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1. Introduction

Two results about fixed points are very much related. One is the famous theorem of Tarski ([47], 1955): 
every order-preserving map on a complete lattice has a fixed point. The other is a theorem of R. Sine and 
P.M. Soardi ([44], [46], 1979): every non-expansive mapping on a bounded hyperconvex metric space has a 
fixed point. Indeed, as was shown by D. Misane and the second author ([32], 1984, see also [37], 1985 and [22], 
1986), if one considers a generalization of metric spaces, where, instead of real numbers, the distance values 
are members of an ordered monoid equipped with an involution, the most natural candidates for spaces with 
the fixed point property with respect to non-expansive mappings are among the absolute retracts. With a 
distributivity condition on the monoid, absolute retracts coincide with hyperconvex spaces. In the class of 
ordered sets, absolute retracts coincide with complete lattices (Banaschewski-Bruns [6]), whereas in the case 
of ordinary metric spaces, absolute retracts coincide with hyperconvex spaces (Aronszajn-Panitchpakdi, [3]). 
This explains the relationship between the results of Tarski and Sine-Soardi.

Since A. Tarski obtained, in fact, that every commuting family of order-preserving maps on a complete 
lattice has a common fixed point, E. Jawhari et al. [22] considered the question whether in this frame every 
commuting family of non-expansive mappings on a bounded hyperconvex space has a common fixed point, 
discovering that it was still unsettled in the frame of ordinary metric spaces. They got a positive answer for 
countable families; J.B. Baillon ([5], 1986) got a positive answer for arbitrary families acting on ordinary 
hyperconvex metric spaces. The proof of Baillon is based upon a clever compactness argument. At first 
glance, this argument works with minor changes for generalized hyperconvex spaces considered in [22] (but 
this was never published). On the other hand, with some extra work, it can be adapted to metric spaces 
endowed with a compact normal structure –as abstractly defined by J.P. Penot [35], [36]– spaces which 
include the hyperconvex ones. This extension was done by the first author in [28]. For other results on the 
existence of a common fixed point for a commuting set of non-expansive maps, see [14], [16], [31].

In this paper, we propose a generalization of Penot’s notions in the framework of binary relational systems 
and their relational homomorphisms. Indeed, on one hand, non-expansive mappings f acting on an ordinary 
metric space, (or a generalized one), say (E, d), with distance function d from E × E into the set R+ of 
nonnegative reals (or into an ordered monoid V equipped with an involution), are relational homomorphisms 
of the binary relational system E := (E, {δv : v ∈ V }), where δv := {(x, y) ∈ E × E : d(x, y) ≤ v} for each 
v belonging to V . On the other hand, Penot’s notions are very easy to define in this frame. We prove that 
if a reflexive and involutive binary relational system has a compact normal structure then every commuting 
family of relational homomorphisms has a common fixed point (Theorem 3.8). As an illustration, we get that 
on a graph which is a retract of a product of reflexive oriented zigzags of bounded length, every commuting 
family of preserving maps has a common fixed point (Theorem 4.23). Tarski’s result corresponds to the 
case of a retract of a power of a two-element zigzag. Characterizations of reflexive and involutive binary 
relational systems with a compact normal structure are still open.

This paper is another opportunity to go beyond the analogy between metric spaces and binary relational 
systems. We consider generalized metric spaces whose distance values belong to an ordered monoid equipped 
with an involution and satisfying a distributivity condition. These structures, considered in the middle of the 
eighties [37,22] and then in subsequent papers (e.g. [38,24–26]), were called involutive Heyting algebras. They 
fit in the frame of quantales introduced by Mulvey [33] and are dual to integral involutive quantales defined 
by Kaarli and Radeleczki [23] (Subsection 4.9 has more bibliographical information). In this context, the 
notion of one-local retract, which is the key in proving our main result, fits naturally with the parent notion 
of hole-preserving map. We show that if a generalized metric space (E, d) is bounded and hyperconvex then 
it has a compact normal structure (Corollary 4.7). And from Theorem 4.5, we obtain that if a generalized 
metric space (E, d) is bounded and hyperconvex then every commuting family of non-expansive self maps 
has a common fixed point (Theorem 4.8). Our fix-point result on graphs fits in this context as well. Graphs 
with the fixed point property must be oriented (alias antisymmetric). Absolute retracts in the category of 
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oriented graphs coincide with retracts of products of oriented paths and belong to the smaller category of 
metric spaces with values in the MacNeille completion of the monoid of words over a two-letter alphabet 
(a result of Bandelt, Saïdane and the second author, proved a longtime ago, see Chapter V of [42] and the 
forthcoming [8]). The reader will see transition systems as other examples of generalized metric spaces in 
[38,25,26].

