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NONLINEAR SEMIGROUPS IN MODULAR FUNCTION SPACES
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ABSTRACT. Let L, be the modular function space determined by a function modular p.
We study the existence and the behavor of nonlinear semigroups generated by an operator
A =1I-T, where T is a nonexpansive mapping in the modular sense.

Introduction and Preliminaries. In this paper we consider the classical Musielak-

Orlicz spaces L¥, in which we investigate the existence and the behavor of nonlinear semi-
groups. We obtain an existence result of semigroups generated by mappings A = I — T,
where T is a nonexpansive mapping in the modular sense acting within L¥. The advan-
tages of this approch consist in : (1) an existence theorem even when p does not satisfy
the Aj-condition ( usually this implies that L¥ is a very bad space from the geometrical .
point of view); (2) our conditions on T can be much easier verified since it uses only the
Musielak-Orlicz-modular, which is a simple integral functional.
. Let us also add that the approch consists originally of solving an initial value problem.
When p satisfies the Ag-condition, our existence result (Theorem 2.3) seems to be unknown.
We start with a brief recollection of basic concepts and facts of the theory of Musielak-Orlicz
spaces and modular spaces. '

Definition 1.1. Let X be an arbitrary vector space.
(a) A functional p: X — [0, 00 is called a modular if for arbitrary x,y in X,
(i) p(z)=0iffz =0,
(i) p(a.z) = p(z) for every scalar a with |a| =1,
(iii) p(az +By) < p(z)+p(y)ifa+B=1anda>0,8>0.
(b) If (iii) is replaced by
(iii)’ p(az +By) < ap(z) + Pp(y) f a+B=1and a >0, >0,
we say that p is a convex modular.
(c) A modular p defines a corresponding modular space, i.e the vector space X, given
by
X, ={z € X;p(Ar) = 0 as A — 0}.

Definition 1.2. The modular space X, can be equipped with a norm called the Lux-
emburg norm, defined by

llzll, = inf{e > 0;5(Z) < a}.
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When p is convex we have
. z
llzl|, = inf{a > O;p(;) <1}

In what follows we discuss a classical example of modular function spaces.
Example 1.3. Let (Q, X, 1) be a measure space. A real function ¢ defined on Q x R,
will be said to belong to the class & if the following conditions are satisfied

(i) ¢(w,u) is a nondecreasing continuous function of u such that p(w,0) = 0, p(w,u) >
0 for u > 0 and ¢(w,u) — oo as u — oo, \

(ii) ¢(w,u) is a -measurable function of w for all u > 0,

(iii) ¢(w,u) is a convex function of u, for all w € .

Moreover, consider X, the set of all real-valued X-measurable and finite y-almost ev-
ery where functions on 2, with equality p-almost every where. Since ¢(w,|z(w)|) is a
Y-measurable function of w €  for every z € X, set

plz) = /n 0w, Jo() ) du(w)- )

It is easy to check that p is a convex modular on X. The associated modular function
space X, is called Musielak-Orlicz space and will be denoted L¥.

Throughout this work, we will only consider the Musielak-Orlicz spaces.

Definition 1.4.
(a) A subset C of L¥ is called p-bounded if

6,(C) = sup{p(f — 9); f,9€ C} < o0, .

(b) The sequence {f,} C L¥ is said to be p-convergent to f € L¥ if p(f, — f) — 0 as
n — 00,
(c) A subset C of L¥ is called p-closed if the p-limit of a p-convergent sequence {f,} C C
always belongs to C,
(d) The sequence {f,} C L¥ is said to be p-Cauchy if p(fn — fm) — 0 as n,m — co.
Notice that when {f,} C L¥ is norm-convergent to f € L¥, then pla(f, — f)] — 0
as n — oo, for any scalar @. The converse is also true. This clearly implies that norm-
convergence is stronger than p-convergence. ‘

Definition 1.5. The function modular p is said to satisfy the A,-condition if p(2f,) — 0
as n — 0o, whenever p(f,) — 0 as n — oo.

