HOLOMORPHIC RETRACTS IN B_H^{∞}

MONIKA BUDZYŃSKA AND MOHAMED A. KHAMSI

ABSTRACT. In this paper we show that the common fixed point set of a commuting family of holomorphic mappings in B_H^{∞} is either empty or a holomorphic retract.

1. INTRODUCTION

In the case of reflexive spaces P. Mazet and J.-P. Vigué ([34], [35]) obtained a retraction onto the fixed point set of a holomorphic self-mapping by using standard methods of complex analysis. They also showed that their approach fails in the case of the open ball in l^{∞} . However, it is known that if B_H^{∞} is the open unit ball in a Cartesian product of infinitely many Hilbert spaces furnished with the sup norm and f is a holomorphic $(k_{B_H^{\infty}}$ -nonexpansive) self-mapping of B_H^{∞} with a nonempty fixed point set Fix(f), then this set Fix(f) is a holomorphic $(k_{B_H^{\infty}}$ -nonexpansive) retract of B_H^{∞} . More generally, if we have a finite family of commuting $(k_{B_H^{\infty}}$ -nonexpansive) holomorphic self-mappings of B_H^{∞} with a nonempty common fixed point set, then this set is also a holomorphic $(k_{B_H^{\infty}}$ nonexpansive) retract of B_H^{∞} ([32], see also [31]). Let us observe that in the case of the open unit ball B_H^n in a finitely many Hilbert spaces furnished with the max-norm the common fixed point set of every commuting family of holomorphic $(k_{B_H^n}$ -nonexpansive) mappings in B_H^n is either empty or a holomorphic retract and for each finite family of commuting holomorphic $(k_{B_H^n}$ -nonexpansive) self-mappings of B_H^{∞} with fixed points their common fixed point set is nonempty.

Recently, the first author and T. Kuczumow showed, that if \mathcal{F} is a countable family of holomorphic $(k_{B_{H}^{\infty}}$ -nonexpansive) commuting self-mappings of B_{H}^{∞} with a nonempty common fixed point set $\operatorname{Fix}(\mathcal{F})$, then the set $\operatorname{Fix}(\mathcal{F})$ is a $k_{B_{H}^{\infty}}$ -nonexpansive retract of B_{H}^{∞} [8]. In this paper we present the general result of this type: if \mathcal{F} is a family of holomorphic $(k_{B_{H}^{\infty}}$ -nonexpansive) commuting self-mappings of B_{H}^{∞} with a nonempty common fixed point set $\operatorname{Fix}(\mathcal{F})$, then the set $\operatorname{Fix}(\mathcal{F})$ is a holomorphic $(k_{B_{H}^{\infty}}$ -nonexpansive) retract of B_{H}^{∞} .

2. Preliminaries

In this paper we consider complex Banach spaces. Let B_H denote the open unit ball of a complex Hilbert space $(H, (\cdot, \cdot))$. This ball is called the Hilbert ball. Let k_{B_H} denote the Kobayashi distance on B_H ([24], [25]). We have the following explicit formula for the Kobayashi distance k_{B_H} on B_H

$$k_{B_H}(x,y) = \operatorname{arg tanh} \left(1 - \sigma\left(x,y\right)\right)^{\frac{1}{2}},$$

1

¹⁹⁹¹ Mathematics Subject Classification. 32A10, 46G20, 47H09, 47H10.

Key words and phrases. Fixed points, holomorphic mappings, k_B^{α} -nonexpansive mappings, retracts.

where $x, y \in B_H$ and

$$\sigma(x,y) = \frac{\left(1 - \|x\|^2\right)\left(1 - \|y\|^2\right)}{\left|1 - (x,y)\right|^2}$$

([17], see also [11], [16] and [31]).

