
Chapter 1

ULTRA-METHODS IN
METRIC FIXED POINT THEORY

M. A. Khamsi
Department of Mathematical Sciences and Computer Science
The University of Texas at El Paso
El Paso, Texas 79968, USA
amine@mcs.sci.kuniv.edu.ku

B.Sims
Mathematics, School of Mathematical and Physical Sciences
The University of Newcastle
NSW 2308, Australia
bsims@maths.newcastle.edu.au

1. Preface
Over the last two decades ultrapower techniques have become major tools for the

development and understanding of metric fixed point theory. In this short chapter we
develop the Banach space ultrapower and initiate its use in studying the weak fixed
point property for nonexpansive mappings. For a more extensive and detailed treatment
than is given here the reader is referred to [1] and [21].

2. Introduction to Ultrapowers of Banach spaces
Throughout the chapter I will denote an index set, usually the natural numbers N

for most situations in metric fixed point theory.

Definition 2.1 A filter on I is a nonempty family of subsets F ⊆ 2I satisfying

(i) F is closed under taking supersets. That is, A ∈ F and A ⊆ B ⊆ I =⇒ B ∈ F .

(ii) F is closed under finite intersections: A, B ∈ F =⇒ A ∩B ∈ F .

Examples.

(1) The power set of I, 2I , defines a filter.

(2) The Fréchet filter {A ⊆ I : I\A is finite }

(3) For i0 ∈ I, Fi0 := {A ⊆ I : i0 ∈ A}. Filters of the form Fi0 for some i0 ∈ I are
termed trivial, or non-free filters.

(4) If (I,�) is a lattice, then the family of supersets of sets of the form Mi0 = {i :
i � i0}, for i0 ∈ I, is a filter. To see this, note that Mi0 ∩Mj0 = Mi0∨j0 .
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A filter F is proper if it is not equal to 2I , the power set of I. Equivalent conditions
are: ∅ 6∈ F , or F has the finite intersection property; that is, all finite intersections of
filter elements are nonempty.

Throughout this chapter, we will take filter to mean proper filter.

Definition 2.2 An ultrafilter U on I is a filter on I which is maximal with respect
to ordering of filters on I by inclusion: that is, if U ⊆ F and F is a filter on I, then
F = U . Zorn’s lemma ensures that every filter has an extension to an ultrafilter.

Lemma 2.3 A filter U ⊂ 2I is an ultrafilter on I if and only if for every A ⊆ I
precisely one of A or I\A is in U .

Proof. (⇒) We show that if I \ A 6∈ U , then A ∈ U . If I \ A 6∈ U , then I \ A has
no subset which is an element of U ; hence every element of U meets A. The family
B = {A∩U : U ∈ U} therefore has the finite intersection property and so its supersets
form a filter FB. But U ⊆ FB, because U ⊇ U ∩ A ∈ FB, and so by the maximality
FB = U . Also, A = A ∩ I ∈ FB by F(i), and so A ∈ U .

(⇐) Note: the condition automatically ensures U is proper because I ∈ U and so
∅ = I \ I 6∈ U . Now, let F be a filter on I with U ⊆ F , we show F = U . Assume not,
then there exists A ∈ F with A 6∈ U . However, we then have I \A ∈ U ⊆ F . So both A
and I \A belong to F which , by F(i), implies that ∅ = A∩ (I \A) ∈ F , contradicting
F proper. �

As a consequence of this lemma: For an ultrafilter U on I if A1 ∪A2 ∪ · · · ∪An ∈ U
then at least one of the sets A1, A2, · · · , An is in U , and an ultrafilter is nontrivial
(free) if and only if it contains no finite subsets .

It will henceforth be a standing assumption that all the filters and ultrafilters with
which we deal are nontrivial.

We say U is countably complete if it is closed under countable intersections. Ultra-
filters which are not countably complete are particularly useful for some purposes. It
is readily seen that an ultrafilter U is countably incomplete if and only if there exist
elements A0, A1, · · · , An, · · · in U with

I = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · and
∞⋂

n=0

An = ∅.

We shall see that this structure allows us to readily extended inductive and diagonal
type arguments into ultrapowers. Every ultrafilter U over N is necessarily countably
incomplete (consider the countable family of nested sets An := {n, n + 1, n + 2, · · · } ∈
U).

One of the most exiting result about ultrafilters deal with compactness. Before we
state this result, we will need to link ultrafilters with the concept of convergence in
topological spaces.

Definition 2.4 For a Hausdorff topological space (Ω, T ), an ultrafilter U on I, and
(xi)i∈I ⊆ Ω we say

lim
U

xi

(
≡ T − lim

U
xi

)
= x0

if for every neighbourhood N of x0 we have {i ∈ I : xi ∈ N} ∈ U .

Limits along U are unique and if U is on N and (xn) is a bounded sequence in R then

lim inf
n

xn ≤ lim
U

xn ≤ lim sup
n

xn.



Ultra-methods in metric fixed point theory 3

Moreover, if C is a closed subset of Ω and (xi)i∈I ⊆ C, then limU xi belongs to C
whenever it exists.

Remark 2.5 Let X be a metric space. If U is an ultrafilter and limU xn = x, with
(xn) ⊂ X, then there exists a subsequence of (xn) which converges to x.

The next theorem is fundamental since it characterizes compactness by use of ultra-
filters.

Theorem 2.6 Let K be a Hausdorff topological space. K is compact if and only if
limU xi exists for all (xi)i∈I ⊂ K and any ultrafilter U over I.

When the space in question is a linear topological vector space, convergence over an
ultrafilter has similar behaviour to traditional convergence. In particular, we have:

Proposition 2.7 Let X be a linear topological vector space, and U an ultrafilter over
an index set I.

(i) Suppose that (xi)i∈I and (yi)i∈I are two subsets of X such that limU xi and limU yi

exist. Then

lim
U

(
xi + yi

)
= lim

U
xi + lim

U
yi and lim

U
α xi = α lim

U
xi,

for any scalar α ∈ R.

(ii) If X is a Banach lattice and (xi)i∈I is a subset of positive elements of X, i.e.
xi ≥ 0, then limU xi is also positive.

Now we are ready to define the ultrapower of a Banach space. Let X be a Banach
space and U an ultrafilter over an index set I. We can form the substitution space

`∞(X) := {(xi)i∈I : ‖(xi)‖∞ := sup
i∈I

‖xi‖ < ∞}.

Then,
NU (X) := {(xi)i∈I ∈ `∞(X) : lim

U
‖xi‖ = 0}

is a closed linear subspace of `∞(X).

Definition 2.8 The Banach space ultrapower of X over U is defined to be the Banach
space quotient

(X)U := `∞(X)/NU (X),

with elements denoted by [xi]U , where (xi) is a representative of the equivalence class.
The quotient norm is canonically given by

‖[xi]U‖ = lim
U
‖xi‖.

Remark 2.9 The mapping J : X −→ (X)U defined by

J (x) := [x] := [xi]U , where xi = x, for all i ∈ I

is an isometric embedding of X into (X)U . Using the map J , one may identify X with
J (X) seen as a subspace of (X)U . When it is clear we will omit mention of the map J
and simply regard X as a subspace of (X)U .
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In what follows, we describe some of the fundamental results related to ultrapowers.
We will not be exhaustive and leave it to the interested reader to pursue the subject
further by consulting [21], for example.