It is not hard to see that when p satisfies the A,-condition, then p-convergence and
norm-convergence are equivalent. On the Aj-condition and its properties one can consult

(4], (5]

The proof of the following proposition can be found in [1].
Proposition 1.6. The following properties are satisfied by the Musielak-Orlicz modular,
(1) L¥? is p-complete, i.e any p-Cauchy sequence is p-convergent,

(2) (Fatou property) Let {f,} and {g.} be in L¥ and p-convergent respectively to f
and g, then '

P(f -9) < li:l_l’igfp(fn —gn),
(3) p is left continuous, i.e p(Af) — p(f) as A T'1.




NON LINEAR SEMIGROUP SIN MODULAR FUNCTION SPACES 293

Remark that since p does not satisfy a priori the triangle inequality, we cannot expect
that if {fn} and {g,} are p-convergent respectively to f and g then { fn+gn} is p-convergent
to f + g, neither that a p-convergent sequence is p-Cauchy. -

Definition 1.7. Let C be a subset of L¥ and let T : C — C be an arbitrary mapping.
T is said to be p-nonexpansive if p(Tf — Tg) < p(f — g) for any f, g in C. The fixed point
set of T will be denoted by F(T), i.e F(T) = {f € C; T(f) = f}. Since in this work we are
deeling with semigroups, the next definition is legitimate.

Definition 1.8. Let C be a subset of L¥. A mapping S : [0,00) X C — C is said to be

a (p-nonexpansive)-semigroup if the following conditions are satisfied
(i) S(0)f=fforall feC,
(ii) S(t1 + tz) = S(tl)S(tz) for all tl, [2) Z 0,

(iii) the mapping f — S(t)f is p-nonexpansive for all ¢ > 0.

Remark 1.9. One can ask what relation exists between p-nonexpansiveness and norm-
nonexpansiveness. In [3] it is proved that a mapping T' is norm-nonexpansive if and only
if p(a(Tf — Tg)) < p(a(f — g)) for any a > 0. Also an example is given of a mapping
which is p-nonexpansive and not norm-nonexpansive. In order to be complete, we give the
definition of this map. For more details one can consult [3].

Let (2, %, ) = ([0, 00), £, dz) where T is the o-algebra of all Lebsegue measurable subsets
of [0,00). Consider the ®-function

p(t,) = exp(~2)at+1,

The modular function p is defined by
o) = ex(-2) [ Irco+tae

Let C = {f € L*;0 < f < 1} and define the mapping T : C — C by

if 0<t<1

0
Tf(t)z{f(t-l) >

Semigroups in Musielak-Orlicz spaces. In order to obtain an existence result con-
cerning the semigroups in Musielak-Orlicz spaces, the following technical theorem is needed.

Theorem 2.1. Let C be a p-closed, p-bounded convex subset of L¥. Let T : C — C
be p-nonexpansive and norm-continuous. Let f € C be fixed and consider the recurrent
sequence defined by :

{ w() =f
Un41(t) = exp(—t)f + [; exp(s — t)T'(un(s))ds

for t € [0, A], where A is a fixed positive number. Then the sequence {u,(t)} is p-Cauchy
for any t € [0, A]. Therefore it converges with respect to p, to u(t) € C for any t € [0, A].

The proof of Theorem 2.1. is based on the following technical lemma.

Lemma 2.2. Let z,y:[0,t] » L¥ be norm-continuous mappings. Then, we have

pexp(—t)y(t) + /0 exp(s — t)z(s)ds) < exp(—t)p(y(t)) + K (t)sup{p(z(s)); s € [0,%]}
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where K(t) = 1 — exp(—t) = fot exp(s — t)ds.