This paper consists of three additional sections. Section 2 contains the notions of compact normal struc-
ture for relational systems; an illustration with a fixed-point result is given. Section 3 contains the notion of 
one-local retract. The main property, Theorem 3.7 is stated; Theorem 3.8 is given as a consequence. Section 4
illustrates our main result. Subsection 4.1 contains the exact relationship between reflexive involutive binary 
systems and generalized metric spaces over an involutive monoid (e.g. Lemma 4.4 and Theorem 4.5). In 
Subsection 4.2, the notion of hyperconvexity is recalled. Notions of inaccessibility and boundedness insuring 
that hyperconvex spaces have a compact normal structure are stated (Corollary 4.7). Spaces over a Heyt-
ing algebra with their main properties are presented in Subsection 4.3 (Theorem 4.9 and Theorem 4.10). 
Subsection 4.4 contains the relationship between one-local retract and hole-preserving maps. Subsection 4.5
brings together the results for ordinary metric spaces. The case of ordered sets is treated in Subsection 4.6. It 
contains a characterization of posets with a compact structure. The case of directed graphs with the zigzag 
distance is treated in Subsection 4.7. Subsection 4.8 contains a characterization of graphs isometrically 
embeddable into a product of oriented zigzags (Theorem 4.20) and our fixed point theorem (Theorem 4.23).

Acknowledgement

We are pleased to thank the referee of this paper for thoughtful suggestions and numerous corrections.

2. Basic definitions, elementary properties and a fixed-point result

We adapt the basic notions of the theory of metric spaces to binary relations and to binary relational 
systems. The trick we use for this purpose consists in denoting by d(x, y) ≤ r the fact that the pair (x, y)
belongs to the binary relation r, to interpret d as a distance, and d(x, y) and r as numbers (a justification 
is given in Subsection 4.1).

The basic concepts about relational systems are the following.

Definition 2.1. Let E be a set. A binary relation on E is any subset r of E × E. The restriction of r to a 
subset A of E is r�A := r ∩ (A ×A). The inverse of r is the binary relation r−1 := {(x, y) : (y, x) ∈ r}. The 
diagonal is ΔE := {(x, x) : x ∈ E}. The relation r is symmetric if r = r−1; it r is reflexive if ΔE ⊆ r.

Let E be a set of binary relations on E. The pair E := (E, E) is a binary relational system. Set E−1 :=
{r ⊆ E ×E : r−1 ∈ E}.

(i) We say that E := (E, E) is involutive if E = E−1.
(ii) We say that E is reflexive (resp. symmetric) if each member r ∈ E is reflexive (resp. symmetric).

For a subset A of E, the restriction of E to A is E�A := {r�A : r ∈ E} which gives birth to the binary relational 
system E�A := (A, E�A). For a subset E ′ of binary relations on A, we set p−1

A (E ′) := {r ∈ E : r�A ∈ E ′}.

In the next definition, we discuss the maps which preserve a relational system.

Definition 2.2. Let E := (E, E) be a binary relational system. Let f : E → E be a map.

(i) f is said to preserve r ∈ E if (f(x), f(y)) ∈ r whenever (x, y) ∈ r. If f preserves every r ∈ E , we say 
that f preserves E .
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(ii) f is said to preserve a subset A ⊆ E if f(A) ⊆ A.

We denote by End(E) the collection of self-maps which preserve E (since we only consider self-maps, we do 
not need to introduce an index set on E).

Note that the maps which preserve E are in fact the relational homomorphisms (or endomorphisms) of 
this system. Next, we borrow some basic concepts from metric spaces.