Proposition 2.10 Let (X)U be an ultrapower of a Banach space X. Then for any
ε > 0 and any finite dimensional subspace Y0 of (X)U , there exists a subspace X0 of X
with the same dimension and a linear map T : X0 → Y0 such that

(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖

holds for all x ∈ X0.

Proof. Let x(1), x(2), . . . , x(n) be a unit basis for M and choose representatives(
x

(k)
i

)
of x(k) such that

∥∥∥x
(k)
i

∥∥∥ ≤ 2, (k = 1, 2, . . . , n).

Consider the vector space
Mi =

〈
x

(k)
i

〉n

k=1

and define Ti : M → Mi by its action on the basis;

Ti

(
x(k)

)
= x

(k)
i (k = 1, 2, . . . , n).

Then, Ti is linear with ‖Ti‖ ≤ 2K, where

K = max

{
n∑

k=1

|λk| :

∥∥∥∥∥
n∑

k=1

λk x(k)

∥∥∥∥∥ = 1

}
·

For any x =
∑n

k=1 λk x(k) ∈ M , we have

‖x‖ =

∥∥∥∥∥
n∑

k=1

λk x(k)

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

λk

(
x

(k)
i

)
U

∥∥∥∥∥
= lim

U

∥∥∥∥∥
n∑

k=1

λk x(k)

∥∥∥∥∥
= lim

U
‖Tix‖

Thus,
Ix =

{
i ∈ I :

∣∣‖Tix‖ − ‖x‖
∣∣ ≤ ε

2
‖x‖

}
∈ U .

Now, let δ be a positive number (to be chosen later) and let y(1), y(2), . . . , y(m) be a
finite δ-net in the unit sphere of M and set

I0 =
m⋂

k=1

Iy(k),

then for i ∈ I0 and x ∈ M with ‖x‖ = 1 we have∣∣∣‖Tix‖ − ‖x‖
∣∣∣ ≤ min

k=1,2,...,m

(∥∥∥Ti

(
x− y(k)

)∥∥∥ +
∥∥∥x− y(k)

∥∥∥ +
∣∣∣∣ ∥∥∥Ti

(
y(k)

)∥∥∥− ∥∥∥y(k)
∥∥∥ ∣∣∣∣)

≤ (2K + 1)δ +
ε

2
.
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The conclusion now follows by taking δ =
ε

2(2K + 1)
. �

Any Banach space which enjoys a similar property as the one described above for
(X)U is called finitely representable in X. Therefore, any ultrapower of X is finitely
representable in X. Note that we may avoid using the map T by introducing the
so-called Banach-Mazur distance between normed spaces.

Definition 2.11 Let X and Y be Banach spaces. The Banach-Mazur distance between
X and Y is

d(X, Y ) = inf{‖T‖ ‖T−1‖; where T is an isomorphism from X onto Y } .

When X and Y are not isomorphic we simply set d(X, Y ) = ∞.

Therefore, X is finitely representable in Y if and only if for any ε > 0 and any
finite dimensional subspace X0 of X, there exists a subspace Y0 of Y with the same
dimension such that d(X0, Y0) < 1+ε. It is a stunningly useful fact that an ultrapower
of a Banach space X can capture isometrically all the spaces finitely represented in X.
Indeed, we have

Theorem 2.12 Let Y be a separable Banach space which is finitely represented in X.
Then there is an isometric embedding of Y into the ultrapower (X)U for each countably
incomplete ultrafilter U .

Proof. Let U be a countably incomplete ultrafilter on I; that is, there is a countable
chain I1 ⊇ I2 ⊇ . . . with In ∈ U and

∞⋂
n=1

In = ∅.

By the separability of Y we can find a linearly independent sequence (x(n))∞n=1 such
that Y = 〈{x(n)}∞n=1〉. Since Y is finitely represented in X, for each N in N, there
exists a 1/N -isometry

TN : XN ≡
〈
{x(n)}N

n=1

〉
→ X.

Now define J : Y → (X)U by its action on the x(m),

J(x(m)) = (xi(m)) ,

where

xi(m) =


0 if i ∈ I \ Im,

Tn

(
x(m)

)
if i ∈ Im, where n ≥ m and Tn(x(m))
is the unique number such that i ∈ In \ In+1.

Note that since
⋂∞

n=1 = ∅, xi is defined for each i ∈ I. To see that J is an isometry
observe that; for

x =
K∑

k=1

λk x(mk) (such x are dense in Y )
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we have

‖Jx‖ =

∥∥∥∥∥
K∑

k=1

λk (xi(mk))U

∥∥∥∥∥
= lim

U

∥∥∥∥∥
K∑

k=1

λk xi(mk)

∥∥∥∥∥
= ‖x‖.

To see this, given ε > 0, choose N > (1/ε, maxk mk), then we have x ∈ XN and for
i ∈ IN ∈ U ,∣∣∣∣∣

∥∥∥∥ K∑
k=1

λk xi(mk)
∥∥∥∥− ‖x‖

∣∣∣∣∣ =

∣∣∣∣∣
∥∥∥∥ K∑

k=1

λk Tnx(mk)
∥∥∥∥− ‖x‖

∣∣∣∣∣ (for some n ≥ N)

=
∣∣∣‖Tnx‖ − ‖x‖

∣∣∣
≤ ε‖x‖.

�

Example 2.13 Ultrapowers of a Hilbert space It is known that a Banach space
X is a Hilbert space if and only if

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x, y ∈ X. Let (X)U be an ultrapower of X and let [(xi)] and [(yi)] be two
elements in (X)U , then we have∥∥∥[(xi)] + [(yi)]

∥∥∥2
=

∥∥∥[(xi + yi)]
∥∥∥2

= lim
U
‖xi + yi‖2

and ∥∥∥[(xi)]− [(yi)]
∥∥∥2

=
∥∥∥[(xi − yi)]

∥∥∥2
= lim

U
‖xi − yi‖2 .

Since
lim
U
‖xi + yi‖2 + lim

U
‖xi − yi‖2 = lim

U

(
‖xi + yi‖2 + ‖xi − yi‖2

)
,

and using the Hilbert structure of X, we get

lim
U
‖xi + yi‖2 + lim

U
‖xi − yi‖2 = lim

U

(
2‖xi‖2 + 2‖yi‖2

)
.

Whence, ∥∥∥[(xi)] + [(yi)]
∥∥∥2

+
∥∥∥[(xi)]− [(yi)]

∥∥∥2
= 2

∥∥∥[(xi)]
∥∥∥2

+ 2
∥∥∥[(yi)]

∥∥∥2

which implies (X)U is a Hilbert space.

This example, though easy to prove, is extremely rich in many ways. Indeed, what
the reader should learn from it is that the ultrapower catches any finitely determined
property satisfied by the Banach space. Maybe one of the most useful instances of this
concerns lattice structure. If X is a lattice Banach space, then any ultrapower (X)U
is also a Banach lattice when the order is defined by taking x̃ ∈ (X)U to be positive if
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and only if one can find a representative, (xi), of x̃ all of whose elements are positive in
X. In this case, (X)U enjoys most of the important lattice properties satisfied by X.