The metric space (B_H, k_{B_H}) has the following very useful properties:

(i) The Kobayashi distance k_{B_H} is locally equivalent to the norm $\|\cdot\|$ in H ([11], [14], [16], [18], [20], [31]);

(ii) Each ball in (B_H, k_{B_H}) is convex ([16], [17], [33], [31]);

(ii) The metric space (B_H, k_{B_H}) is locally linearly uniformly convex, i.e., for each $z \in B_H$, R > 0 and $0 < \epsilon < 2$ we have

$$\begin{cases} k_{B_H}(z,x) \le R\\ k_{B_H}(z,y) \le R\\ k_{B_H}(x,y) \ge \epsilon R \end{cases} \Rightarrow \left(z, \frac{1}{2}x + \frac{1}{2}y\right) \le \left(1 - \delta_0\left(z, R, \epsilon\right)\right) R$$

and

$$\delta(R_1, R_2, R_3, \epsilon_1, \epsilon_2) = \inf \{\delta_0(z, R, \epsilon) : \epsilon_1 \le \epsilon \le \epsilon_2, \|z\| \le R_1, R_2 \le R \le R_3\} > 0$$

for all $0 < R_1$, $0 < R_2 \le R_3$ and $0 < \epsilon_1 \le \epsilon_2 < 2$ ([28], see also [7]).

(iv) If $\{x_{\lambda}\}_{\lambda \in I}$ and $\{y_{\lambda}\}_{\lambda \in I}$ are nets in B_H which are weakly convergent to x and y respectively, $x, y \in B_H$, then

$$k_{B_H}(x,y) \leq \liminf_{\lambda} k_{B_H}(x_{\lambda},y_{\lambda}),$$

i.e., the Kobayashi distance is lower semicontinuous with respect to the weak topology in H ([27], see also [21] and [29]).

Now, let J be an infinite set of indices,

$$l^{\infty}(H) = \left\{ x = \{x_j\}_{j \in J} \in \prod_{j \in J} H : \sup_{j \in J} ||x_j|| < \infty \right\},\$$

and B_{H}^{∞} the open unit ball in $l^{\infty}(H)$ with the supremum norm.

The Kobayashi distance in B_H^{∞} is given by

$$k_{B_{H}^{\infty}}\left(x,y\right) = \sup_{j \in J} k_{B_{H}}\left(x_{j},y_{j}\right)$$

and is locally equivalent to the norm ([32], see also [31]).

Now let us recall that a mapping $f: B^{\infty}_{H} \to B^{\infty}_{H}$ is $k_{B^{\infty}_{H}}$ -nonexpansive if

$$k_{B_{H}^{\infty}}\left(f(x), f(y)\right) \le k_{B_{H}^{\infty}}\left(x, y\right)$$

for all $x, y \in B_H^{\infty}$. Each holomorphic self-mapping $f : B_H^{\infty} \to B_H^{\infty}$ is $k_{B_H^{\infty}}$ -nonexpansive ([32]).

Fix (f) denotes the fixed point set of a self-mapping f of B_H^{∞} and Fix (\mathcal{F}) denotes the common fixed point set of a family \mathcal{F} of self-mappings of B_H^{∞} .

We need to recall here a few facts about holomorphic mappings.

Theorem 2.1. (Generalized Hartogs' Theorem) ([32], see also [2], [3], [10], [12] and [19]). Let X be a Banach space and D a nonempty open subset of X. If $f: D \longrightarrow l^{\infty}(H)$ is locally bounded, then the following statements are equivalent:

(i) $f = \{f_i\}$ is holomorphic;

(ii) each $f_j: D \longrightarrow H$ is holomorphic.

Theorem 2.2. ([32]). Let $f : B_H^{\infty} \to B_H^{\infty}$ be a holomorphic mapping. Then the following statements are equivalent:

(i) f has a fixed point;

(ii) there exists a ball B(x,r) in $(B_H^{\infty}, k_{B_H^{\infty}})$ which is f-invariant;

(iii) there exists an f-invariant, $k_{B_H^{\infty}}$ -bounded product $\prod_{j \in J} C_j$ of closed convex subsets

of B_H .

Remark 2.1. ([32]). One can observe that in contrast with the case of the open unit ball B_H , there exists in B_H^{∞} a holomorphic fixed-point-free self-mapping f with a $k_{B_H^{\infty}}$ -bounded iteration $\{f^k(x)\}$ for each x.

Now we quote a result due to T. Kuczumow, S. Reich, A. Stachura ([32]).