Definition 2.3. Let E := (E, E) be a binary relational system. Let r ∈ E and let x ∈ E. The ball of center x
and radius r, is the set

B(x, r) := {y ∈ E : (x, y) ∈ r}.

We denote by BE the set of balls whose radius belong to E , i.e., BE := {B(x, r) : x ∈ E, r ∈ E}. We denote 
by B̂E the set of all intersections of members of BE , and we set B̂∗

E := B̂E \ {∅}.

Note that, as E is the intersection over the empty set, E belongs to B̂E . In the investigation of the 
fixed-point problem for self-maps, we will need the following concepts which can be seen as the relational 
analogues of the metric Chebyshev center and radius.

Definition 2.4. Let E := (E, E) be a binary relational system. Let A be a nonempty subset of E and r ∈ E .

(i) The r-center is the set C(A, r) := {x ∈ E : A ⊆ B(x, r)}.
(ii) Set CovE(A) :=

⋂
{B ∈ BE : A ⊆ B}.

(iii) The diameter of A is the set δE(A) := {r ∈ E : A ×A ⊆ r}.
(iv) The radius of A is the set rE(A) := {r ∈ E : A ⊆ B(x, r) for some x ∈ A}.

Note that δE(∅) = E and rE(∅) = ∅. If E := (E, E), we may replace the index E in the previous notations 
by E which gives BE, B̂∗

E, CovE(A), rE(A) and δE(A).
The elementary properties about center, diameter and radius are given in the following proposition:

Proposition 2.5. Let E := (E, E) be a binary relational system. Let A ⊆ E and r ∈ E. Then the following 
hold:

(i) A ⊆ C(A, r) iff r ∈ δ(A) iff r−1 ∈ δ(A);
(ii) C(A, r) =

⋂
{B(a, r−1) : a ∈ A};

(iii) If r−1 ∈ E then C(A, r) ∈ B̂E;
(iv) C(A, r) = C(CovE(A), r) whenever r ∈ E;
(v) rE(A) ⊆ rE(CovE(A)) and if A �= ∅, δE(A) ⊆ rE(A);
(vi) δE(A) = δE(CovE(A)) provided that E is involutive.

Proof. (i) Immediate.
(ii) x ∈ C(A, r) iff A ⊆ B(x, r). This latter condition amounts to x ∈

⋂
{B(a, r−1) : a ∈ A}.

(iii) Follows immediately from (ii).
(iv) From the definition of the r-center, x ∈ C(A, r) means that A ⊆ B(x, r). Since r ∈ E this inclusion 
amounts to CovE(A) ⊆ B(x, r). Again, from the definition of the r-center, this means x ∈ C(CovE(A), r).
(v) Let r ∈ rE(A) then C(A, r) ∩A �= ∅. Since C(A, r) = C(CovE(A), r) from (iv), we have C(CovE(A), r) ∩
CovE(A) �= ∅, hence r ∈ rE(CovE(A)). The second assertion is obvious.
(vi) Trivially δE(CovE(A)) ⊆ δE(A). Conversely, let r ∈ δE(A). Then A ⊆ B(x, r) for every x ∈ A, that 
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is A ⊆ C(A, r). From (iv), this yields A ⊆ C(CovE(A), r). Since E is involutive, r−1 ∈ E , hence from 
(ii) we have C(CovE(A), r) ∈ B̂E. Since A ⊆ C(CovE(A), r) it follows CovE(A) ⊆ C(CovE(A), r) that is 
r ∈ δE(CovE(A)) by (i). �

Next, we introduce the notion of compact normal structure as Penot did for metric spaces [35]. Then we 
prove a fixed-point result.

Definition 2.6. Let E := (E, E) be a binary relational system. A subset A ⊆ E is equally centered if 
rE(A) = δE(A).

As an example of an equally centered set, one may take a subset reduced to one point provided E
is reflexive. Indeed, set A = {a}. From (v) of Proposition 2.5, we have δE(A) ⊆ rE(A). Conversely, let 
r ∈ rE(A). Since r is reflexive, then (a, a) ∈ r, i.e., A ⊆ B(a, r). Hence r ∈ δE(A), which completes the 
proof of our claim.

