NONLINEAR SEMIGROUPS IN MODULAR FUNCTION SPACES

MOHAMED A. KHAMSI

Received July 9, 1990

ABSTRACT. Let L_{ρ} be the modular function space determined by a function modular ρ . We study the existence and the behavor of nonlinear semigroups generated by an operator A = I - T, where T is a nonexpansive mapping in the modular sense.

Introduction and Preliminaries. In this paper we consider the classical Musielak-Orlicz spaces L^{φ} , in which we investigate the existence and the behavor of nonlinear semi-groups. We obtain an existence result of semigroups generated by mappings A = I - T, where T is a nonexpansive mapping in the modular sense acting within L^{φ} . The advantages of this approach consist in: (1) an existence theorem even when φ does not satisfy the Δ_2 -condition (usually this implies that L^{φ} is a very bad space from the geometrical point of view); (2) our conditions on T can be much easier verified since it uses only the Musielak-Orlicz-modular, which is a simple integral functional.

Let us also add that the approch consists originally of solving an initial value problem. When ρ satisfies the Δ_2 -condition, our existence result (Theorem 2.3) seems to be unknown. We start with a brief recollection of basic concepts and facts of the theory of Musielak-Orlicz spaces and modular spaces.

Definition 1.1. Let X be an arbitrary vector space.

- (a) A functional $\rho: X \to [0, \infty]$ is called a modular if for arbitrary x,y in X,
 - (i) $\rho(x) = 0 \text{ iff } x = 0$,
- (ii) $\rho(\alpha.x) = \rho(x)$ for every scalar α with $|\alpha| = 1$,
- (iii) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ if $\alpha + \beta = 1$ and $\alpha \ge 0, \beta \ge 0$.
- (b) If (iii) is replaced by
- (iii)' $\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ if $\alpha + \beta = 1$ and $\alpha \ge 0, \beta \ge 0$, we say that ρ is a convex modular.
- (c) A modular ρ defines a corresponding modular space, i.e the vector space X_{ρ} given by

$$X_{\rho} = \{x \in X; \rho(\lambda x) \to 0 \text{ as } \lambda \to 0\}.$$

Definition 1.2. The modular space X_{ρ} can be equipped with a norm called the Luxemburg norm, defined by

$$||x||_{\rho} = \inf\{\alpha > 0; \rho(\frac{x}{\alpha}) \le \alpha\}.$$

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46E30, 47E10.

Key words and phrases: Semigroups, fixed points, nonexpansive mappings, modular function spaces.

When ρ is convex we have

$$||x||_{\rho}=\inf\{\alpha>0; \rho(\frac{x}{\alpha})\leq 1\}.$$

In what follows we discuss a classical example of modular function spaces.

Example 1.3. Let (Ω, Σ, μ) be a measure space. A real function φ defined on $\Omega \times \Re_+$ will be said to belong to the class Φ if the following conditions are satisfied

- (i) $\varphi(\omega, u)$ is a nondecreasing continuous function of u such that $\varphi(\omega, 0) = 0$, $\varphi(\omega, u) > 0$ for u > 0 and $\varphi(\omega, u) \to \infty$ as $u \to \infty$,
- (ii) $\varphi(\omega, u)$ is a Σ -measurable function of ω for all $u \geq 0$,
- (iii) $\varphi(\omega, u)$ is a convex function of u, for all $\omega \in \Omega$.

Moreover, consider X, the set of all real-valued Σ -measurable and finite μ -almost every where functions on Ω , with equality μ -almost every where. Since $\varphi(\omega,|x(\omega)|)$ is a Σ -measurable function of $\omega \in \Omega$ for every $x \in X$, set

$$\rho(x) = \int_{\Omega} \varphi(\omega, |x(\omega)|) d\mu(\omega). \tag{1}$$

It is easy to check that ρ is a convex modular on X. The associated modular function space X_{ρ} , is called Musielak-Orlicz space and will be denoted L^{φ} .

Throughout this work, we will only consider the Musielak-Orlicz spaces.

Definition 1.4.