Theorem 2.3. If $f : B_H^{\infty} \to B_H^{\infty}$ is holomorphic $(k_{B_H^{\infty}}$ -nonexpansive), then Fix(f) is either empty or a holomorphic $(k_{B_H^{\infty}}$ -nonexpansive) retract of B_H^{∞} .

The following theorem is also known ([32], see also [31]).

Theorem 2.4. Suppose $f_1, ..., f_m$ are commuting $k_{B_H^{\infty}}$ -nonexpansive (holomorphic) selfmappings of B_H^{∞} such that $\bigcap_{j=1}^m Fix(f_j) \neq \emptyset$. Then $\bigcap_{j=1}^m Fix(f_j)$ is $k_{B_H^{\infty}}$ -nonexpansive (holomorphic) retract of B_H^n .

3. A Few facts from the metric fixed point theory

Let (M, d) be a metric space. B(x, r) will stand for the closed ball centered at $x \in M$ with the radius $r \ge 0$. For any nonempty bounded subset $A \subset M$, we set

$$r_x(A) = \sup\{d(x,a) : a \in A\}, \quad x \in M,$$

$$r(A) = \inf\{r_a(A) : a \in A\},$$

$$\delta(A) = diam(A) = \sup\{r_a(A) : a \in A\}$$

$$= \sup\{d(x,y) : x, y \in A\}$$

Recall that r(A) is called the Chebyshev radius of A [15]).

For a bounded set A of M, set

$$cov(A) = \bigcap \{ B(x,r) : x \in M, A \subset B(x,r) \}.$$

We will say that A is an admissible set if and only if A = cov(A), i.e. A is an intersection of closed balls. The family of all admissible subsets of M will be denoted by $\mathfrak{A}(M)$.

A family $\mathcal{S} \subset 2^M$ is called a convexity structure if

(i) $\emptyset, M \in \mathcal{S},$

(ii) $\{x\} \in \mathcal{S}$ for each $x \in M$,

(iii) \mathcal{S} contains the closed balls of M,

(iv) \mathcal{S} is closed under arbitrary intersections.

Let us observe that the smallest convexity structure is the family $\mathfrak{A}(M)$ of all admissible subsets of M.

We will say that a convexity structure \mathcal{S} of M is compact if each descending chain of nonempty sets in \mathcal{S} has nonempty intersection.

A convexity structure S is said to be normal if for each $A \in S$ we have either $\delta(A) = 0$ or $r(A) < \delta(A)$.

The crucial theorem in our next considerations is the following

Theorem 3.1. [23] Let (M, d) be a bounded metric space with a convexity structure $\mathfrak{A}(M)$ (i.e. the family of all admissible subsets of M). If $\mathfrak{A}(M)$ is compact and normal, then any commuting family \mathcal{F} of nonexpansive self-mappings of M has a common fixed point.

4. A common fixed point set of commuting holomorphic mappings in B_H^{∞}

We begin with the following simple observation.

Lemma 4.1. Let $G = \prod_{j \in J} G_j$ be a $k_{B_H^{\infty}}$ -bounded product of nonempty closed convex subsets

of B_H . Then the family $\mathfrak{A}(G)$ of all admissible sets in a metric space $(G, k_{B_H^{\infty}})$ is compact and normal.

Proof. It is sufficient to observe that each nonempty admissible set E in $(G, k_{B_H^{\infty}})$ is a product of nonempty closed convex subsets of B_H , which are weakly compact and that the metric space (B_H, k_{B_H}) is locally linearly uniformly convex.

Corollary 4.2. Let $G = \prod_{j \in J} G_j$ be a $k_{B_H^{\infty}}$ -bounded product of nonempty closed convex

subsets of B_H . If \mathcal{F} is a commuting family of $k_{B_H^{\infty}}$ -nonexpansive self-mappings of G, then \mathcal{F} has a common fixed point in G.

Proof. It is sufficient to apply Theorem 3.1.

Corollary 4.3. Let \mathcal{F} be a commuting family of $k_{B_H^{\infty}}$ -nonexpansive self-mappings of B_H^{∞} and let $G = \prod_{j \in J} G_j$ be a $k_{B_H^{\infty}}$ -bounded product of nonempty closed convex subsets of B_H which is \mathcal{F} -invariant. If \mathcal{F} has a common fixed point in B_H^{∞} , then \mathcal{F} has a common fixed point in G.

