{(1, 0)}.
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