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UNIFORM NONCOMPACT CONVEXITY,
FIXED POINT PROPERTY IN MODULAR SPACES.
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ABSTRACT. In this work we define the so-called modulus of noncompact convexity in modular
spaces. We extend the results obtained in Banach spaces by Goebel and Sekowski while their
methods can not be reproduced as.

1. Introduction and Preliminaries.
As early as 1930, Orlicz and Birnbaum tried to generalize the Lebesgue function spaces LP.
Namely, they considered the function spaces

L® = {f: R — R;3) >.0such that / B(A\|f(z)|)dz < oo},
R

where ® behaves similarly to power function ®(t) = t?. Later on, the convexity assumptions
on & were ommitted. An interesting example is given by

o(t) =€ - 1.

Application to differential and Integral equations with Kernels of nonpower types were
good reasons for the development of the theory of Orlicz spaces. Recently a new interest
in classical Orlicz spaces is emerging in connection with problems of convexity, the Boyd
indices and rearrangement invariant function spaces (see [10]). The succesful theory of
Orlicz spaces inspired Nakano [13] to develop the theory of Modular spaces in'connection
with the theory of order spaces. This was redefined and generalized by Orlicz and Musielak.
Let us give a brief account of some basic facts on modular spaces.
Definition 1. Let X be a vector space over K(K = C or R). A functional p : X — [0, 0]
is called a modular on X if for arbitrary elements f and g of X, it satisfies the following;:

(1) p(f) =0if and only if f =0,

(2) plaf) = p(f) for every @ € K with |a| =1,

(3) p(af + Bg) < p(f) + p(g) for every a, 8 > 0 with e+ =1.
If we replace (3) by

(3)" plaf + Bg) < aB(f) + Bolg) for every a,f > 0 with a+f =1,
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then the modular p is called convex. For a modular p on X one can associate a modular
space X, defined as

X, ={f € X; lim p(Af) = 0}.

X, is a linear subspace of X. Using the modular p, one can define a F-norm [11] on X » by

171, = int{e > 0; (1) < 1)

If the modular p is convex, then

171, = int{e > 0; (1) < 1)

is a norm on X,, frequently called the Luxemburg norm [11]. One can also check that
lfn — fll, — 0 is equivalent to p(a(fn — f)) — 0 for all & > 0.

Examples.

(Example 1.) The Musielak-Orlicz modular spaces (see. e.g. [11]). Let

o(f) = /n (w, £(w))du(w),

where g, a o-finite measure on 2, and ¢ :  x R — [0, 00) satisfy the following:

(i)p(w, u) is a continuous even function of 4 which is nondecreasing for u > 0, such that
p(w,0) =0, p(w,u) > 0 for u # 0, and p(w,u) — co as u — oo.

(ii)¢p(w, ) is a measurable function of w for each v € R.

The corresponding modular space is called a Musielak-Orlicz (or a generalized Orlicz)
modular function space, and is denoted by L¥. If ¢ does not depend on the first variable,
then L¥ is called an Orlicz space. An exemple of functions that satisfy the above conditions,
is given by

p(u) = |u|?,for p > 0.

Then L¥ is isomorphic to L?.
(Example 2.) (See e.g. [4,9]) Let

p(f) = sup / o, F(w))duw),
HEAJQ

where ¢ is as in Example 1 and A is a set of positive measures such that sup u(R2) < oco.
HEA
Then p is a function modular.

(Example 3.) Lorentz type LP-spaces, see [4,9]. Let

(1) = sup [ 17(0)Pdur(w),
T€ET JQ
where y is a o-finite measure on §, 7 is the group of all measure preserving transformations

7:0— Qand
pr(E) = p(r~H(E)).

Then p is a function modular.
Definition 2. Let X, be a modular space.
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(a) We say that a sequence (f,) is p-convergent to f and write f, — f(p), if and only if -

o(fn—f)— 0asn — oo.

(b) p is said to satisfy the As-condition if p(2f,) — 0 whenever p(f,) — 0 as n — 0.

(c) (Fatou property) We say that p has the Fatou property if p(f) < liminf, p(fn)
whenever (f,) p-converges to f.

(d) A sequence (f,) is called p-Cauchy whenever p(f, — frm) — 0 as n,m — oo.

(e) The modular p is called complete if any p-Cauchy sequence is p-convergent.

(f) A subset B C X, is called p-closed if for any sequence (f,) C B p-convergent to
" f€X,, wehave f € B.