(a) A subset C of L^{φ} is called ρ -bounded if

$$\delta_{\rho}(C) = \sup\{\rho(f-g); f, g \in C\} < \infty,$$

- (b) The sequence $\{f_n\} \subset L^{\varphi}$ is said to be ρ -convergent to $f \in L^{\varphi}$ if $\rho(f_n f) \to 0$ as $n \to \infty$,
- (c) A subset C of L^{φ} is called ρ -closed if the ρ -limit of a ρ -convergent sequence $\{f_n\} \subset C$ always belongs to C,
- (d) The sequence $\{f_n\} \subset L^{\varphi}$ is said to be ρ -Cauchy if $\rho(f_n f_m) \to 0$ as $n, m \to \infty$.

Notice that when $\{f_n\} \subset L^{\varphi}$ is norm-convergent to $f \in L^{\varphi}$, then $\rho[\alpha(f_n - f)] \to 0$ as $n \to \infty$, for any scalar α . The converse is also true. This clearly implies that norm-convergence is stronger than ρ -convergence.

Definition 1.5. The function modular ρ is said to satisfy the Δ_2 -condition if $\rho(2f_n) \to 0$ as $n \to \infty$, whenever $\rho(f_n) \to 0$ as $n \to \infty$.

It is not hard to see that when ρ satisfies the Δ_2 -condition, then ρ -convergence and norm-convergence are equivalent. On the Δ_2 -condition and its properties one can consult [4],[5].

The proof of the following proposition can be found in [1].

Proposition 1.6. The following properties are satisfied by the Musielak-Orlicz modular,

- (1) L^{φ} is ρ -complete, i.e any ρ -Cauchy sequence is ρ -convergent,
- (2) (Fatou property) Let $\{f_n\}$ and $\{g_n\}$ be in L^{φ} and ρ -convergent respectively to f and g, then

$$\rho(f-g) \leq \liminf_{n \to \infty} \rho(f_n - g_n),$$

(3) ρ is left continuous, i.e $\rho(\lambda f) \to \rho(f)$ as $\lambda \uparrow 1$.

Remark that since ρ does not satisfy a priori the triangle inequality, we cannot expect that if $\{f_n\}$ and $\{g_n\}$ are ρ -convergent respectively to f and g then $\{f_n+g_n\}$ is ρ -convergent to f+g, neither that a ρ -convergent sequence is ρ -Cauchy.

Definition 1.7. Let C be a subset of L^{φ} and let $T: C \to C$ be an arbitrary mapping. T is said to be ρ -nonexpansive if $\rho(Tf - Tg) \le \rho(f - g)$ for any f, g in C. The fixed point set of T will be denoted by F(T), i.e $F(T) = \{f \in C; T(f) = f\}$. Since in this work we are decling with semigroups, the next definition is legitimate.

Definition 1.8. Let C be a subset of L^{φ} . A mapping $S:[0,\infty)\times C\to C$ is said to be a $(\rho$ -nonexpansive)-semigroup if the following conditions are satisfied

- (i) S(0)f = f for all $f \in C$,
- (ii) $S(t_1 + t_2) = S(t_1)S(t_2)$ for all $t_1, t_2 \ge 0$,
- (iii) the mapping $f \to S(t)f$ is ρ -nonexpansive for all t > 0.

Remark 1.9. One can ask what relation exists between ρ -nonexpansiveness and norm-nonexpansiveness. In [3] it is proved that a mapping T is norm-nonexpansive if and only if $\rho(\alpha(Tf-Tg)) \leq \rho(\alpha(f-g))$ for any $\alpha \geq 0$. Also an example is given of a mapping which is ρ -nonexpansive and not norm-nonexpansive. In order to be complete, we give the definition of this map. For more details one can consult [3].

Let $(\Omega, \Sigma, \mu) = ([0, \infty), \Sigma, dx)$ where Σ is the σ -algebra of all Lebsegue measurable subsets of $[0, \infty)$. Consider the Φ -function

$$\varphi(t,x) = \exp(-2)x^{t+1}.$$

The modular function ρ is defined by

$$\rho(f) = \exp(-2) \int_0^\infty |f(t)|^{t+1} dt.$$

Let $C = \{ f \in L^{\varphi}; 0 \le f \le \frac{1}{2} \}$ and define the mapping $T: C \to C$ by

$$Tf(t) = \begin{cases} 0 & \text{if } 0 \le t \le 1\\ f(t-1) & \text{if } t \ge 1. \end{cases}$$

Semigroups in Musielak-Orlicz spaces. In order to obtain an existence result concerning the semigroups in Musielak-Orlicz spaces, the following technical theorem is needed.