Proof. Let x be a common fixed point of \mathcal{F} in B_H^{∞} and B(x, r) a closed ball in $(B_H^{\infty}, k_{B_H^{\infty}})$. For sufficiently large r > 0 the set $\tilde{G} = G \cap B(x, r) \subset G$ is a nonempty, $k_{B_H^{\infty}}$ -bounded and \mathcal{F} -invariant product of closed convex subsets of B_H . By Corollary 4.2, \mathcal{F} has a common fixed point in \tilde{G} .

Now we are ready to prove the main theorem

Theorem 4.4. For any family \mathcal{F} of commuting holomorphic $(k_{B_{H}^{\infty}}$ -nonexpansive) selfmappings of B_{H}^{∞} with the nonempty common fixed point set $Fix(\mathcal{F})$, the set $Fix(\mathcal{F})$ is a holomorphic $(k_{B_{H}^{\infty}}$ -nonexpansive) retract of B_{H}^{∞} .

Proof. We will use the Bruck method ([4], [5]).

We prove this result only in the holomorphic case. Let

 $\mathcal{N}_{\infty} = \{g : g \text{ is a holomorphic self-mapping of } B^{\infty}_{H}, Fix(\mathcal{F}) \subset Fix(g)\}$

and let $x_0 = \{x_{0j}\} \in Fix(\mathcal{F})$ be fixed. We can observe that

$$\mathcal{N}_{\infty} \subset \prod_{x \in B_{H}^{\infty}} \prod_{j \in J} \left\{ y \in B : k_{B_{H}}\left(y, x_{0j}\right) \leq k_{B_{H}^{\infty}}\left(x, x_{0}\right) \right\} = \prod_{x \in B_{H}^{\infty}} \prod_{j \in J} C_{xj}$$

If in each C_{xj} we have the weak topology, then each C_{xj} is weakly compact and therefore, by Tychonoff's Theorem ([13], [22]), the product $\prod_{x \in B_H^{\infty}} \prod_{j \in J} C_{xj}$ is compact in the prod-

uct topology. Next, the set \mathcal{N}_{∞} is closed in the topology of coordinate pointwise weak convergence.

Now, we preorder \mathcal{N}_{∞} by setting $g \leq h$ if and only if

$$k_{B_{H}^{\infty}}\left(g\left(x\right),w\right) \leq k_{B_{H}^{\infty}}\left(h\left(x\right),w\right)$$

for all $w \in Fix(\mathcal{F})$ and $x \in B_H^{\infty}$ and we choose a descending chain $\{g_{\lambda}\}_{\lambda \in \Lambda} = \{\{g_{\lambda j}\}_{j \in J}\}_{\lambda \in \Lambda}$ in $(\mathcal{N}_{\infty}, \leq)$. By the compactness of $\prod_{x \in B_H^{\infty}} \prod_{j \in J} C_{xj}$, this chain $\{g_{\lambda}\}_{\lambda \in \Lambda}$ has a subnet $\{g_{\lambda'}\}_{\lambda' \in \Lambda'}$

for which Λ' is an ultranet ([1], [13], [22]). Hence we get

$$v - \lim_{\lambda'} g_{\lambda'j}(x) = g_j(x), \ x \in B^{\infty}_H \text{ and } j \in J.$$

The mapping $g = \{g_j\}_{j \in J}$ is holomorphic. By the weak lower semicontinuity of k_{B_H} the following inequalities are valid:

$$k_{B_{H}^{\infty}}\left(g\left(x\right),w\right) \leq \lim_{\lambda'}k_{B_{H}^{\infty}}\left(g_{\lambda'}\left(x\right),w\right)$$

 $\leq k_{B_{H}^{\infty}}\left(g_{\lambda}\left(x\right),w\right)$

for each $w \in Fix(\mathcal{F}), x \in B^{\infty}_{H}$ and $\lambda \in \Lambda$. This means that g is a lower bound of the chain $\{g_{\lambda}\}_{\lambda \in \Lambda}$ and therefore by the Kuratowski-Zorn Lemma, \mathcal{N}_{∞} contains a minimal element r. We claim that r is a retraction of B^{∞}_{H} onto Fix (\mathcal{F}) .