Also from the above example, we see that a nonreflexive Banach space can not be
finitely represented in a Hilbert space. In other words, only reflexive Banach spaces may
be finitely represented in a Hilbert space. This leads to the concept of a super-property.

Definition 2.14 Let P be a property defined on a Banach space X. We say that X
has the property “super-P” if every Banach space that is finitely representable in X
has P.

The following result is an immediate consequence of Proposition 2.10 and Theorem
2.12.

Theorem 2.15 If P is a separably determined Banach space property that is inherited
by subspaces, then a Banach space X has super-P if and only if some ultrapower of X
over a countably incomplete ultrafilter has P (and hence every ultrapower of X has P).

Remark 2.16 Reflexivity satisfies the requirements of the above theorem. Thus, a
Banach space X is superreflexive if and only if some (and hence every) countably
incomplete ultrapower of X is reflexive.

We also note that Theorem 2.12 remains valid if we replace ‘every countably in-
complete ultrafilter’ by ‘there exists an ultrafilter’, without the assumption that the
property be separably determined. Thus, we always have:

If P is a Banach space property that is inherited by subspaces, then a Banach space
X has super-P if and only every ultrapower of X has P.

In particular Hilbert spaces are superreflexive. One may think that these are the
only examples of superreflexive Banach spaces. In the following example, we show that
this is far from the case, indeed the family of superreflexive Banach spaces is quite a
rich one.

Example 2.17 Let X be a Banach space. For any ε > 0, define

δX(ε) = inf
{

1− 1
2
‖x + y‖;x, y ∈ X and ‖x‖ ≤ 1 , ‖x‖ ≤ 1

}
.

The function δX(ε) is called the modulus of uniform convexity of X. The characteristic
of uniform convexity of X is defined by

ε0(X) = sup{ε; δX(ε) = 0} .

A Banach space X is uniformly convex if δX(ε) > 0 for any ε > 0. A space is said to
be uniformly nonsquare, or inquadrate if and only if ε0(X) < 2. We next discuss the
link between these concepts and ultrapowers.

Let (X)U be an ultrapower of X. Then, for any ε > 0, we have

δX(ε) = δ(X)U (ε) .

Consequently, we also have ε0(X) = ε0((X)U ). In particular, a Banach space is uni-
formly convex (uniformly nonsquare) if and only if some, and hence every, ultrapower
is uniformly convex (uniformly nonsquare). It is also worth mentioning that an ultra-
power is uniformly convex if and only if it is strictly convex. Since uniformly nonsquare
spaces are reflexive, we deduce that uniformly nonsquare Banach spaces are also su-
perreflexive. In fact, Enflo [8] (see also Pisier [18]) has shown that X is superreflexive
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if and only if there exists an equivalent norm (on X) which is uniformly convex. More
on this may be found in, for example, [3], or [21].

Next we discuss ultraproducts of maps. Let X and Y be two Banach spaces and let
(X)U and (Y )U be their associated ultrapowers with respect to a given ultrafilter U on
I. Let Ti : D ⊂ X → Y be a family of maps indexed by I. Consider

[D]U := {x̃ ∈ (X)U : there exists a representative (di) of x̃ with di ∈ D} .

Define [(Ti)]U : [D]U → (Y )U by

[(Ti)]U
(
[(di)]U

)
= [(Ti(di))]U .

We of course have to ensure that the Ti satisfy suitable conditions for [(Ti)]U to be well
defined. When this is the case we have, in particular, the following.

Proposition 2.18 Using the above notations, we have

(i) [D]U is convex if D is convex;

(ii) [D]U is closed if D is closed;

(iii) [D]U is bounded if D is bounded;

(iv) [(Ti)]U is Lipschitzian provided the Ti are Lipschitzian mappings whose Lipschitz
constants λi are uniformly bounded, in which case the Lipschitz constant of [(Ti)]U
is equal to limU λi;

(v) [(Ti)]U is a bounded linear operator provided the Ti are linear operators which are
uniformly bounded; that is, supi∈I ‖Ti‖ < ∞, and then ‖[(Ti)]U‖ = limU ‖Ti‖.

Proof. Most of these results follow directly from the relevant definitions. Conse-
quently, we restrict ourselves to proving (ii) in the case of particular interest when U
is an ultrafilter over N. Thus, let N = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · , be a nested
sequence of sets with each An ∈ U , and

⋂
n≥1 An = ∅.

Suppose [t1i ]U , [t2i ]U , · · · is a sequence of points in [D]U , with each tji ∈ D, which
converges to [xi]U ∈ (X)U . By passing to a subsequence if necessary we may without
loss of generality assume that

‖[tmi ]− [xi]‖ = lim
U
‖tmi − xi‖ <

1
m

.

For each m ∈ N let

Bm :=
{

i ∈ N : ‖tmi − xi‖ <
2
m

}
∩Am ∈ U .

and put B0 := N and t0i := 0, then

N = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bm ⊃ · · · , and ∩∞m=0 Bm = ∅.

From this it follows that for each i ∈ N there is a unique m such that i ∈ Bm\Bm+1.
Define yi := tmi , for this m, in particular then yi ∈ D.

Now, given any m ∈ N, for each i ∈ Bm there is a unique p ≥ m with i ∈ Bp\Bp+1.
thus,

‖yi − xi‖ = ‖tpi − xi‖ <
2
p
≤ 2

m
,
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and so {
i ∈ N : ‖yi − xi‖ <

2
m

}
⊇ Bm ∈ U .

We therefore have that U − lim ‖yi − xi‖ = 0, which yields the desired conclusion that
[xi]U ∈ [D]U . �

For the above theorem, recall that a map T : D ⊂ X → Y is said to be a Lipschitz
mapping with Lipschitz constant λ if

‖T (x)− T (y)‖ ≤ λ‖x− y‖

for all x, y ∈ D.
The above results are useful for studying the dual space of an ultrapower. Indeed,

let (x∗i ) be a uniformly bounded family of linear functionals defined on X (i.e. elements
of the dual space X∗). Then from the above results, we can generate a bounded linear
functional [(x∗i )]U . This linear functional belongs to the dual of the ultrapower; that

is,
(
(X)U

)∗
. One may then ask whether this construction yields all the elements of(

(X)U
)∗

. An answer is provided by the following theorem.

Theorem 2.19 Let X be a Banach space. Then(
(X)U

)∗
= (X∗)U

if and only if X is superreflexive.

More on this and similar results may be found in [21].

We will close this section with an important example.

Example 2.20 In this example, we discuss ultrapowers of the Lp-spaces, 1 ≤ p < ∞.
Let (Ω,Σ, µ) be a σ-additive measure space and for 1 ≤ p < ∞, let Lp(µ) denote the

real space Lp(Ω,Σ, µ). Then, we will show that if U is an ultrafilter on I then there
exists a measure space (Ω,Σ, ν) with (Lp(µ))U lattice isometric to Lp(ν).