Theorem 2.1. Let C be a ρ -closed, ρ -bounded convex subset of L^{φ} . Let $T:C\to C$ be ρ -nonexpansive and norm-continuous. Let $f\in C$ be fixed and consider the recurrent sequence defined by

$$\begin{cases} u_0(t) = f \\ u_{n+1}(t) = \exp(-t)f + \int_0^t \exp(s-t)T(u_n(s))ds \end{cases}$$

for $t \in [0, A]$, where A is a fixed positive number. Then the sequence $\{u_n(t)\}$ is ρ -Cauchy for any $t \in [0, A]$. Therefore it converges with respect to ρ , to $u(t) \in C$ for any $t \in [0, A]$.

The proof of Theorem 2.1. is based on the following technical lemma.

Lemma 2.2. Let $x, y : [0, t] \to L^{\varphi}$ be norm-continuous mappings. Then, we have

$$\rho(\exp(-t)y(t) + \int_0^t \exp(s-t)x(s)ds) \le \exp(-t)\rho(y(t)) + K(t)\sup\{\rho(x(s)); s \in [0,t]\}$$

where $K(t) = 1 - exp(-t) = \int_0^t \exp(s - t) ds$.

Proof of Lemma 2.2. Without any loss of generality, we can assume that $\sup\{\rho(x(s)); s \in [0,t]\} < \infty$. Let $\tau = \{t_i; i = 0, 1, ...n\}$ be any subdivision of [0,t]. Set

$$S_{\tau} = \exp(-t)y(t) + \sum_{i=0}^{i=n-1} (t_{i+1} - t_i) \exp(t_i - t)x(t_i).$$

The family $\{S_{\tau}\}$ is norm-convergent to

$$\exp(-t)y(t) + \int_0^t \exp(s-t)x(s)ds$$

when $|\tau| = \sup\{|t_{i+1} - t_i|; i = 0, 1, ..(n-1)\} \rightarrow 0$. The Fatou property implies that

$$ho(\exp(-t)y(t)+\int_0^t \exp(s-t)x(s)ds) \leq \liminf_{| au| o 0}
ho(S_ au).$$

On the other hand, we have

$$\rho(S_{\tau}) \leq \exp(-t)\rho(y(t) + (\sum_{i=0}^{n-1} (t_{i+1} - t_i) \exp(t_i - t)) \sup_{0 \leq s \leq t} (\rho(x(s))),$$

since ρ is convex and

$$\exp(-t) + \sum_{i} (t_{i+1} - t_i) \exp(t_i - t) \le \exp(-t) + \int_0^t \exp(s - t) ds = \exp(-t) + K(t) = 1.$$

So $\rho(S_{\tau}) \leq \exp(-t)\rho(y(t)) + K(t)\sup\{\rho(x(s)); s \in [0,t]\}$. This yields to the desired conclusion.

Let us go back to the proof of Theorem 2.1. First notice that by induction, we can prove that $u_n(t) \in C$ for any $n \in N$ and $t \in [0, A]$, since C is a ρ -closed (and therefore norm-closed) convex subset of L^{φ} . In order to prove that $(u_n(t))$ is ρ -convergent we establish the following inequality

$$\rho(u_{n+h}(t) - u_n(t)) \le K^{n+1}(A)\delta_{\rho}(C) \tag{2}$$

for all $t \in [0, A]$ and $n, h \in N$. For n = 0, we have $u_h(t) - u_0(t) = \int_0^t \exp(s - t)(Tu_{h-1}(s) - t)ds$. Since $Tu_{h-1}(s) \in C$ for all $s \in [0, t]$, the inequality (2) holds for n = 0 by using Lemma 2.2. Assume that (2) holds for $n \in N$ and all $t \in [0, A]$, then

$$u_{n+1+h}(t) - u_{n+1}(t) = \int_0^t \exp(s-t)(Tu_{n+h}(s) - Tu_n(s))ds.$$

Using Lemma 2.2., we get

$$\rho(u_{n+1+h}(t)-u_{n+1}(t)) \leq K(A) \sup_{0 < s < t} {\{\rho(Tu_{n+h}(s)-Tu_n(s))\}}.$$

Since T is ρ -nonexpansive and $K(t) \leq K(A)$, we obtain the inequality (2) for n+1. Therefore, by induction, the inequality (2) holds for every $n \in N$. Hence $\{u_n(t)\}$ is ρ -Cauchy for all $t \in [0, A]$. The proof of Theorem 2.1. is therefore complete.