(g) A p-closed subset B C X, is called p-compact if any sequence (f,) C B has a
p-convergent subsequence.

(h) A subset B C X, is said to be p-bounded if

85(B) = sup{p(f - 9); f,9 € B} < oo.

(i)Define the p-distance between f € X, and B C X, as

d,(f,B) =.inf{p(f -9);9 € B}.

Remarks.

(1) Note that p-convergence does not necessarily imply p-Cauchy since p does not a priori
satisfy the triangle inequality. One can easily show that this will happen if and only if p
satisfies the Ax-condition.

(2) Since the intersection of p-closed sets is still p-closed, one can associate to any subset
A of X, a p-closed subset, denoted A, which is minimal in the following sence:

if AC B and Bis p-closed, then A C B.

We will call A the p-closure of A.

(3) One can give an easy characterization of Fatou property in terms of p-balls. Indeed,
one can check that p-balls are p-closed if and only if p has the Fatou property. Recall the
definition of the p-ball B,(f,r) centered at f € X, with radius r as

By(f,r)={g9€ Xp;p(f —g) <}

In Banach spaces, when we think of reflexivity automatically the dual space is present in
our taught. But in modular spaces, it is very hard to conceive the dual space. To circumvent
the problem, we use some characterizations of reflexivity.

Definition 3. Let X, be a modular space.

(a) We will say that X, or p satisfy the property (R) if and only if every decreasing
sequence of nonempty p-closed and p-bounded convex subset of X, has a nonempty inter-
section.
~ (b) We will say that X, or p satisfy the property (R') if and only if for every p-bounded
sequence (fn) C X,, there exists a subsequence (fn’) of (fn) such that the intersection of
(cl(conv{fi;i > n})) is nonempty and reduced to one point.

Remarks.

(2) By cl(conv{A}), we mean the p-closure of the smallest convex subset containing A.

(b) Clearly.the property (R’) implies the property (R) and are equivalent in Banach
spaces.

2. Uniform noncompact convexity in Modular spaces.
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Goebel and Sekowski [5] used the concept of measure of noncompactness to give a new
classification of Banach spaces. In this work, we discuss their result under the setting of
modular spaces.
Definition 4. Let X, be a modular space. Define the Hausdorff measure of noncompactness
by

X(A) = inf{e > 0; A can be convered with a finite number of p-balls of radius smaller than
€},
and the Kuratowsk1 measure of noncompactness by
a(A) = inf{e > 0; Acan be covered with a finite number of sets of diameter smaller than €},
for any subset A of X,. We will make the obvious convention that the inf over empty set
is infinite.

One can easily notice that x(A4) < a(A) for every A C X,.

Throughout this work, we will assume that X, is p-complete and p satisfies the Fatou
property.

Proposition 5. The following properties hold,

(1) if A C B, then x(A) < x(B) and a(A) < a(B),

(2) x(4) = x(4) and a(4) = o(4),

(3) if a(A) =0, then A is p-compact,

(4) let (A,) be a decreasing sequence of nonempty p-closed subset of X,. Assume that
lim, a(An) = O (resp. lim, x(A,) = 0) then NA, is a nonempty p-compact set (resp. N4,
is nonempty and x(NA,) =0).

Proof. The proof of (1) is obvious. :

In order to prove (2), first notice that x(4) < x(A) Let € > 0, then there exists

B,(z1,7), ", Bo(Zn,r) such that

Ac | Bu(=i1)
1<ikn

where 7 < x(A) + €. Since p satisfies the Fatou property, the p-balls are p-closed and
therefore . '
A C By(zy,7) U - - UB,(zn,T),

which implies x(A) < r < x(A) + €. Because € is arbitarary, we have x(4) < x(4).
The second claim will easily hold if

(%) diam,(A) = diam,(A).

In order to prove (x), set diam,(A) = d. Then for any z'€ A we have A C B,(z,d). Since
the p-balls are p-closed, we get A C B,(z,d). So, for any y € A we have p(z — y) < d.
One can clearly deduce that A C B,(y,d) for all y € A. Again using the p-closeness of the
p-balls, we get A C B,(y,d). Therefore diam,(4) < d = diam,(A). And since the other
inequality is obvious, we deduce (x). ‘

Let us prove (3). Assume that a(A) = 0. Let (f,)be any sequence of elements in A. Let
€ > 0, then by using the definition of a one can find a subsequence (f,/)of (f»)such that
p(frnr — fm') < € for all n’',m’ € N. An easy argument will show that (f,)has a p-Cauchy
subsequence which is p-convergent since X, is p-complete.