First note that under a ‘component-wise’ definition of order, (Lp(µ))U is a Banach
lattice. Thus, by the classical theorem of Bohnenblust and Nakano, see for example
[14], it is sufficient to prove that the norm in (Lp(µ))U is p-additive; that is, whenever
x ∧ y = 0 we have that

‖x + y‖p = ‖x‖p + ‖y‖p.

To this end, let (xi)U and (yi)U be elements of (Lp(µi))U such that (xi)U ∧ (yi)U = 0.
Let zi = xi ∧ yi, then (xi − zi) ∧ (yi − zi) = 0 and so

‖xi − zi‖p + ‖yi − zi‖p = ‖xi + yi − 2zi‖p (i ∈ I).

On the other hand, we have 0 = (xi ∧ yi)U = (zi)U , so limU ‖zi‖ = 0, but then,
(xi)≡U (xi − zi), (yi)≡U (yi − zi) and (xi + yi)≡U (xi + yi − 2zi) and so

‖(xi)U‖p + ‖(yi)U‖p = ‖(xi)U + (yi)U‖p,

as required.
This argument does not provide us with any information on the structure of the

measure space (Ω,Σ, ν), for information on this and related questions see, for example,
[21].
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3. Fixed Point Theory
Definition 3.1 A Banach space X is said to have the weak fixed point property (w-fpp)
if for every nonempty weakly compact convex subset C of X and every nonexpansive
mapping T : C → C we have Fix(T ), the fixed point set of T , is nonempty. Recall that
x ∈ Fix(T ) if and only if T (x) = x.

To establish the w-fpp for a Banach space X we work toward a contradiction. Thus,
assume that X fails to have the w-fpp then there exists a weakly compact convex subset
C of X and a nonexpansive mapping T : C → C with Fix(T ) = ∅.

Let F denote the family of all nonempty closed convex subsets K of C that are
invariant under T (that is, T (K) ⊂ K). Clearly, F is not empty, since C ∈ F . The
weak-compactness of C ensures that F satisfies the assumptions for Zorn’s lemma.
Therefore F has minimal elements.

Definition 3.2 A convex set K is said to be a minimal invariant set for T if K is a
minimal element of F .

Clearly any set K which is a minimal invariant set for T contains more than one
point; that is,

diam(K) = sup{‖x− y‖ : x, y ∈ K} > 0 ,

otherwise T would have a fixed point.
We proceed to investigate the properties of minimal invariant sets.

Proposition 3.3 Let K be a minimal invariant set for T . Then

conv
(
T (K)

)
= K .

The next result gives an interesting property satisfied by minimal invariant sets.

Lemma 3.4 Let K be a minimal set for T , and let α : K → R+ be a lower semi-
continuous convex function such that

α
(
T (x)

)
≤ α(x) , for all x ∈ K.

Then α is a constant function.

Taking α(x) := sup{‖x − y‖ : y ∈ K} and using proposition 3.3 to replace the
supremum over K with a supremum over T (K) we see that the above lemma applies
and readily yields:

Proposition 3.5 Any minimal invariant set K for T is a diametral set; that is,
diam(K) > 0 and

sup{‖x− y‖ : y ∈ K} = diam(K)

for all x ∈ K.

Spaces which contain no weakly compact convex diametral sets are said to have weak
normal structure, clearly such spaces have the w-fpp.

The property of normal structure (the absence of diametral closed bounded convex
subsets) was introduced by W. A. Kirk in 1965 when he showed that reflexive spaces
with the property had the fixed point property. It was quickly realized that this result
subsumed most of the then known existence results for fixed points of nonexpansive
mappings by F. Browder, D. Gohde, M. Edelstein and others. The main thrust of
metric fixed point theory during the late 1960’s and throughout the 1970’s was the
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quest for natural, and easily verified, conditions on a Banach space that are sufficient
for weak normal structure coupled with an exploration of other consequences of normal
structure and related properties such as asymptotic normal structure. Details of this
work, together with relevant references, may be found in the chapter on the Classical
theory of nonexpansive mappings.

Initially, it was unknown whether all reflexive spaces necessarily had normal struc-
ture, or if weak normal structure and the weak fixed point property were equivalent.
Then, in 1975 and 1976, the two questions were settled in the negative by R. C. James
and L. Karlovitz respectively.

Example 3.6 For β > 1 let Xβ denote the Hilbert space l2 equipped with the equiv-
alent norm

‖(xn)‖β = max{‖(xn)‖l2 , β‖(xn)‖l∞}.

James observed that these spaces are all superreflexive, but that X2 fails to have normal
structure. Indeed, it is quite easy to verify that Xβ fails to have normal structure for
β ≥

√
2. On the other hand, Karlovitz showed that X√

2 has the fixed point property
for nonexpansive mappings. Subsequently, this family of spaces has been the subject of
considerable investigation. For example, in 1981 Baillon and Schöneberg [2] observed
that, for β < 2, Xβ has asymptotic normal structure; a geometric property which they
showed implies the fixed point property. For larger values of β the situation remained
unclear, though Baillon managed to give some highly technical demonstrations of the
fixed point property for certain values of β, until finally, in 1984, it was shown [4] that
Xβ has the fixed point property for all values of β, see also [15].

Normal structure precludes the presence of diametral sets and as such only involves
the mapping T in so far as minimal invariant sets of fixed point free nonexpansive maps
provide instances of such diametral sets. To establish the weak fixed point property
in the absence of weak normal structure requires properties of minimal invariant sets
that involve the mapping T in a more explicit way. One such property was used by
Karlovitz to establish the fixed point property for the space X√

2. The property was
independently discovered by K. Goebel and the result has subsequently become known
as the Goebel-Karlovitz lemma. Before presenting it we need some more facts about
nonexpansive mappings.

Let K be a nonempty, bounded, closed, convex subset of a Banach space X, and
T : K → K be nonexpansive. Fix ε ∈ (0, 1) and x0 ∈ K, and consider the map
Tε : K → K defined by

Tε(x) = εx0 + (1− ε)T (x)

for all x ∈ K. Tε is clearly a contraction mapping. Hence it has a unique fixed point
xε ∈ K, i.e. Tε(xε) = xε. We have

‖T (xε)− xε‖ ≤ ε diam(K) .

In other words, we have

inf{‖T (x)− x‖; x ∈ K} = 0 .

Definition 3.7 A sequence (xn) satisfying limn→∞ ‖xn − Txn‖ = 0, is called an ap-
proximate fixed point sequence.

The above construction shows that a nonexpansive self mapping of a closed bounded
convex set always has an approximate fixed point sequence.

The Goebel-Karlovitz lemma is the following
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Lemma 3.8 Let C be a weakly compact convex set and let K be a minimal invariant
set for T : C → C. Then for any approximate fixed point sequence (xn) of T in K, we
have

lim
n→∞

‖x− xn‖ = diam(K)

for all x ∈ K; that is, (xn) is a diameterizing sequence for K.

The proof is an easy consequence of lemma 3.4 with α(x) := lim supn ‖x− xn‖.