Definition 2.7. Let E := (E, E) be a binary relational system.

(i) E has a compact structure if BE has the finite intersection property (f.i.p.), i.e., for every family F of 
members of BE , the intersection of F is nonempty provided that the intersection of all finite subfamilies 
of F are nonempty.

(ii) E is said to have normal structure if any A ∈ B̂∗
E , not reduced to one point, is not equally centered, i.e., 

if |A| �= 1 then rE(A) �= δE(A).

It is easy to see that BE has the f.i.p. if and only if B̂E has the f.i.p. If E has a compact structure, then 
every chain of members of B̂∗

E has an infimum, namely the intersection of all members of that chain. This 
allows us to prove the existence of minimal elements from B∗

E preserved by an endomorphism of E.
The following technical lemma will be useful throughout.

Lemma 2.8. Let E := (E, E) be a binary relational system. Assume that E is involutive. Let f be an endo-
morphism of E. If E has a compact structure then every member of B̂∗

E preserved by f contains a minimal 
one. If A ∈ B̂∗

E is a minimal member preserved by f , then CovE(f(A)) = A and A is equally centered.

Proof. First assume that B̂E has the f.i.p. Let f be an endomorphism of E. Assume there exists C ∈ B̂∗
E

preserved by f , i.e., f(C) ⊆ C. Consider

C = {A ∈ B̂∗
E; A ⊆ C and f(A) ⊆ A}.

Clearly C is not empty and partially ordered by inclusion. Since E has a compact structure, then Zorn’s 
lemma ensures the existence of a minimal element. Assume E is involutive. Let us prove that CovE(f(A)) =
A for any minimal element A of C. Indeed, since f(A) ⊆ A, we have CovE(f(A)) ⊆ CovE(A) = A. 
Hence f(CovE(f(A))) ⊆ f(A) ⊆ CovE(f(A)), i.e., CovE(f(A)) is preserved by f . The minimality of A
implies A = CovE(f(A)). Next, let us prove that A is equally centered. We only have to prove that 
rE(A) ⊆ δE(A). Let r ∈ rE(A). Then there exists x ∈ A such that A ⊆ BE(x, r). By definition of C(A, r), 
we have x ∈ C(A, r) ∩ A. Set A′ := C(A, r) ∩ A. Since E is involutive, r−1 ∈ E . Hence from (iii) of 
Proposition 2.5, we conclude that A′ ∈ B̂∗

E. Let us prove that A′ is preserved by f . Note that f preserves 
C(A, r). Since f is a relational homomorphism, we have f(C(A, r)) ⊆ C(f(A), r). Indeed, if x ∈ C(A, r), 
we have a ⊆ BE(x, r). Hence f(A) ⊆ BE(f(x), r), i.e., f(x) ∈ C(f(A), r)). Using (iv) of Proposition 2.5, we 
have C(f(A), r) = C(CovE(f(A)), r) = C(A, r). Hence C(A, r) is preserved by f . Clearly A′ = A ∩C(A, r)
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is therefore preserved by f . The minimality of A implies A = A′ = A ∩ C(A, r). Hence A ⊂ C(A, r), i.e., 
r ∈ δE(A). Hence rE(A) ⊆ δE(A). Thus, A is equally centered as claimed. �

This lemma allows us to deduce Penot’s formulation [35] of Kirk’s fixed point theorem [29] under our 
formulation.

Theorem 2.9. Let E := (E, E) be a binary relational system. Assume E is involutive and has a compact 
normal structure. Then every endomorphism f of E has a fixed point.

An easy consequence of Theorem 2.9, we have the following beautiful structural result:

Proposition 2.10. Let E := (E, E) be a binary relational system. Assume E is involutive and has a compact 
normal structure. Let f be an endomorphism E. Then the restriction E�Fix(f), to the set Fix(f) of fixed 
points of f , has a compact normal structure.

Proposition 2.10 will allow us to prove that a finite set of commuting endomorphism maps has a common 
fixed point and the restriction of E to the set of common fixed points has a compact normal structure. 
Obviously one would like to know whether such a conclusion still holds for infinitely many maps. In order 
to do this, one has to investigate carefully the structure of the fixed points of an endomorphism. This will 
be done in the next section.