In order to prove (4), let (A,) be a decreasing sequence of p-closed nonempty subsets of X,
such that lim, o(A4,) = 0. Choose f, € A, and let € > 0. Then, there exists ng > 1 such
that a(A,) < € for n > ng. Therefore, there exist D, -, D, such that

A'nOC U Di:

1<i<k
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with diam,(D;) <€, forall1<i< k. So f, € |J D;foralln > ng. It is clear, therefore,
1<i<k

that one D; contains infinitely many f,. So there exists a subsequence ( f,’)of (fn)such that
P(far — fmr) < € for all n/,m’. A classical argument will imply that (f,)has a p-Cauchy
subsequence which is therefore p-convergent to f € X,. Using the p-closeness of A,, we
deduce that f € A, for all n > 1. Then NA, # 0 and obv10usly we have a(NA, ) = 0.
Therefore, NA,, is p-compact using (3).

In order to complete the proof of (4), let (A,) be a decreasing sequence of p-closed nonempty
subsets of X, such that lim, x(A,) = 0. Let € > 0, then there exists ng € N such that
X(Ano) < €. Let fan € A, for all n, then there exist infinitely many elements from
(fn)which belong to a certain p-ball B,(f,€). This implies that there exists a subsequence
(fnr)such that

o5t = F)) S ol = )+ 0lF = ) < 2€

for every n’,m’. So, using the same idea as before, there exists a subsequence ( fn:)of
(fn)such that (3fw) is p-Cauchy Let h € X, be its limit. Fix ny € N, then (3(fa, +

S Dmrz, nt is p-convergent to 3 fn + h. Threrfore, because A, is p-closed we deduce that

2an + h € A, . Since kna is decreasing, we get 3 lfw+he Am for all n’ > m for a fixed
m. Again since (1 fn + B)n>m is p-convergent to h + h = 2h, we obtain that 2k € A,

This clearly 1mp11es that NA, is nonempty and using (3) we get x(NA4,) = 0 The proof of .

Proposition 5 is therefore complete.
Remark. Since in general p is not subadditive, there is no reason to have o(A) = 0 whenever
A is p-compact. Let us add that it can be shown that p satisfies the A,-condition if and
only if a(A) = 0 whenever A is p-compact.
For more on a and yx, one can consult [1].

As Goebel and Sekowski did in Banach spaces, we give a new scaling for modular spaces
using the measures of noncompactness a and x.
Definition 6. The p-modulus of noncompact convexity A, (resp. A.) is defined as

(x%) Ay(r,€) = sup{c > 0; for any p-bounded convex A C X, p-bounded and f € X,
such that A C B,(f,r) with x(A4) > re, then dist,(f,A) < (1 -¢)},
for every r > 0 and € > 0. :
For the characteristic of noncompact convexity by

ex (1, X,) .(resp. €a(r, X,)) = sup{e > 0; Ay(r,€) (resp. Ax(r,€)) =0}

for every r > 0.

Since we have x < a, one can get A, < A, and €4 < €. In any Banach space X, one
can easily prove that €,(X) = 0 if and only if €,(X) = 0. In modular spaces, it is not the
case in general.

Definition 7. The modular space X, is said to be a (resp. x)-uniformly p-noncompact
convex if and only if €4(r, X,) = 0 (resp. €y(r, X,) = 0), for every r > 0.

Clearly if X, is x-uniformly p-noncompact convex, X, is a-uniformly p-noncompact
convex.

Example. Recall that the authors in [2] see also [6,11]) introduced a concept scaling the
modular spaces called p-uniform convexity. Let us recall their definition. We will say that

X, is p-uniformly convex if for every 7 > 0 and € > 0, the p-modulus of uniform fonvexity,
defined as

by(r,€) = inf{1 — Zo(f + )},

i
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(where the infimum is taken over all f,h € X, such that p(f) < 7,p(f + h) < = and
p( ) 2 7e€) is strictly positive.

One can also find, in [2], examples of modular spaces which are p-uniformly convex. Let
us show that p-uniform convexity implies a-uniform p-noncompact convexity. Indeed, let
A C X, be nonempty p-bounded and convex such that A C B,(f,r) with a(4) > re for
some f € X,,7 > 0 and € > 0. Let { < 1 then, by definition of e, one can find hy,hy € A
such that p(h; — hy) > r{e. Therefore, we have

p((f_hl);(f_hZ)) ST(I _

617 (Tx Cé’)).
Since Lu_-lz-ﬁz €A, we deduce that

dist,(f, A) < (1 — 8,(r, (e)).