In the first instance, one might think that the presence of diameterizing sequences in
minimal invariant sets of fixed point free noneexpansive mappings would provide a lever
for establishing the w-fpp in the absence of normal structure. Unfortunately this is not
the case. A simple construction shows that if a space contains a diametral set D then it
also contains a diametral set with a diameterizing sequence. Indeed, one can construct
within D a sequence (xn) with dist(xn+1, conv{x1, x2, · · · , xn}) → diam(D). Such a
sequence is diameterizing for its closed convex hull which is therefore a diametral subset
of D with the same diameter as D. To proceed in the absence of weak normal structure,
the mapping T must be brought back into play, via the Goebel-Karlovitz lemma, and
the fact that the diameterizing sequence is an approximate fixed point sequence for T
exploited. Such arguments are necessarily both delicate and subtle. It was B. Maurey
[17] who, in a brilliant series of results (see section 4), first demonstrated the usefulness
of ultrapowers as a setting for such arguments. His methods brought a new dimension
to metric fixed point theory and, together with Alspach’s seminal example, began what
might be described as the ‘non-classical theory’.

We now turn to the basic constructions such methods employ.
Let C be a nonempty bounded convex subset of a Banach space X and T : C → C a

nonexpansive mapping with no fixed point. Let U be an ultrafilter on the set of natural
numbers. In (X)U we may define

C̃ := {[xn]U : xn ∈ C, for all n ∈ N}.

Then, C̃ is a convex subset, with diam(C̃) = diam(C), containing an isometric copy,
J (C), of C and on which T̃ : C̃ −→ C̃ defined by

T̃
(
[xn]U

)
= [T (xn)]U ,

where the representative (xn) is chosen to be a sequence of points from C, is a well
defined nonexpansive mapping [proposition 2.18 (iv)] which leaves J (C) invariant. We
now list a number of basic results for C̃ and T̃ constructed as above. From proposition
2.18 (ii) we have the following.

Proposition 3.9 The set C̃ in (X)U is closed. Hence, when X is a superreflexive
space C̃ is weakly-compact.

The next proposition follows directly from the definitions.

Proposition 3.10 If (xn) is an approximate fixed point sequence for T , then [xn]U is
a fixed point of T̃ . Consequently, T̃ always has fixed points in C̃.

Conversely, from a fixed point (indeed an approximate fixed point sequence) for T̃
in C̃ we can readily extract an approximate fixed point sequence for T .

If C is a weakly compact minimal invariant set for T , so that the Goebel-Karlovitz
lemma applies, then in the above proposition we also have ‖[xn]U − J x‖ = diam(C),
for all x ∈ C. Since, in this case we can always assume without loss of generality that
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diam C = 1 and that (xn) converges weakly to 0 (so, 0 ∈ C), we may suppose that
‖[xn]U‖ = dist([xn]U ,JC) = 1.

The following is a significant observation of B. Maurey [17].

Lemma 3.11 Given any two fixed points ã = [an]U and b̃ = [bn]U of T̃ in C̃ there is a
fixed point c̃ with

‖ã− c̃‖ = ‖c̃− b̃‖ =
1
2
‖ã− b̃‖.

Proof. We may assume that λ := ‖ã− b̃‖ := limU ‖an − bn‖ > 0. For each m ∈ N let

Am :=
{

n ≥ m : ‖an − bn‖ ≤ λ +
2

m2
and ‖an − Tan‖, ‖bn − Tbn‖ ≤

1
m2

}
,

then Am ∈ U , N =: A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · and
⋂

n≥1 An = ∅.
For each n ∈ N let Cn :=

{
c ∈ C : ‖an − c‖, ‖bn − c‖ ≤ λ/2 + 1

m

}
where m is the

unique element of N for which n ∈ Am\Am+1. Then Cn is bounded, closed, convex
and nonempty since

‖an − 1/2 (an + bn)‖ =
1
2
‖an − bn‖ ≤

λ

2
+

1
m2

≤ λ

2
+

1
m

and similarly, ‖bn − 1/2 (an + bn)‖ ≤ λ/2 + 1/m, so

1
2

(
an + bn

)
∈ Cn.

Now, define a strict contraction, Tn on Cn by,

Tnz := (1− 1
m

)Tz +
1

2m
(an + bn).

To see that Cn is Tn-invariant let z ∈ Cn, then

‖an − Tnz‖ =
∥∥∥∥an −

((
1− 1

m

)
Tz +

1
2m

(an + bn)
)∥∥∥∥

≤
(
1− 1

m

)
‖an − Tz‖+

1
2m

‖an − bn‖

≤
(
1− 1

m

)
‖an − Tan‖+

(
1− 1

m

)
‖Tan − Tz‖+

1
2m

‖an − bn‖

≤
(
1− 1

m

)
‖an − Tan‖+

(
1− 1

m

)
‖an − z‖+

1
2m

‖an − bn‖

≤
(
1− 1

m

) 1
m2

+
(
1− 1

m

)(λ

2
+

1
m

)
+

1
2m

(
λ +

2
m2

)
=

1
m2

− 1
m3

+
λ

2
+

1
m
− 1

2m
λ− 1

m2
+

1
2m

λ +
1

m3

=
λ

2
+

1
m

.

and similarly, ‖bn − Tnz‖ ≤ λ/2 + 1/m.
Thus, Tn has a unique fixed point, cn ∈ Cn. That is,

cn = Tncn = (1− 1
m

)Tcn +
1

2m
(an + bn).
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and we have,

‖Tcn − cn‖ =
1
m
‖Tcn − (an + bn)/2‖

≤ 1
2m

(‖Tcn − an‖+ ‖Tcn − bn‖)

≤ 1
m

(λ

2
+

1
m

)
.

It therefore follows from the above construction that for each m ∈ N the set of n for
which ‖Tcn − cn‖ ≤ (1/m)(λ/2 + 1/m) contains Am and so is in U . Consequently, for
c̃ := [cn]U we have

‖c̃− T̃ c̃‖ := lim
U
‖cn − Tcn‖ = 0

and so c̃ is a fixed point of T̃ .
Similarly, from ‖an − cn‖, ‖bn − cn‖ ≤ λ/2 + 1/m for all n ∈ Am\Am+1, and conse-

quently for all n ∈ Am, we have ‖ã− c̃‖ and ‖b̃− c̃‖ are less than or equal to λ/2. Since
λ = ‖ã − b̃‖, the triangle inequality then ensures that ‖ã − c̃‖ = ‖b̃ − c̃‖ = ‖ã − b̃‖/2
and the result is established. �

This Lemma states that the fixed point set of T̃ is metrically convex. An appeal
to Menger’s theorem then ensures the existence of a continuous path of fixed points
joining any two fixed points of T̃ and lying within the metric segment between them.

Remark 3.12 When C is weakly-compact and a minimal invariant set for T it is
always possible to find two such fixed points ã and b̃ of T̃ with ‖ã − b̃‖ = diam C̃. To
see this, we may without loss of generality suppose that diam C = 1 and that we have
an approximate fixed point sequence (xn) for T , with (xn) weakly convergent to 0.
Applying the Goebel-Karlovitz lemma we may extract a subsequence (xni) such that
‖xni − xni+1‖ −→ diam C. Taking ã := [xn2i ] and b̃ := [xn2i−1 ] yields two fixed points
of T̃ with

‖ã‖ = ‖b̃‖ = ‖ã− b̃‖ = 1.