3. One-local retracts and fixed points

The concept of retract plays a major role in investigating the fixed point problem.

Definition 3.1. Let E := (E, E) be a binary relational system. A map g : E → E is a retraction of E if g is a 
homomorphism of E such that g ◦ g = g. For a subset A of E, we say that E�A is a retract of E if A is the 
image of E by some retraction of E. We say that E�A is a one-local retract of E if for every x ∈ E, E�A is 
a retract of E�A∪{x}.

The next technical lemma will be used to prove the main result, Theorem 3.8, of this section.

Lemma 3.2. Let E := (E, E) be a binary relational system and A be a subset of E. Assume E�A is a 

one-local retract of E. Then for every family of balls 
(
BE(xi, ri)

)
i∈I

, with xi ∈ A, ri ∈ E for i ∈ I, such 

that 
⋂
i∈I

BE(xi, ri) is not empty, we have 
⋂
i∈I

BE(xi, ri) ∩A is not empty. The converse holds provided that 

E is reflexive and involutive.

Proof. Let I be a set. Consider a family of balls 
(
BE(xi, ri)

)
i∈I

, with xi ∈ A, ri ∈ E for i ∈ I, such 

that B :=
⋂
i∈I

BE(xi, ri) is not empty. Let a ∈ B and let h be a retraction from E�A∪{a} onto E�A. The 

map h fixes A and preserves the relations induced by E on A ∪ {a}. Fix i ∈ I. Since a ∈ BE(xi, ri), we 
have (xi, a) ∈ ri. Since h preserves the relations induced by E on A ∪ {a}, (h(xi), h(a)) ∈ ri. Using the 
fact h(xi) = xi, we get (xi, h(a)) ∈ ri, hence h(a) ∈ BE(xi, ri). Since i is arbitrarily picked in I, we get 
h(a) ∈

⋂
i∈I

BE(xi, ri) ∩ A. Conversely, assume that E is reflexive and involutive. Let us prove E�A is a 

one-local retract provided the intersection property of balls is satisfied. Let a ∈ E \A. Let

B := {BE(u, r) : u ∈ A, a ∈ B(u, r) and r ∈ E}.
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Set B :=
⋂
B. If B = ∅, then B = E. Otherwise we have a ∈ B which implies B �= ∅. According to the ball’s 

property, B ∩ A �= ∅. Let a′ ∈ B ∩ A. We claim that the map h : A ∪ {a} → A which is the identity on A
and satisfies h(a) = a′ is a retraction of E�A∪{a}. Since h is the identity on A, it suffices to check that for 
every r ∈ E and u ∈ A:

(i) (u, a) ∈ r implies (u, a′) ∈ r;
(ii) (a, u) ∈ r implies (a′, u) ∈ r;
(iii) (a, a) ∈ r implies (a′, a′) ∈ r.

The first item holds by our choice of a′. The second item is equivalent to the first because E is involutive 
and the third item holds because E is reflexive. �

The following lemma gives some basic properties of one-local retracts.

Lemma 3.3. Let E := (E, E) be a binary relational system and A ⊆ B ⊆ E.

(i) If E�A is a one-local retract of E then it is a one-local retract of E�B.
(ii) If E�A is a one-local retract of E�B and E�B is a one-local retract of E, then E�A is a one-local retract 

of E.

Proof. The proof relies on the basic fact that (E�D)�C = E�C whenever C ⊆ D. Hence the statement (i) is 
immediate.
(ii) Let x ∈ E \A. If x ∈ B then E�A since it is a one-local retract of E�B. Otherwise assume x /∈ B. Since 
E�B is a one-local retract of E, it is a retract of E�B∪{x} by some map g. Let y := g(x). If y ∈ A, then 
g�A∪{x} is a retraction of E�A∪{x} onto E�A. Otherwise if y /∈ A, then E�A is a retract of E�A∪{x} by some 
map h since it is a one-local retract of E�B. The map h ◦ g is a retraction of E�A∪{x} onto E�A. �

The next result is the most important one as it shows that a one-local retract enjoys the same properties 
as the larger set.