Proof of Lemma 2.2. Without any loss of generality, we can assume that sup{p(z(s)); s €

[0,t]} < co. Let T = {t;;¢ = 0,1, ..n} be any subdivision of [0,¢]. Set

i=n-—1

S, = exp(—t)y(t) + Z (tig1 — t:;) exp(t; — t)z(t;).

i=0

The family {S,} is norm-convergent to

exp(—t)y(t) + /0 exp(s — t)z(s)ds

when |7| = sup{|ti31 — ti];i = 0,1,..(n — 1)} — 0. The Fatou property implies that

plexp(—t)y(t) + / exp(s - )a(s)ds) < lim inf p(S,).
0 |r|—0

On the other hand, we have

n-1

p(Sr) < exp(=t)p(y(t) + (_(tsrs — t:) exp(ts = 1)) sup (p(=(s))),

i=0

since p is convex and

exp(-t) + Z(t.-+1 —t;) exp(t; —t) < exp(—t) + /0 t exp(s — t)ds = exp(—t) + K(t) = 1.

So p(S;) < exp(—t)p(y(t)) + K(t)sup{p(z(s));s € [0,t]}. This yields to the desired

conclusion.

Let us go back to the proof of Theorem 2.1. First notice that by induction, we can prove
that u,(t) € C for any n € N and t € [0, A], since C is a p-closed (and therefore norm-
closed) convex subset of L?. In order to prove that (u,(t)) is p-convergent we establish the

following inequality
Pnra(t) - ua(t) < K™*1(4)5,(C)

(2)

for all t € [0, A] and n,h € N. For n = 0, we have up(t) — uo(t) = fot exp(s —t)(Tun—1(s) —
f)ds. Since Tup_1(s) € C for all s € [0,t], the inequality (2) holds for n = 0 by using

Lemma 2.2. Assume that (2) holds for n € N and all ¢ € [0, A], then

t
14 h(t) = g (£) = / exp(s — £)(Ttinsn(s) — Tuin(s))ds.
0
Using Lemma 2.2.; we get

P(tn14h(t) — unt1(t)) < K(4) oiggt{p(TunH(s) — Tun(s))}-

Since T is p-nonexpansive and K(t) < K(A), we obtain the inequality (2) for n+ 1. There-
fore, by induction, the inequality (2) holds for every n € N. Hence {u,(t)} is p-Cauchy for
all t € [0, A]. The proof of Theorem 2.1. is therefore complete.
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It is not clear if the assumptions on C and T are enough to imply any good behavor of
u(t) on [0, A] such as norm-continuity for example. But if p satisfies the A,-condition then
u(t) is indeed continuous.

Theorem 2.3. under the assumptions of Theorem 2.1, if moreover p satisfies the A,-
condition, then u(t) is solution of the following initial value problem,

{ v'(t)+ (I -T)u(t)=0
u.(O) =f.

Proof of Theorem 2.3. for any function v : [0, A] = X, and any subdivision 7 = {t;;i =
0,1,..n} of [0, A], put

n-—1
S:(0)(t) = Y (tisr — t:) exp(t: — t)o(ts),

=0

and |7| = sup{|tiy1 — t];¢ = 0,1,..(n — 1)}. Our assumptions on T and {u,} imply that

Jim 18- (Tun)(t) = [ exp(s - 0T (un)(6))doll =0, @)

for every n € N. Using Lemma 2.2. and the inequality (2), we get
p(S+(Tu)(t) — S-(Tun)(t)) < K™*1(4)5,(C).

Since p satisfies the Aj-condition, this implies

Jim IS (Tu)(t) = S-(Tun)(B)ll, = 0, 4)
- and also
Jim lu(t) — ua(t)ll, =0, (5)

for all t € [0, A]. But

157 (Tu)(t) = u(t) + exp(~t)
. t
< 18- (Tu)(t) = S+ (Tun) ()l + 1S+ (Tua)(t) - /o exp(s — t)Tun(s)ds||,

i " exp(s = )Tun(s)ds — u(t) + exp(=t) ]

Since fot exp(s — t)Tun(s)ds = upy1(t) — exp(—t)f, we obtain from (3), (4) and (5) that

Tim [1S-(Tw)(t) — u(t) + exp(~1)fll, =0.
So exp(s — t)T'u(s) is integrable on [0,¢] and

-/o t exp(s — t)Tu(s)ds = u(t) — exp(—t)f. (6)
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From (6) one can easily deduce that u is differentiable and is solution of the desired initial
value problem.
The proof of Theorem 2.3. is therefore complete.