The following generalization of the Goebel-Karlovitz lemma, due to P. K. Lin [15]
has proved basic for establishing the fixed point property using ultrapower methods.

Lemma 3.13 Suppose C is a weakly-compact minimal invariant set for T . If (ãn) is
an approximate fixed point sequence for T̃ in C̃ then

lim
n
‖ãn − J x‖ = diam(C), for all x ∈ C.

Proof. Suppose this were not the case. Without loss of generality we may take
diam(C̃) = diam(C) = 1, and by passing to a subsequence if necessary assume that
‖ãn − T̃ ãn‖ < 1/n.

Then there are ε0 > 0, x0 ∈ C, and n0 ∈ N with

‖ãn − J x0‖ < 1− ε0, for all n > n0.

Let ãn = [an
m]U , with an

m ∈ C, and define

An := {m : ‖an
m − x0‖ < 1− ε0/2},

and
Bn := {m : ‖an

m − Tan
m‖ < 2/n}.
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Then An and Bn are in U .
Put m0 = 0 and for n ∈ N inductively choose mn ∈ An ∩ Bn ∩ {mn−1 + 1, mn−1 +

2, · · · } ∈ U . Then the sequence (an
mn

) is such that

‖an
mn

− Tan
mn
‖ < 2/n.

That is, (an
mn

) is an approximate fixed point sequence for T in C. But,

‖an
mn

− x0‖ < 1− ε0/2,

an observation which is difficult to reconcile with the fact that (an
mn

) is, by the Goebel-
Karlovitz lemma, diameterizing for C. �

Remark 3.14 If W is any nonempty closed convex and T̃ -invariant subset of C̃, then,
by the standard construction using Banach’s contraction mapping principle, W contains
an approximate fixed point sequence for T̃ . So, by the above lemma, for every x ∈ C
we have sup{‖w̃ − J x‖ : w̃ ∈ W} = diam C. In particular, if we have ‘normalized’ so
that diam C = 1 and 0 ∈ C, then

sup
w̃∈W

‖w̃‖ = 1.

This leads to an important strategy for establishing the fixed point property in a class
of spaces. Namely, try to construct a nonempty closed convex and T̃ -invariant subset
W of C̃ in such a way that the hypotheses on the spaces preclude the existence of
elements in W with norms arbitrarily close to one; thereby contradicting the above
lemma and hence the existence of a fixed point free nonexpansive self mapping of a
nonempty weakly compact convex subset in the space.

Indeed, we know of only one proof establishing the fixed point property for a class of
spaces via ultraproduct methods that does not use this approach, and that is S. Prus’
proof [19, 20] (also see [12]) that uniformly non-creasey spaces have the fixed point
property.

We illustrate the strategy outlined in the above remark with just one example, due
to Garcia-Falset [9], others may be found scattered throughout this Handbook. See
also the Notes and remarks section for references to the literature.

Let U be a given ultra filter over N and for each Banach space X define a coefficient
R(X) by,

R(X) := sup{lim
U
‖x + xn‖ : ‖x‖ ≤ 1; ‖xn‖ ≤ 1, for all n and (xn) → 0 weakly}.

Equivalently, R(X) is the ‘smallest’ number such that

lim
U
‖x + xn‖ ≤ R(X)‖x‖ ∨ (lim

U
‖xn‖),

for all x ∈ X and all weak null sequences (xn).
For example, R(c0) = 1, while R(L1) = 2, in general 1 ≤ R(X) ≤ 2.

Proposition 3.15 If X is a Banach space with R(X) < 2, then X has the weak fixed
point property.

Proof. Suppose X fails the weak-fixed point property. Then there exists a weakly-
compact convex set C with diam(C) = 1 which is a minimal invariant set for some
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nonexpansive mapping T . Further we may assume that C contains a weakly-null ap-
proximate fixed point sequence (an) for T . Let C̃ and T̃ be defined as above and
define

W := {[wn]U : wn ∈ C, for n ∈ N, ‖[wn]U − [an]‖ ≤ 1/2, and D[wn] ≤ 1/2},

where D[wn] := limUm, limU ,n ‖wm−wn‖. Then, W is readily seen to be a T̃ -invariant,
closed, convex, nonempty (as (1/2)[an] ∈ W ) subset of C̃. Thus, by the above remark

sup{‖w̃‖ : w̃ ∈ W} = 1.

On the other hand, let w̃ = [wn]U be any element of W , where without loss of
generality wn ∈ C, for all n ∈ N, and let w0 be the weak-limit with respect to U of
(wn). Then,

‖w̃‖ = lim
U
‖wn‖

= lim
U
‖(wn − w0) + w0‖

≤ R(X)(lim
U
‖wn − w0‖) ∨ ‖w0‖,

by definition of R(X), as (wn − w0) converges weakly to 0, hence

‖w̃‖ ≤ R(X) lim
U ,n

lim
U ,m

‖wn − wm‖ ∨ ‖wn − an‖,

by lower semi-continuity of the norm, since

lim
U

wm = lim
U

(wn − an) = w0 .

Hence
‖w̃‖ ≤ R(X)× 1

2
∨ 1

2
= R(X)/2 < 1.

A contradiction which establishes the result. �

Our choice of the above result to illustrate the strategy in the previous remark is
based on its utility; the parameter involved is readily evaluated for many spaces and
the criteria is satisfied in a large class of spaces.

Since nearly uniformly smooth (NUS) Banach spaces are readily seen to have R(X) <
2 (see [9]), the result answers in the affirmative the long standing question of whether
or not NUS spaces have the weak fixed point property.

In a weakly orthogonal Banach lattice R(X) is less than or equal to the Riesz angle
α(X) introduced in [4], thus, this proposition generalizes results of [4], [22] and [23].

The above argument is typical of those for many of the more recent ‘non-classical’
results in metric fixed point theory, starting with Maurey’s 1982 proof of the weak
fixed point property for c0, for which it provcides an alternative proof. Note that, since
a numeric contradiction is arrived at, by carefully analyzing the proof, the gap (here
between R(X)/2 and 1) can be exploited to establish the weak fixed point property for
spaces whose Banach-Mazur distance from a space satisfying the assumptions is not
too great. This is the basis for many of the results given in the chapter on Stability of
the fixed point property for nonexpansive mappings, where the reader can find many
more existence results, in the more general guise of stability results, together with other
applications of the methods outlined here.
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4. Maurey’s fundamental theorems
Maurey’s results were deep and particularly significant comming as they did just

after Alspach demonstrated the failure of the weak fixed point property in L1[0, 1]. As
we have already remarked, his results set the stage for the second major revolution in
metric fixed point theory. We will not give the details of the proofs for many of his
results, and the interested reader is referred to [17], [7] and [1].

Maurey began by establishing the w-fpp for the space c0.

Theorem 4.1 The space c0 has the weak fixed point property.

This result had eluded proof for many years. From a geometric point of view the
space c0 is a bad space, exhibiting many of the features found in l∞. Previously, only
partial results related to the fixed point property for special domains in c0 were known
and the arguments employed were often extremely intricate and tedious. We will not
give Maurey’s original proof, as the result is a special case of proposition 3.15 above.
However, his proof was both elegant and open to generalization. It exploited the lattice
structure of c0 induced from the canonical basis. Others (see, for example, [4], [22],
[23], [?] and the Notes and Remarks section below) quickly refined and generalized
these ideas to a large class of Banach lattices.