Which clearly implies that

for every r > 0,6 > 0 and ¢ < 1.
This obviously completes the proof of our claim.

3. Main results
Goebel and Sekowski [5] proved that whenever the characteristic of uniform noncompact
convexity of any Banach space is less than 1, then the space is reflexive and has the normal
structure property. In what follows, we investigate the validity of these results in modular .
spaces. Let us point out that their proofs are entirely based on the rich structure of the
Banach spaces, specially the existence of the dual space.
The first result discuss the link between proximinality and the p-moduls of noncompact
convexity. More exactly, given a function f € X,, we consider the minimization problem of

finding h € C such that
p(f — k) =inf{p(f - g);9 € C},

for a given C C X,. Such a h is called a best approximant. Problems of finding best
approximants are important in approximation theory [12] and probability theory [3].
Theorem 1. Let X, be a p-complete modular space. Assume that p is convex, satisfy the
Fatou property and X, is a-uniformly p-noncompact convex. Then for any nonempty C
p-bounded p-closed convex subset of X, and f € X, such that dist,(f,C) < oo, the set

P,(f,C) = {g € C;dist,(f,C) = p(f — 9)}

is a nonempty p-compact convex subset.

Proof. We assume without any loss of generality that d = dist,(f,C) > 0. Consider the
sets C, = C N B,(f,d + 1) for n > 1. Then clearly C,, is a decreasing sequence of p-closed
nonempty convex subsets of C. Assume that inf a(C,) = lim, a(C,) > 0. Then since X,
is a-uniformly p-noncompact convex there exists A > 0 such that

dist,(£,Ca) < (1= A)(d+ )
for every n > 1. Since dist,(f,C) < dist,(f,C,), we get

d<(1-A)d+ )
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for every n > 1. This contradicts the fact that d > 0. So lim,, a(C,) = 0, and by Proposition
5, we deduce that NC,, is a nonempty p-compact convex subset of C. Obviously we have

Pp(f; C) = nnZICn-

The proof of Theorem 1 is therefore complete.
Remark. We are unable to prove whether the conclusion of Theorem 1 is true if we juste
assume that €,(X,) < 1. '
Theorem 2. Let X, be a p-complete modular space. Assume that p is convex, satisfy the
Fatou property and X, is a-uniformly p-noncompact convex.
Then X, has the Property (R).

Proof. Let (C) be a decreasing sequence of p-bounded p-closed nonempty convex subsets
of X,. Fix f € Cp, then

r = sup dist,(f,Cn) < diam,(Co) < o0o.

Define K, = C, N B,(f,r). Clearly (K,) is a decreasing sequence of nonempty p-closed
convex subsets of X,. Using the same argument as for the proof of Theorem 1, one can
show that lim, a(K,) = 0. So, NK, is'a nonempty p-compact convex of ekp. Therefore
NC,, is nonempty, which completes the proof of Theorem 2.

Remark. One can ask if (] Ag is nonempty under the assumptions of Theorem 2, for

Ber

any decreasing family (Ag)ger of p-bounded, p-closed nonempty convex subsets of X, and
any directed set T'. The answer to this problem is in the affirmative. Indeed, let (Ag)ger be
as described before. We can assume without any loss of generality that I' has a minimum,
say (Bo. Let f € Ag,, then

r = sup{dist,(f, Ag); B € I'} < diam,(Ag,) < oo.

Set K3 = Ag N B,(f,r) for any B € T'. Then (Kp)ger is a decreasing family of nonempty
p-closed convex subsets of X,. Uning the same argument as before, we get inf{a(Kp); B €
T'} = 0. Therefore for every n > 1, there exists 3, € I such that

1
< -,
a(Kg,) < -

Clearly one can choose (8,) C T such that (Kp,) is decreasing. Using Proposition 5, we
obtain that Ko, =NKpg, is a nonempty p-compact subset.
We can assume that there exists 8’ € T' such that 8, < #' for every n > 1. Otherwise, we

would have
N K. = [) Ks-
n>1 Ber

Since (K) is decreasing, we deduce that Kz C Ko for every 8 > f'. Put § = diam,(Kpg').
Because a(Kp') = 0, one can find (4;)1<i<k such that ’