Lemma 3.4. Let E := (E, E) be a binary relational system and X ⊆ E a nonempty subset. Assume E�X is 
a one-local retract of E. If E has a compact structure, then E�X also has a compact structure. Moreover if 
E is involutive and has a normal structure, then E�X has a normal structure as well.

Proof. Let E′ := E�X and E ′ := E�X := {r ∩ X × X : r ∈ E}. We prove the first assertion. Let B′ :=
{BE′(x′

i, r
′
i) : i ∈ I, r′i ∈ E ′} be a family of balls of E′ whose finite intersections are nonempty. For each 

i ∈ I, r′i = ri ∩ (X ×X) for some ri ∈ E . The family B := {BE(x′
i, ri) : i ∈ I} of balls of E satisfies the f.i.p. 

hence has a nonempty intersection. Let x ∈
⋂
B. A retraction g from E�X∪{x} onto E�X = E′ will send x

into 
⋂
B′, proving that this set is nonempty. Next, we prove the second assertion. Let A ∈ B̂∗

E′ . We claim 
that

δE(A) = δE(CovE(A)), (3.1)

and

rE(A) = rE(CovE(A)). (3.2)

Indeed, equality (3.1) is item (vi) of Proposition 2.5. Concerning equality (3.2), note that the inclusion 
rE(A) ⊆ rE(CovE(A)) is item (v) of Proposition 2.5. For the converse, let r ∈ rE(CovE(A)). Then, there is 
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some x ∈ CovE(A) such that CovE(A) ⊆ BE(x, r). Since E′ is a one-local retract of E, there is a retraction 
g of E�X∪{x} onto E′ := E�X which fixes X. Let a := g(x). Since A ⊆ CovE(A) ⊆ BE(x, r), we have 
A ⊆ BE(x, r). Because g fixes A, A ⊆ BE(a, r). We claim that a ∈ A. Indeed, A =

⋂
{BE′(x′

i, r
′
i) : i ∈ I}

with x′
i ∈ X, r′i ∈ E�X . For each i ∈ I, choose ri ∈ E such that r′i = ri ∩X ×X. Then CovE(A) ⊆ A1 :=⋂

{BE(x′
i, ri) : i ∈ I}. Since x ∈ CovE(A), x ∈ A1. Since g fixes each x′

i, we get a ∈ A1. Since a ∈ X, a ∈ A, 
proving our claim. Hence r ∈ rE(A). From (3.1) and (3.2), we obtain:

δE(CovE(A)) = p−1
X (δE′(A)), (3.3)

and

rE(CovE(A)) = p−1
X (rE′(A)). (3.4)

Let us prove first (3.3). By definition p−1
X (δE′(A)) = {r ∈ E : r�X ∈ δE′(A)} = {r ∈ E : A ×A ⊆ r} = δE(A)

since A ⊆ X. Equality (3.3) then follows from equality (3.1).
Next, we prove (3.4). By definition, we have

p−1
X (rE′(A)) = {r ∈ E : r�X ∈ rE′(A)}

= {r ∈ E : A ⊆ BE′(a′, r�X) for some a′ ∈ A}
= {r ∈ E : A ⊆ BE(a′, r) for some a′ ∈ A} = rE(A).

Then equality (3.4) follows from equality (3.2). Finally, suppose that A is equally centered in E′, that is 
δE′(A) = rE′(A). From the equations above, we deduce that δE(Cov(A)) = rE(Cov(A)). Hence CovE(A) is 
equally centered. If E has a normal structure, CovE(A) is reduced to one point. Since A ⊆ CovE(A) and 
A �= ∅, we conclude that A is reduced to one point. Hence E′ = E�X has a normal structure. �

Recall that Proposition 2.10 gives information about the fixed point set of an endomorphism. In the next 
result, we show that in fact we have a better property satisfied by these sets which implies the conclusion 
of Proposition 2.10 as well.