It is not clear if the assumptions on C and T are enough to imply any good behavor of u(t) on [0, A] such as norm-continuity for example. But if ρ satisfies the Δ_2 -condition then u(t) is indeed continuous.

Theorem 2.3. under the assumptions of Theorem 2.1, if moreover ρ satisfies the Δ_2 -condition, then u(t) is solution of the following initial value problem,

$$\begin{cases} u'(t) + (I-T)u(t) = 0 \\ u(0) = f. \end{cases}$$

Proof of Theorem 2.3. for any function $v:[0,A]\to X_\rho$ and any subdivision $\tau=\{t_i;i=0,1,..n\}$ of [0,A], put

$$S_{\tau}(v)(t) = \sum_{i=0}^{n-1} (t_{i+1} - t_i) \exp(t_i - t) v(t_i),$$

and $|\tau| = \sup\{|t_{i+1} - t_i|; i = 0, 1, ...(n-1)\}$. Our assumptions on T and $\{u_n\}$ imply that

$$\lim_{|\tau|\to 0} \|S_{\tau}(Tu_n)(t) - \int_0^t \exp(s-t)T(u_n)(s))ds\|_{\rho} = 0,$$
 (3)

for every $n \in N$. Using Lemma 2.2. and the inequality (2), we get

$$\rho(S_{\tau}(Tu)(t) - S_{\tau}(Tu_n)(t)) \le K^{n+1}(A)\delta_{\rho}(C).$$

Since ρ satisfies the Δ_2 -condition, this implies

$$\lim_{n\to\infty} ||S_{\tau}(Tu)(t) - S_{\tau}(Tu_n)(t)||_{\rho} = 0, \tag{4}$$

and also

$$\lim_{n\to\infty} \|u(t) - u_n(t)\|_{\rho} = 0, \tag{5}$$

for all $t \in [0, A]$. But

$$||S_{\tau}(Tu)(t) - u(t) + \exp(-t)f||_{\rho}$$

$$\leq ||S_{\tau}(Tu)(t) - S_{\tau}(Tu_{n})(t)||_{\rho} + ||S_{\tau}(Tu_{n})(t) - \int_{0}^{t} \exp(s - t)Tu_{n}(s)ds||_{\rho}$$

$$+ ||\int_{0}^{t} \exp(s - t)Tu_{n}(s)ds - u(t) + \exp(-t)f||_{\rho}.$$

Since $\int_0^t \exp(s-t)Tu_n(s)ds = u_{n+1}(t) - \exp(-t)f$, we obtain from (3), (4) and (5) that

$$\lim_{|\tau|\to 0}\|S_{\tau}(Tu)(t)-u(t)+\exp(-t)f\|_{\rho}=0.$$

So $\exp(s-t)Tu(s)$ is integrable on [0,t] and

$$\int_0^t \exp(s-t)Tu(s)ds = u(t) - \exp(-t)f. \tag{6}$$

From (6) one can easily deduce that u is differentiable and is solution of the desired initial value problem.

The proof of Theorem 2.3. is therefore complete.

Remark 2.4. Notice that when ρ satisfies the Δ_2 -condition there is no reason for T to be norm-nonexpansive. So the classical theorems related to the existence of solutions to the initial value problem won't apply (see [2],[6]).

Remark 2.5. Let L > A and consider the following system

$$\begin{cases} U_0(t) = f \\ U_{n+1}(t) = \exp(-t)f + \int_0^t \exp(s-t)TU_n(s)ds. \end{cases}$$

for $t \in [0, L]$. Then $\{U_n(t)\}$ is ρ -convergent to U(t) and U(t) = u(t) for $t \in [0, A]$. This implies that there exists $u(t) \in C$ for all $t \in [0, \infty)$, such that the restriction of u to [0, A] is the ρ -limit of the sequence $\{u_n(t)\}$ given in Theorem 2.2. From now on we will use the notation u_f to designate this function u associated to the initial condition u(0) = f.

In the next result we discuss the existence of ρ -nonexpansive semigroups in L^{φ} .