Remark 2.4. Notice that when p satisfies the A;-condition there is no reason for T
to be norm-nonexpansive. So the classical theorems related to the existence of solutions to
the initial value problem won’t apply (see [2],[6]).

Remark 2.5. Let L > A and consider the following system
{ Us(t) =f
Unt1(t) =exp(-t)f + f(: exp(s — t)TU,(s)ds.

for t € [0,L]). Then {U,h(t)} is p-convergent to U(t) and U(t) = u(t) for t € [0, A]. This
implies that there exists u(t) € C for all t € [0,00), such that the restriction of u to [0, A]
is the p-limit of the sequence {u,(t)} given in Theorem 2.2. From now on we will use the
notation uys to designate this function u associated to the initial condition »(0) = f.

In the next result we discuss the existence of p-nonexpansive semigroups in L¥.
Theorem: 2.8. Let C and T be as stated in Theorem 2.1. For any f € C consider
us(t) € C fort € [0,00). Define S : [0,00) X C — C by

S(t)f = us(t).
Then S defines a p-nonexpansive semigroup.
Proof. Clearly we have S(0)f = f for all f € C. Using Proposition 1.6, we get
A(S(8)f — 5(8)g) < liminf p(ugn(t) — ugn(®)

where {uf,} is the sequence given by Theorem 2.1, with the initial value f. An easy
induction, using Lemma 2.2 gives '

p(ugn — ugn) < p(f — 9)
for all t > 0. Therefore,

p(S(t)f — S(t)g) < o(f - 9)

for all ¢t > 0. So the mapping S(t) is p-nonexpansive for all ¢ > 0. In order to complete the
proof of Theorem 2.6, we need to show that S(t + p) = S(¢)S(u) for all ¢ > 0 and p > 0.
Let f € C and put S(u)f = fu. Consider the following system

{ Uo(o) = .f#
Unta(t) = exp(=t)f, + [y exp(s — t)T(Un(s))ds

for all t > 0. We saw that {U,(t)} p-converges to S(t)f,, for any t > 0. We denote by
{un(t)} the sequence given by the same system with f as initial value. Let us show that

) n+m+1
P(Un(t) = tnim(t+ ) < 3 K'(W)8,(C) + K™ ()5,(C) ()

i=m+1
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for any n,m € N, and any ¢,1 > 0. We fix n and prove (7) by induction on n. First notice
that

tp
un(t+ ) = exp(=t = w)f + [ expls —t = p)Tun-s(6)ds
So |
" t
un(t+u) = exp(—t){exp(—p)f+ /0 exp(s—p)Tun_1(s)ds}+exp(—t) /0 exp(s)Tun—1(s)ds.
Let us go back to the inequality (7) and let n = 0. We get
Uo(t) — um(t + p) = u(p) — um(t + ),
since u(u) = fy, so
Uo(t) — um(t + p) = exp(~t)(u(p) — um(p)) + /o exp(s — t)(u(p) — Tum—1(s + p))ds.
Then |

P(Uo(t) — um(t + 1)) < exp(—t)p(u(p) — um(p)) + K(t) oiggt{p(u(#) —Tum_1(s + p))}.