Proposition 3.5. Let E := (E, E) be a reflexive and involutive binary relational system. Assume E has a 
compact normal structure. Then for every homomorphism f of E, the set of fixed points Fix(f) of f is a 
nonempty one-local retract of E. Thus E�Fix(f) has a compact normal structure.

Proof. Let I be a set. Consider a family of balls 
(
BE(xi, ri)

)
i∈I

, with xi ∈ Fix(f) and ri ∈ E for i ∈ I, 
such that A :=

⋂
i∈I

BE(xi, ri) is not empty. Since each xi belongs to Fix(f), f preserves A. According 

to Lemma 2.8, since A is an intersection of balls, A contains an intersection of balls A′ which is minimal, 
preserved by f , and equally centered. From the normality of E, A′ is reduced to a single element, i.e., A′ is 
reduced to a fix-point of f . Consequently, A ∩ Fix(f) �= ∅. According to Lemma 3.2, Fix(f) is a one-local 
retract. �

In order to prove the existence of a common fixed point for a family of nonexpansive mappings in the 
context of hyperconvex metric spaces, Baillon [5] discovered an intersection property satisfied by this class 
of metric spaces. In order to prove an analogue to Baillon’s conclusion under our setting, we will need the 
following lemma.

Lemma 3.6. Let E := (E, E) be a reflexive and involutive binary relational system with a compact normal 
structure. Let κ be an infinite cardinal. For every ordinal α, α < κ, let Bα and Eα be subsets of E such 
that:
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(1) Bα ⊇ Bα+1 and Eα ⊇ Eα+1 for every α < κ;
(2)

⋂
γ<α

Bγ = Bα and 
⋂

γ<α
Eγ = Eα for each limit ordinal α < κ;

(3) Eα := E�Eα
is a one-local retract of E and Bα is a nonempty intersection of balls of Eα.

Then Bκ :=
⋂

α<κ
Bα �= ∅.

Proof. Let A be the collection of all descending sequences A := (Aα)α<κ such that each Aα is a nonempty 
intersection of balls of E�Eα

contained into Bα. Set Eα := E�Eα
and B := Πα<κB̂

∗
Eα

. The sequence 
B := (Bα)α<κ belongs to A and A is contained into B. The set B is ordered as follows:

(A′
α)α<κ 
 (A′′

α)α<κ if A′
α ⊆ A′′

α for every α < κ. (3.5)

Since Eα is a one-local retract of E, Eα has a normal and compact structure (Lemma 3.4). Since it has 
a compact structure, every descending sequence in B̂∗

Eα
has an infimum (Lemma 2.8). Thus, there is a 

minimal sequence A := (Aα)α<κ with A 
 B. Let α < κ and Aα ⊆ BE(x, r), with r ∈ E and x ∈ Eα. Then 
Aβ ⊆ BE(x, r) for each β < κ. Indeed, set B := BE(x, r). For ξ < κ set A′

ξ := Aξ ∩B if ξ ≤ α and A′
ξ = Aξ

otherwise. The family A′ := (A′
ξ)ξ<κ belongs to A and satisfies A′ 
 A. Since A is minimal, we get A′ = A. 

Thus Aξ = Aξ ∩ B for ξ ≤ α that is Aξ ⊆ B. Since Aξ ⊆ Aα ⊆ B for ξ ≥ α, it follows that Aξ ⊆ B. 
Let α < κ. From the hypotheses of the lemma, there is a family B′ := (BE�Eα

(x′
i, r

′
i))i∈I , with x′

i ∈ Eα, 
r′i ∈ E�Eα

such that Aα =
⋂

B′. For each i ∈ I, let ri such that ri�Eα
= r′i. Let B := (BE�Eα

(x′
i, r

′
i))i∈I , 

B =
⋂
B. Then Aα = B ∩ Eα ⊆ BE(x, r), for any α < κ. Next, for any α < κ, we have

(a) Aβ ⊆ B ∩ Eβ for every β < α;
(b) Aα =

⋂
β<α Aβ if α is a limit ordinal;

(c) rE(Aα) ⊆ rE(Aβ) for every β < α;
(d) rE(Aβ) ⊆ rE(Aα) for every β < α.