Theorem 2.6. Let C and T be as stated in Theorem 2.1. For any $f \in C$ consider $u_f(t) \in C$ for $t \in [0, \infty)$. Define $S : [0, \infty) \times C \to C$ by

$$S(t)f = u_f(t).$$

Then S defines a ρ -nonexpansive semigroup.

Proof. Clearly we have S(0)f = f for all $f \in C$. Using Proposition 1.6, we get

$$\rho(S(t)f - S(t)g) \le \liminf_{n \to \infty} \rho(u_{f,n}(t) - u_{g,n}(t))$$

where $\{u_{f,n}\}$ is the sequence given by Theorem 2.1, with the initial value f. An easy induction, using Lemma 2.2 gives

$$\rho(u_{f,n}-u_{g,n}) \le \rho(f-g)$$

for all $t \geq 0$. Therefore,

$$\rho(S(t)f - S(t)g) \le \rho(f - g)$$

for all $t \ge 0$. So the mapping S(t) is ρ -nonexpansive for all $t \ge 0$. In order to complete the proof of Theorem 2.6, we need to show that $S(t + \mu) = S(t)S(\mu)$ for all $t \ge 0$ and $\mu \ge 0$. Let $f \in C$ and put $S(\mu)f = f_{\mu}$. Consider the following system

$$\begin{cases} U_0(0) = f_{\mu} \\ U_{n+1}(t) = \exp(-t)f_{\mu} + \int_0^t \exp(s-t)T(U_n(s))ds \end{cases}$$

for all $t \geq 0$. We saw that $\{U_n(t)\}$ ρ -converges to $S(t)f_{\mu}$, for any $t \geq 0$. We denote by $\{u_n(t)\}$ the sequence given by the same system with f as initial value. Let us show that

$$\rho(U_n(t) - u_{n+m}(t+\mu)) \le \sum_{i=m+1}^{n+m+1} K^i(\mu)\delta_{\rho}(C) + K^{n+1}(t)\delta_{\rho}(C)$$
 (7)

for any $n, m \in N$, and any $t, \mu \geq 0$. We fix n and prove (7) by induction on n. First notice that

$$u_n(t+\mu) = \exp(-t-\mu)f + \int_0^{t+\mu} \exp(s-t-\mu)Tu_{n-1}(s)ds$$

So

$$u_n(t+\mu) = \exp(-t)\{\exp(-\mu)f + \int_0^\mu \exp(s-\mu)Tu_{n-1}(s)ds\} + \exp(-t)\int_0^t \exp(s)Tu_{n-1}(s)ds.$$

Let us go back to the inequality (7) and let n = 0. We get

$$U_0(t) - u_m(t + \mu) = u(\mu) - u_m(t + \mu),$$

since $u(\mu) = f_{\mu}$, so

$$U_0(t) - u_m(t+\mu) = \exp(-t)(u(\mu) - u_m(\mu)) + \int_0^t \exp(s-t)(u(\mu) - Tu_{m-1}(s+\mu))ds.$$

Then

$$\rho(U_0(t) - u_m(t+\mu)) \le \exp(-t)\rho(u(\mu) - u_m(\mu)) + K(t) \sup_{0 \le s \le t} \{\rho(u(\mu) - Tu_{m-1}(s+\mu))\}.$$

Using the inequality (2) and the definition of $\delta_{\rho}(C)$ we get the inequality (7) for n=0. Assume that this inequality holds for n and let us prove it for n+1. Since

$$U_{n+1}(t) - u_{n+m+1}(t+\mu) = \exp(-t)(u(\mu) - u_{n+m+1}(\mu)) + \int_0^t \exp(s-t)(TU_n(s) - Tu_{n+m}(s))ds,$$

we obtain

$$\rho(U_{n+1}(t) - u_{n+m+1}(t)) \le \exp(-t)\rho(u(\mu) - u_{n+m+1}(\mu)) + K(t) \sup_{0 \le s \le t} \rho(TU_n(s) - Tu_{n+m}(s+\mu)).$$

But

$$\rho(TU_n(s) - Tu_{n+m}(s+\mu)) \le \rho(U_n(s) - u_{n+m}(s+\mu)) \le [\sum_{i=m+1}^{n+m+1} K^i(\mu) + K^{n+1}(s)] \delta_{\rho}(C).$$