Perhaps the most important result of Maurey is the following.

Theorem 4.2 Any reflexive subspace X of L1[0, 1] has the fixed point property; that
is, any nonexpansive self mapping of a nonempty bounded closed and convex subset of
X has a fixed point.

The ideas behind the original proof of this result may be generalized to obtain the
following.

Theorem 4.3 Let X be a Banach lattice with a uniformly monotone norm and assume
that l1 is not finitely representable in X. Then X has the fixed point property.

Recall that a Banach lattice X has a uniformly monotone norm if for all ε > 0 there
exists δ > 0 such that ‖x‖ ≥ ‖y‖ + δ whenever x ≥ y ≥ 0 and ‖x − y‖ ≥ ε, with
‖y‖ = 1.

In his investigation of the fixed point property, Maurey discovered many fundamental
results which led to new insights and a better understanding of the property. For
example, in his proof of the above theorem, Maurey used lemma 3.11 and the lattice
structure of L1[0, 1] to show that the ultrapower (X)U of X would contain isometric
copies of ln1 , for all n, if X failed to have the fixed point property. Since reflexive
subspaces of L1[0, 1] are superreflexive, this gave the desired contradiction. Following
the appearance of his result there have been many attempts to identify a geometric
property enjoyed by the reflexive subspaces of L1[0, 1] which would imply the fixed
point property. So far such attempts have been in vain.

In the years prior to the appearance of Alspach’s example the w-fpp had been estab-
lished for many of the classical Banach spaces and it was commonly conjectured that
all Banach spaces enjoyed the weak fixed point property. His example therefore came
as a surprise to many, and helped redefine the direction of investigation. It cast doubt
on the likelihood of positive answers to three of the most basic open questions, which
we list in decreasing order of strength:

(1) Do all reflexive Banach spaces have the fixed point property? [And conversely;
does having the fixed point property imply reflexivity of the space?]

(2) Do all superreflexive Banach spaces have the fixed point property?
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(3) Does the Hilbert space `2 have the fixed point property in all equivalent norms?

To which we would add,

(4) Does c0 have the weak fixed point property in all equivalent norms? [If on no
other ground than in its natural norm the space is about as bad as it can get.]

Maurey’s results, in particular theorem 4.2, offsets Alspach’s finding and points in
the direction of an affirmative to (2) and hence (3). Lin’s recent stability result for
`2 (see section 5 and [16]) also lends support to (3). The recent progress described
in the chapter on Renormings of `1 and c0 and fixed point properties may be seen as
support for the converse of (1) further support is provided by a result of van Dulst
and Pach [6] which shows that the ‘super fixed point property’ implies superreflexivity.
Maurey was unsuccessful in his attemps to settle (2), however, in the course of his
investigations he discovered the following tantalizing result, the proof of which again
relies on constructions in an ultrapower of the space.

Theorem 4.4 Let X be a superreflexive Banach space and let K be a bounded nonempty
closed convex subset of X. Then any isometry T : K → K has a fixed point.

In other words, superreflexive Banach spaces have the fixed point property for isome-
tries.

Before we close this section, it is worth mentioning that Maurey [17] also proved that
the Hardy space H1 has the fixed point property.

5. Lin’s results
We will not attempt to give a detailed list of the results obtained in the two decades

following Maurey’s discoveries, many of which may be found in the chapter on Stability
of the fixed point property for nonexpansive mappings. However, some of the most
important contributions were due to P-K.Lin [15], and we discuss two of these.

Theorem 5.1 Let X be a Banach space with a 1-unconditional basis, then X has the
weak fixed point property.

Proof. Assume that there exist a weakly compact convex nonempty subset C of X
and T : C → C a nonexpansive map with no fixed point. Let K be a minimal set for
T . Let (xn) be an approximate fixed point sequence in K. Without loss of generality,
we may assume that (xn) converges weakly to 0 ∈ K and diam(K) = 1. Passing to a
subsequence, one can construct a sequence of natural projections (Pn), associated to
the Schauder basis of X, such that

Pn ◦ Pm = 0 if n 6= m,
lim

n→∞
‖Pn(xn)‖ = 0 for any x ∈ X, and

lim
n→∞

‖Pn(xn)− xn‖ = 0.

Using the Goebel-Karlovitz lemma, one may assume that

lim
n→∞

‖xn+1 − xn‖ = 1.

Let (X)U be an ultrafilter of X. Let K̃ and T̃ be associated to K and T . Set

x̃ = [(xn)] and ỹ = [(xn+1)] in K̃.
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Both x̃ and ỹ are fixed points for T̃ . Consider the projections (on (X)U )

P̃ = [(Pn)] and Q̃ = [(Pn+1)].

Hence
P̃ (x̃) = x̃; Q̃(ỹ) = ỹ; P̃ (ỹ) = Q̃(x̃) = P̃ (x) = P̃ (x) = 0

for any x ∈ X. Since the constant of unconditionality of the basis is 1, then we have

P̃ ◦ Q̃ = 0; ‖Ĩ − P̃‖ ≤ 1; ‖Ĩ − Q̃‖ ≤ 1; ‖P̃ + Q̃‖ ≤ 1

where Ĩ is the identity operator of (X)U . Now set

W̃ =
{

w̃ ∈ K̃; there exists x ∈ K; ‖w̃ − x‖ ≤ 1
2

and ‖w̃ − x̃‖ ≤ 1
2
; ‖w̃ − ỹ‖ ≤ 1

2

}
·

Since
‖x̃ + ỹ‖ = ‖P̃ (x̃) + Q̃(ỹ)‖ ≤ ‖P̃ (x̃)− Q̃(ỹ)‖ = ‖x̃− ỹ‖ = 1,

then x̃ + ỹ ∈ W̃ , in other words, W̃ is not empty. It is easy to check that W̃ is
T̃ -invariant, i.e. T̃ (W̃ ) ⊂ W̃ . Let w̃ ∈ W̃ and x ∈ K such that ‖w̃ − x‖ ≤ 1/2. Hence

2w̃ = (P̃ + Q̃)(w̃) + (Ĩ − P̃ )(w̃) + (Ĩ − Q̃)(w̃)

= (P̃ + Q̃)(w̃ − x) + (Ĩ − P̃ )(w̃ − x̃) + (Ĩ − Q̃)(w̃ − ỹ)·

So

2‖w̃‖ ≤
∥∥∥(P̃ + Q̃)(w̃)

∥∥∥ +
∥∥∥(Ĩ − P̃ )(w̃)

∥∥∥ +
∥∥∥(Ĩ − Q̃)(w̃)

∥∥∥
≤ 1

2
+

1
2

+
1
2

=
3
2
·

which implies ‖w̃‖ ≤ 3/4. This is in contradiction with remark 3.14. �

This result was quickly extended, see for example [22], [23], [13] and [5]. In fact
more was proved. For example, by exploiting the gap between 3/4 and 1, Lin obtained
the the conclusion for any Banach space X with an unconditional basis provided that
the constant of unconditionality λ is less than (

√
33 − 3)/2. This conclusion brings

to the surface the problem of whether or not the above result is valid for all Banach
spaces with an unconditional basis. This problem is still open and clearly related to the
stability problem: Does there exists a Banach space for which the above conclusion is
true for any equivalent norm? In the particular case of Hilbert space, Lin [16] improved
on all previously known results by establishing the following stability bound.