Suppose there exists $y \in B_H^\infty$ such that $r(y) \notin Fix(\mathcal{F})$. By minimality of r in \mathcal{N}_∞ and the inequality $r \circ r \leq r$ we get

$$k_{B_{H}^{\infty}}(r(y_{0}),w) = k_{B_{H}^{\infty}}(r(r(y)),r(r(w))) = k_{B_{H}^{\infty}}(r(y),r(w)) = k_{B_{H}^{\infty}}(y_{0},w) > 0$$

for $y_0 = r(y)$ and all $w \in Fix(\mathcal{F})$. Next, since for each $j \in J$, after interchanging *j*-coordinate functions between two arbitrarily chosen mappings from \mathcal{N}_{∞} , we also have a

mapping from \mathcal{N}_{∞} , and since $g, h \in \mathcal{N}_{\infty}$ and $0 \leq \beta \leq 1$ imply that $\beta g + (1 - \beta) h \in \mathcal{N}_{\infty}$ too, the set \mathcal{N}_{∞} is equal to $\prod_{j \in J} D_j$, where each D_j is convex and weakly compact. Let

$$C = \{ (g \circ r)(y_0) : g \in \mathcal{N}_{\infty} \}$$

Using the same arguments as above we see that C is $k_{B_H^{\infty}}$ -bounded and $C = \prod C_j$, where

each C_j is convex and weakly compact. Directly from the definitions of \mathcal{N}_{∞} , C and r we obtain that the set C is \mathcal{F} -invariant and hence by Corollary 4.3, $C \cap Fix(\mathcal{F}) \neq \emptyset$. We choose an arbitrary point $(g \circ r)(y_0) \in C \cap Fix(\mathcal{F})$. Then we get the contradiction

$$0 = k_{B_{H}^{\infty}} \left((g \circ r) (y_{0}), (g \circ r) (y_{0}) \right) = k_{B_{H}^{\infty}} \left((g \circ r) (y_{0}), (g \circ g \circ r) (y_{0}) \right)$$
$$= k_{B_{H}^{\infty}} \left(r (y_{0}), (g \circ r) (y_{0}) \right) > 0.$$

The proof in the $k_{B_H^{\infty}}$ -nonexpansive case is practically the same. This completes the proof of the theorem.

Remark 4.1. As the example given in [30] shows the assumption in the above theorem that the common fixed point set $Fix(\mathcal{F})$ is nonempty is essential.

Remark 4.2. The following problem is still open. Let f_1 and f_2 be commuting $k_{B_H^{\infty}}$ nonexpansive (holomorphic) self-mappings of B_H^{∞} such that $\operatorname{Fix}(f_j) \neq \emptyset$ for $1 \leq j \leq 2$.
Is $\operatorname{Fix}(f_1) \cap \operatorname{Fix}(f_2)$ nonempty? It is not clear whether this is true when H is a one
dimensional vector space. Let us observe that in the case of finite product B_H^n the answer
to this question is positive ([26]).

References

- [1] A. G. Aksoy, M. A. Khamsi, Nonstandard methods in fixed point theory, Springer-Verlag, 1990.
- [2] A. Alexiewicz, On certain "weak" properties of vector-valued functions, Studia Math. 17, 65-68 (1958).
- [3] A. Alexiewicz, Functional analysis, PWN, 1969 (in Polish).
- [4] R. E. Bruck, Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc. 76, 384-386 (1970).
- [5] R. E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179, 251-262 (1973).
- [6] M. Budzyńska, Existence of a holomorphic retraction onto a common fixed point set of a family of commuting holomorphic self-mappings, Nonlinear Analysis 53 (2003), 139-146.
- [7] M. Budzyńska, Local uniform linear convexity with respect to the Kobayashi distance, Abstr. Appl. Anal., to appear.
- [8] M. Budzyńska, T. Kuczumow, Common fixed points of holomorphic mappings and retracts of B_H^{∞} , Israel Mathematical Conference Proceedings (2002), to appear.
- M. Budzyńska, T. Kuczumow, T. Sękowski, Total sets and semicontinuity of the Kobayashi distance, Nonlinear Analysis 47, 2793-2803 (2001).
- [10] S. B. Chae, Holomorphy and calculus in normed spaces, Marcel Dekker, 1985.
- [11] S. Dineen, The Schwarz Lemma, Oxford University Press, 1989.
- [12] N. Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc. 44, 305-356 (1938).
- [13] R. Engelking, Outline of general topology, Elsevier, 1968.
- [14] T. Franzoni, E. Vesentini, Holomorphic maps and invariant distances, North-Holland, 1980.
- [15] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, 1990.
- [16] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel Dekker, 1984.