Using the fact that $K(s) \leq K(t)$ for $s \leq t$ and inequality (2), we get

$$\rho(U_{n+1}(t) - u_{n+m+1}(t+\mu)) \le [K^{n+m+1+1}(\mu) \exp(-t) + K(t)(\sum_{m+1}^{n+m+1} K^{i}(\mu) + K^{n+1}(t))]\delta_{\rho}(C)$$

Therefore

$$\rho(U_{n+1}(t) - u_{n+m+1}(t+\mu)) \le \sum_{m+1}^{n+m+2} K(\mu)\delta_{\rho}(C) + K^{n+2}(t)\delta_{\rho}(C).$$

So the inequality (7) holds for n+1. By induction the inequality (7) holds for any $n, m \in N$ and any $t, \mu \geq 0$. Using now Fatou property and letting $m \to \infty$ in (7) we get

$$\rho(U_n(t)-u(t+\mu)) \leq \liminf_{m\to\infty} \rho(U_n(t)-u_{n+m}(t+\mu)) \leq K^{n+1}(t)\delta_\rho(C),$$

since the series $\sum_{i\geq 1} K^i(\mu)$ is convergent. Therefore, we deduce that $\{U_n(t)\}$ converges with respect to ρ to $u(t+\mu)$. The uniqueness of the ρ -limit yields to

$$S(t)(U_0(t)) = u(t + \mu) = S(t)(u(\mu)).$$

Hence $S(t)S(\mu) = S(t + \mu)$ for all $t, \mu \ge 0$.

The proof of Theorem 2.6 is therefore complete.

We conclude this work by a remark which links the set of fixed points of the semigroup S and the set of fixed points of T.

Remark 2.7. Define the set F(S) to be the set of $f \in C$ such that S(t)f = f for all $t \ge 0$. Let us prove that

$$F(S) = F(T)$$
.

Obviously we have $F(T) \subset F(S)$. Indeed, let $f \in F(T)$ then one can easily prove that the sequence $\{u_{n,f}\}$ is constant and $u_{n,f}(t) = f$ for all $t \geq 0$. Conversely, let $f \in F(S)$. From the inequality (2) and Fatou property, one can deduce

$$\rho(f - u_n(t)) \le K^{n+1}(A)\delta_{\rho}(C) \tag{8}$$

for any $n \ge 1$ and any $t \le A$, with A > 0. On the other hand, we have

$$\exp(-t)f + K(t)Tf - u_{n+1}(t) = \int_0^t \exp(s-t)[Tf - Tu_n(s)]ds.$$

So by using Lemma 2.2, we obtain

$$\rho(\exp(-t)f + K(t)Tf - u_{n+1}(t)) \leq K(t) \sup_{0 \leq s \leq t} \rho(Tf - Tu_n(s)).$$

Since T is ρ -nonexpansive, we get from (8)

$$\rho(\exp(-t)f + K(t)Tf - u_{n+1}(t)) \le K^{n+2}(t)\delta_{\rho}(C).$$

So $\{u_{n+1}(t)\}$ ρ -converges to $\exp(-t)f + K(t)Tf$ for any $t \geq 0$. Uniqueness of the ρ -limit implies that

$$S(t)f = \exp(-t)f + K(t)Tf,$$

which yields to Tf = f. The proof of our statement is therefore complete.

The author would like to thank Professor S. Reich with whom he got fruitful discussions regarding this work.

REFERENCES

- 1. S. Chen, M.A. Khamsi, W.M. Kozlowski, Some geometrical properties and fixed point theorems in Orlicz spaces, Jour. Math. Anal. Appl. 155-2 (1991), 393-412.
- 2. M. C. Crandall, A. Pazy, Semigroups of nonlinear contractions and dissipative sets, Jour. Funct. Anal., 3 (1963), 376-418.
- M. A. Khamsi, W. M. Kozlowski, S. Reich, Fixed point theory in Modular function spaces, Nonlinear Analysis, 14 (1990), 935-953.
- 4. W. M. Kozlowski, Modular function spaces, Dekker, New York, Basel 1988.
- J. Musielak, Orlicz spaces and Modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, Heidelberg, New York 1983.
- S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl., 91 (1983), 547-551.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF TEXAS AT EL PASO, EL PASO, TX 79968-0514, U.S.A.