Kp c |J Aswith diam,(4;) <
1<i<k

NS

Let fg € K for every 8 > . It is not hard to show that there exists io € {1,2,..,k} such
that for every 8 > B’ there exists v > 3 such that f, € A;,. Indeed, assume to the contrary
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that for every ¢ € {1,..,k} there exists 8; > ' such that f+ does not belong to A; for all
¥ 2 B;. Since I is a directed set, there exists 8 € I" such that 3 > B; for every i € {1,..,k}.
So fp does not belong to any A4;. Contradicting the fact that fe € Kg C K C Ay U--UA.
Therefore, there exists such ig € {1,..,k}. Set

Cs={fy;v>pand fy € Gy}

Then for every 8 > B, Cp is nonempty and moreover we have for every { > 3, there exists
7 2 ¢ such that f, € Ag. Since Cp C Ai, we get diam,(Cp) < £. Let Lg = cl(conv{Cs})
for all B > B'. Then diam,(Lg) < £ and (Lg)s>p is a decreasing family of nonempty
p-closed convex sets with Lz C Kj for every 8 > . Using a(Kp) = 0 we deduce that
a(Lg) = 0 for every 8 > . ‘
One can repeat the same construction to get another decreasing family (L[23) of p-closed
convex subsets with L% C Lgforall 3> B and diam,(L3) < %, since a(Lg') = 0.
So by induction, we obtain a decreasing family (LE)ﬁZﬁl of p-closed convex nonempty
subsets with

L cC L;—l and diam,(L3) < 2%,

for all 3> ' and all n > 2. Since X, is p-complete, we get

[\ Lp#0for all> 4. |

n>1

Clearly NLj is reduced to one point, say hg for all 8 > '. Since Lz C LyforanyB>v2>f
and any n > 1, we obtain hg = h, for every 8 > v > f'. Therefore, hg € L§ C Kp for all
n > 1and all 8 > ', which clearly implies

0# () Ksc () 4
B>p' Ber

This completes the proof of our claim.

The next result discuss the p-normal structure in uniformly p-noncompact convex mod-
ular spaces. Let us first recall some basic definitions.
Definition 8. We will say that X, has the p-normal structure if and only if for any nonempty
C p-closed p-bounded convex subset of X,, not reduced to one point, there exists fecC
such that - -

sup{p(f - 9); 9 € C} < diam,(C).

Theorem 3. Let X, be a p-complete modular space. Assume that p is convex, satifies the
Fatou property and €,(X,) < 1.
Then X, has the p-normal structure proveded that X, has the property (R’ ).

Proof. Assume to the contrary that X, fails to satisfy the p-normal structure. Then
there exists a nonempty K p-closed, p-bounded convex subset, not reduced to one point,
such that

sup{p(f — 9);9 € K}diam,(K) = d,
for all f € K. Fix f; € K and let f, € K such that

o(f2 — f1) Z d(1 - 2l3)-
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Assume that (fi,.., fr) has been constructed‘, then let fn41 € K such that
n - = 2 >d(1 -
p(f+l ;f)_ ( ( +1)3)

So there exists a sequence (f,) C K such that

d(l ( +1)3)_P(fn+1——2f’l)<d

for every m > 1. Using the convexity of p, we can get

(xxx) d(1- e 1)2) <o(f = fay1) £ d,

forevery f = Y. aifi with; > 0and ) o; =1. Indeed put a@ = max(a;), then we have
1<i<n

= Zj f,——f+ 3 (—— =)

1 <ikn 1<i<n

Since -1 + Y (% — 2i) = 1, we obtain

! 3 1 1 [o 7
- ;fi = fatr = —(f = far1) + > (= = )i = fata)-

1<ikn
Therefore,
1 : 1 1 o
- ) S —=pf -] == —)p{fi — Jn+1),
dt (n+ 1)3) - nap(f frt1) + 1<§n(n na)p(f Af +1)
and then

1 1 - 1
d(1 - m) < ',,Ep(f = fay1) + (1= ;,-'E)d,
which implies

d(1 - ﬁ”’l—)z,) < p(f = fat1).

Since na < n + 1, we obtain the inequality (* * *).
In partisular, we have

©  pla—fm) 2 (1= =),

for every m > n > 1. Since X, satisfies the property (R'), there exists a subsequence (fn')
of (f.) such that

n cl(conv{fs;i > n}) = {h}.

n>1

Denote C, = cl(conv{fi;i > n}). Using ({), it is not hard to show that a(C,) > d for
every n > 1. Let f € K, then C, C B,(f,d) since diam,(K) = d. Because €4(X,) < 1,
one can find A > 0 such that

dist,(f,Cn) < (1- A)d.

i
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Theorem 1 implies that
Cn N By(f,(1 - A)d) = Kn,

is nonempty for all n > 1. Since (K,) is a decreasing sequence of p-closed p-bounded

nonempty convex subsets we obtain, using Theorem 2,
nKn = ﬂCn an(f1(1 - A)d)
n n

is nonempty. This clearly implies that
p(f —h) < (1-A)d.
Since this is true for any f € K, we get
sup{p(f — h); f € K} < (1 - A)d.