Theorem 5.2 Let (H, ‖ · ‖) be a real Hilbert space. Let | · | be an equivalent norm such
that

‖x‖ ≤ |x| ≤ β‖x‖ for all x ∈ H·
Then (H, | · |) has the fixed point property provided

β <

√
5 +

√
13

2
.= 2.07.

The proof uses all of the ingredients developed in this chapter and may be found in
the chapter on Stability of the fixed point property for nonexpansive mappings.
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6. Notes and Remarks
The results developed in this chapter have been used to establish a variety of results

in metric fixed point theory, in particular the weak fixed point property for a large
variety of Banach spaces.

The notion of an ultrafilter dates back to work of Tarski in 1930 and that of an
ultrapower to Skolem in 1934. A rich theory for ultrapowers and ultraproducts (of sets
and models) has been built up by a succession of logicians: Los, Frayne, Morel, Scott,
Tarski, Hanf, Chang, Keisler, Robinson, Luxemburg and Shelah to mention only a few.

Banach space ultrapowers and ultraproducts were formally introduced by Dacunha-
Castelle and Krivine in 1972 and were subsequently developed and applied by Stern,
Heinrich and many others. They are now an important and widely used tool for probing
the geometry and structure of Banach spaces. They have been particularly important
in the study of local theory, superproperties, operator ideals and the isomorphic clas-
sification of Banach spaces.

Ultrapower methods were first introduced into metric fixed point theory by B. Mau-
rey [17] in 1982 when he used this technique to provide a positive resolution to the
long standing question of whether or not c0 had the weakly-fixed point property. He
took the W of remark 3.14 to be the metric midpoint set for two fixed points of T̃
constructed as in remark 3.12. This was generalized in [4] to obtain the weak fixed
point property for Banach lattices with a Riesz angle

α(X) := sup{‖ |x| ∨ |y| ‖ : x, y ∈ BX} < 2

and for which

lim inf
m

lim inf
n

‖ |xn| ∧ |xm| ‖ = 0, whenever (xn) converges weakly to 0.

Lattices with this last property were referred to as weak orthogonal Banach lattices. A
stronger variant of weak orthogonality, namely:

lim inf
n

‖ |xn| ∧ |x| ‖ = 0, whenever (xn) converges weakly to 0 and x ∈ X,

was shown to imply the weakly-fixed point property by Sims [22, 23]. The proof em-
ployed the W first defined by P. K. Lin in 1983 and used to establish the weak fixed
point property for Banach spaces with a 1-unconditional basis [15]. The set W used
in these proofs consisted of those points in Maurey’s W whose distance from JC is
less than or equal to a half, where in addition the points ã and b̃ were chosen to be
‘orthogonal’ to one another so that ‖ã + b̃‖ = ‖ã − b̃‖ = 1. A class of spaces in which
such a choice is always possible was considered in [22]. Such spaces were said to have
property WORTH. It remains an open question whether or not all spaces with WORTH
have the weakly-fixed point property.

Several more ‘geometric’ variants of these conditions have been introduced. For
instance A. Jiménez-Melado and E. Lloréns-Fuster [11] considered the property of or-
thogonal convexity, gave examples of orthogonally convex spaces, and showed that it
entails the weakly-fixed point property. A Banach space X is orthogonally convex if
for every weak-null sequence (xn) with

D(xn) := lim sup
m

lim sup
n

‖xm − xn‖ > 0

there exists β > 1/2 such that

lim sup
m

lim sup
n

sup{‖z‖ : ‖z − xm‖, ‖z − xn‖ ≤ β‖xm − xn‖} < D(xn).
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The characteristic of a sequence, D(wn), first introduced in the above context and
used in the proof of proposition 3.15, has played a crucial role in many of the more
recent results. For example, in the proof that spaces with Kalton’s property (M)
have the weak fixed point property [10] where it was found necessary to employ a W
similar to that used in the proof of proposition 3.15, but defined by the asymmetric
constraints ‖[wn]U − [an]‖ ≤ 1/2 − ε and D[wn] ≤ 1/2 + ε, with ε > 0. Recall
that X has property (M)if weak null types are constant on spheres about 0. That is,
limU ‖x − xn‖ = limU ‖y − xn‖ whenever ‖x‖ = ‖y‖ and (xn) weakly converges to 0.
Starting with the proof of the Goebel-Karlovitz lemma, weak null types are seen to play
an essential role in many aspects of metric fixed point theory. Indeed, understanding
the behaviour of weak null types in a space is often the key to its fixed point properties.

P. K. Lin used a W defined by a combination of all the constraints discussed above
to establish what is currently the best known bound for the stability of the fpp in `2

discussed in section 5.
For many of the results discussed in this chapter, and in many applications, a Banach

space ultrapower (X)U over N can be replaced by the space

`∞(X)/c0(X),

where the quotient norm is canonically given by ‖[xn]‖ = lim supn ‖xn‖, see for example:
[4, 9, 10]. However, calculations in this space usually entail an infestation of subsequence
taking. In many instances it is possible to avoid the use of these larger ambient spaces
altogether; for example, see [7] where an ultrapower free proof of Maurey’s result on the
reflexive subspaces of L1 may be found. However, such proof often obscure the essential
argument in a veritable plague of epsilons and deltas. None-the-less, the disadvantages
and advantages are largely cosmetic and it is up to the individual to choose which
approach is most to their taste.
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[2] Baillon, J. B. and Schöneberg, R., Asymptotic normal structure and fixed points of nonexpansive
mappings, Proc. Amer. Math. Soc., 81 (1981), 257–264.

[3] Benyamini, Yoav and Lindenstrauss, Joram, Geometric Nonlinear Functional Analysis, Vol. 1,
Amer. Math. Soc., Colloquium Publications 48, Providence Rhode Island, 2000.

[4] Borwein, J. M. and Sims, B., Nonexpansive mappings on Banach lattices and related topics,
Houston J. Math., 10 (1984), 339–356.

[5] Dalby, T., Facets of the fixed point theory for nonexpansive mappings, Ph. D. dissertation, Univ.
of Newcastle, Australia, 1997.

[6] van Dulst, D. and Pach, A. J., On flatness and some ergodic super-properties of Banach spaces,
Indagationes Mathematical, 43 (1981), 153–164.

[7] Elton, J., Lin, P. K., Odell, E. and Szarek, S., Remarks on the fixed point problem for nonex-
pansive maps, Contemporary Math. 18 (1983), 87–120.

[8] Enflo, P., Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math.
13 (1973), 281–288.

[9] Garcia-Falset, J., The fixed point property in Banach spaces with NUS-property, preprint.

[10] Garcia-Falset, J. and Sims B., Property (M) and the weak fixed point property, preprint.
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