HOLOMORPHIC RETRACTS

- [17] K. Goebel, T. Sękowski, A. Stachura, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4, 1011-1021 (1980).
- [18] L. A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in Holomorphy, North Holland, 345-406 (1979).
- [19] E. Hille, R. S. Philips, Functional analysis and semigroups, Amer. Math. Soc., 1957.
- [20] M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, 1993.
- [21] J. Kapeluszny, T. Kuczumow, A few properties of the Kobayashi distance and their applications, Topol. Methods Nonlinear Anal. 15, 169-177 (2000).
- [22] J. L. Kelley, General topology, Springer, 1975.
- [23] M. A. Khamsi, One-local retract and common fixed point for commuting mappings in metric spaces, Nonlinear Analysis. 27, 1307-1313 (1996).
- [24] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19, 460-480 (1967).
- [25] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, 1970.
- [26] T. Kuczumow, Common fixed points of commuting holomorphic mappings in Hilbert ball and polydisc, Nonlinear Analysis 8, 417-419 (1984).
- [27] T. Kuczumow, Nonexpansive retracts and fixed points of nonexpansive mappings in the Cartesian product of n Hilbert balls, Nonlinear Analysis 9, 601-604 (1985).
- [28] T. Kuczumow, Fixed points of holomorphic mappings in the Hilbert ball, Colloq. Math. 55, 101-107 (1988).
- [29] T. Kuczumow, The weak lower semicontinuity of the Kobayashi distance and its application, Math. Z. 236, 1-9 (2001).
- [30] T. Kuczumow, S. Reich, D. Shoikhet, The existence and non-existence of common fixed points for commuting families of holomorphic mappings, Nonlinear Analysis 43, 45-59 (2001),
- [31] T. Kuczumow, S. Reich, D. Shoikhet, Fixed points of holomorphic mappings: a metric approach, Handbook of Metric Fixed Point Theory (Eds. W. A. Kirk and B. Sims), Kluwer Academic Publishers, 437-515 (2001).
- [32] T. Kuczumow, S. Reich, A.Stachura, Holomorphic retracts in the open ball in the l_{∞} -product of Hilbert spaces, Recent advances on metric fixed point theory (Ed. T. Domínguez Benavides), Universidad de Sevilla, Serie: Ciencias, Núm. 48, 161-178 (1996).
- [33] T. Kuczumow, A. Stachura, Iterates of holomorphic and k_D -nonexpansive mappings in convex domains in \mathbb{C}^n , Adv. in Math. 81, 90-98 (1990).
- [34] P. Mazet, J.-P. Vigué, Points fixes d'une application holomorphe d'un domaine borné dans lui-même, Acta Math. 166, 1-26 (1991).
- [35] P. Mazet, J.-P. Vigué, Convexité de la distance de Carathéodory et points fixes d'applications holomorphes, Bull. Sci. Math. 116, 285-305 (1992).

(M. Budzyńska) INSTYTUT MATEMATYKI UMCS, 20-031 LUBLIN, POLAND & INSTYTUT MATEMATYKI PWSZ, 20-120 CHEŁM, POLAND *E-mail address*, M. Budzyńska: monikab@golem.umcs.lublin.pl

(M. A. Khamsi) DEPARTMENT OF MATHEMATICAL SCIENCE,
 THE UNIVERSITY OF TEXAS AT EL PASO, EL PASO, TX 79968, U.S.A. *E-mail address*, M. A. Khamsi: mohamed@math.utep.edu