Contradicting our assumption on K, which completes the proof of Theorem 3.

The last result of this work gives an analoguous of Kirk’s fixed point theorem [7].
Theorem 4. Let X, be a p-complete modular space. Assume that p is convex and satisfies
the Fatou property. Moreover, we will assume that X, has the p-normal structure and has
the property (R). Let C be any p-closed p-bounded convex nonempty subset of X,,.

Then any T : C — C p-nonexpansive (i.e. p(Tf—Tg) < p(f —g) for all f,g € C) has a
fixed point, i.e. there exists f € C such that Tf = f.
Proof. Let T : C — C be a p-nonexpansive map. For any p-closed convex nonempty D

subset of C, define

R,(D) = inf{r,(f,D); f € D},
where 7,(f, D) = sup{p(f - g);g € D}.
The following lemma, will be very helpful for the proof of Theorem 4. Its proof can be found
in [6,8].
Lemma. Under the above assumptions, for any D p-closed convex nonempty subset of C,
which is T-invariant (i.e. TD C D), there exists D* p-closed nonempty convex subset of D
which is T-invariant and

diom,(D*) < 5(diam,(D) + By(D)).
In order to compete the proof of Theorem 4, let
F = {D C C; D is p-closed convex nonempty with TD C D}.
It is clear that C € F. Define 6, : F — [0,00) by |
8o(D) = inf{diam,(K); K € F and K C D}.
Put D, = C and let Dy € F with Dy C D; such that
diam,(Dz) < 60(D1) + %

Suppose that D, .., D, have been constructed. Let D41 € F with D,41 C D, such that

(8)  diam,(Dnta) < 6o(Da) + 7
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Therefore, one can construct a sequence (D,) C F such that (ﬁ) is satisfied for every n > 1.
Since X, satisfies the property (R), we deduce that

Deo=[)Dn

n>1
is nonempty and belongs to F. Let D}, be the subset of Do, given by the Lemma. Then
we have
diam,(D},) < = (dzamp(Dw) + R,(Doo))-
But 1
diam,(D%) < diam,(Ds) < diamy(Dpy1) < 60(Dn) + —— Tr1

Therefore using the definition of §; we get

1

diam,(D?,) < diam,(Do) < diam,(D3,) + — 1

for every n > 1. So diam,(Ds) = diam,(D?,) holds. This clearly implies that
R,(Dys) = diam,(Do)-

Using the p-normal structure assumption, we deduce that Do, is reduced to one point which
is a fixed point for T'. The proof of Theorem 4 is therefore complete.

Remark. If we assume that X, is c-uniformly p-noncompact convex in Theorem 4, the
proof will be easier. Indeed, let T : C — C be a p-nonexpansive map. Define

F ={D C C; D is p-closed convex nonempty with TD C D}.

Using the remark following Theorem 2, we deduce that F satifies the Zorn’s lemma assump-
tions. Therefore F has minimal elements. Let D be a minimal element and let us show that
D is reduced to one point which is therefore a fixed point for T'. Assume to the contrary
that diam,(D) > 0. Set

Dy = cl(conv(TD)).
Then Dg is a nonempty p-closed convex subset of D which is T-invariant since T Dy C
TD C Dgy. The minimality of D implies Dy = D. On the other hand, let f € D and put

r(f) = sup{p(f — g); 9 € D}.

Then D C B,(f,r) holds. Since T is p-nonexpansive, we deduce that TD C B,(Tf, 'r)
Therefore

D = cl(conv(TD)) C B,(Tf,r)
holds, which means that (T f) < (f) for every f € D. Put
D* ={f € D;r(f) < r(fo)}

for a fixed fo € D. It is not hard to show that D* is a nonempty p-closed convex subset of
D which is T-invariant. The minimality of D will imply that D = D*. This clearly implies
that the function r is constant on D. Therefore, we obtain

R,(D) = 1(f) = diam,(D)

for.every f € D. This obviously contradicts the p-normal structure satisfied by X,, which
completes the proof of our claim.
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