Using the ihequa.lity (2) and the definition of §,(C) we get the inequality (7) for n = 0.
Assume that this inequality holds for n and let us prove it for n + 1. Since

Un+1(t) — nim+1(t + p) = exp(—t)(u(p) — Unsm+1(p))
+ /o exp(s — £)(TUn(5) — Ttimym(s))ds,

we obtain

P(Un+1(2) = Un4m+1(t)) < exp(—t)p(w(p) — Unym41(1))

' + K(t) sup p(TUn(s) = Ttntm(s + p))-
0<s<t
But
. n+m+1 .
P(TUA(8) = Ttinsm(s + 1)) < p(Un(8) = tnym(s +p)) S [ Y, K'() + K™ (2)}6,(C).
i=m+1

Using the fact that K(s) < K(t) for s <t and inequality (2), we get

n+m+1
PUn11(8)—Unsmi1(t+4)) < [KHHH () exp(—t)+K(2)( D K (u)+K™(1))]6,(C)
m+1 '

Therefore

n+m+2

PUnt1(t) = Untmir(t+ 1) < Y K(u)8,(C) + K™3(£)6,(C).
m+1
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So the inequality (7) holds for n+ 1. By induction the inequality (7) holds for any n,m € N
and any ¢,p > 0. Using now Fatou property and letting m — oo in (7) we get

P(Un(t) - u(t + ) < liminf p(Un(t) = tnym(t + 1)) < K™+(2)6,(C),

since the series 3,5, K i(u) is convergent. Therefore, we deduce that {U,(t)} converges
with respect to p to u(t + ). The uniqueness of the p-limit yields to

S@)(Uo(2)) = u(t + 1) = 5(£)(u(n)).

Hence S(t)S(p) = S(t + p) for all ¢, > 0.

The proof of Theorem 2.6 is therefore complete. -
We conclude this work by a remark which links the set of fixed points of the semigroup
S and the set of fixed points of T'.

Remark 2.7. Define the set F(S) to be the set of f € C such that S(t)f = f for all

t > 0. Let us prove that
F(S) = F(T).
Obviously we have F(T') C F(S). Indeed, let f € F(T') then one can easily prove that the

sequence {u,, ¢} is constant and u, #(t) = f for all ¢ > 0. Conversely, let f € F(S). From
the inequality (2) and Fatou property, one can deduce

p(f = un(t)) < K" (A)5(C) (8)

for any n > 1 and any ¢t < A, with A > 0. On the other hand, we have

t .
exp(—t)f + K(E)Tf — uns1(t) = /0 exp(s — )[T'f — Tun(s))ds.
So by using Lemma 2.2, we obtain
plexp(—t)f + K()Tf — un4a(t)) < K(2) Sup P(Tf = Tun(s))-

Since T is p-nonexpansive, we get from (8)

plexp(—)f + K(E)TS — uny1(2)) < K™2(8)6,(C).

So {un41(t)} p-converges to exp(—t)f + K(t)Tf for any t > 0. Uniqueness of the p-limit
implies that

S(t)f = exp(-t)f + K(t)Tf,

which yields to Tf = f. The proof of our statement is therefore complete.

The author would like to thank Professor S. Reich with whom he got fruitful discussions
regarding this work.




NON LINEAR SEMIGROUP SIN MODULAR FUNCTION SPACES 299

REFERENCES

1. S. Chen, M.A. Khamsi, W.M. Kozlowski, Some geometrical properties and fized point theorems in
Orlicz spaces, Jour. Math. Anal. Appl. 155-2 (1991), 393-412.

2. M. C. Crandall, A. Pazy, Semigroups of nonlinear contractions and dissipative sets, Jour. Funct.
Anal., 8 (1963), 376-418.

3. M. A. Khamsi, W. M. Kozlowski, S. Reich, Fized point theory in Modular function spaces, Nonlinear
Analysis, 14 (1990), 935-953.

4. W. M. Kozlowski, Modular function spaces, Dekker, New York, Basel 1988.

5. J. Musielak, Orlicz spaces and Modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin,
Heidelberg, New York 1983.

6. S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl,, 01
(1983), 547-551.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF TExAs AT EL Paso, EL Paso, Tx 79968-
0514, U.S.A.