Indeed, we have Aα ⊆ BE(x′
i, ri) which implies Aβ ⊆ BE(x, r). This yields Aβ ⊆

⋂
B = B which gives (a). 

From 
⋂

γ<α
Eγ = Eα and (a), we get

Aα = B ∩Eα =
⋂
β<α

B ∩ Eβ ⊇
⋂
β<α

Aβ .

This implies Aα ⊇
⋂

β<α

Aβ . Since A is decreasing, we have Aα ⊆
⋂

β<α

Aβ . Hence, Aα =
⋂

β<α

Aβ . As for (c), 

let r ∈ rE(Aα). Then Aα ⊆ BE(x, r), for some x ∈ Aα which implies Aβ ⊆ BE(x, r). Since Aα ⊆ Aβ , we get 
x ∈ Aβ which implies r ∈ rE(Aβ). As for (d), let r ∈ rE(Aβ) and x ∈ Aβ such that Aβ ⊆ BE(x, r). From 
(a), we have Aβ ⊆ B. Thus x ∈ B ∩

⋂
u∈Aα

BE(u, r−1) holds. Since E�Eα
is a one-local retract, there is some 

y ∈ B ∩
⋂

u∈Aα

BE(u, r−1) ∩ Eα. This means Aα ⊆ BE(y, r) which in turns implies r ∈ rE(Aα). Hence if we 

combine (c) and (d), we get rE(Aβ) = rE(Aα), for any α, β < κ. Next, we claim that δE(Aα) = rE(Aα) for 
every α < κ. Indeed, let r be the common value of all rE(Aα), for α < κ. Let r ∈ r. Set Cr(Aα) := {x ∈
Eα : Aα ⊆ BE(x, r)}, Ar

α := Aα ∩ Cr(Aα) and Ar := (Ar
α)α<κ. We claim

(1) Ar
α is a nonempty intersection of balls of E�Eα

;
(2) Ar

α ⊆ Aα;
(3) Ar

β ⊇ Ar
α for β < α.
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(1). Since r ∈ rE(Aα), Aα ⊆ BE(x, r) for some x ∈ Aα, hence x ∈ Cr(Aα) proving that Ar
α is nonempty. 

Since E is involutive, r−1 ∈ E . Thus from (iii) of Proposition 2.5, Cr(Aα) is an intersection of balls of E�Eα

with centers in Aα. Hence, Ar
α is a nonempty intersection of balls of E�Eα

which proves (1). Clearly (2) is 
obvious. As for (3), let β < α. By construction of A, we have Aβ ⊇ Aα. Let x ∈ Ar

α. By definition, we have 
Aα ⊆ BE(x, r). We have Aβ ⊆ BE(x, r). It follows that x ∈ Cr(Aβ). Since x ∈ Aβ , x ∈ Ar

β which proves 
that (3) holds. On the other hand, if we use the minimality of A, we obtain Ar = A. From this it follows 
that Aα ⊆ Cr(Aα). Since this inclusion holds for every r ∈ rE(Aα), we get δE(Aα) = rE(Aα), for any α < κ, 
as claimed. Since E has a normal structure, we deduce that each Aα is a singleton. Since A is decreasing, 
Aκ :=

⋂
α<κ

Aα is a singleton too. Hence, Bκ �= ∅ which completes the proof of Lemma 3.6. �
Next, let E := (E, E) be involutive and reflexive. Assume E has a compact normal structure. Let P be 

the set, ordered by inclusion, of nonempty subsets A of E such that E�A is a one-local retract of E. As any 
ordered set, every down-directed subset of P has an infimum iff every totally ordered subset of P has an 
infimum (see [15] Proposition 5.9 p 33). We claim that P is closed under intersection of every chain of its 
members. Indeed, we argue by induction on the size of totally ordered families of one-local retracts of E. First 
we may suppose that E has more than one element. Next, we may suppose that these families are dually well 
ordered by induction. Thus, given an infinite cardinal κ, let (E�Eα

)α<κ be a descending sequence of one-local 
retracts of E. From the induction hypothesis, we may suppose that the restriction of E to E′

α :=
⋂

γ<α
Eγ is 

a one-local retract of E for each limit ordinal α < κ. Hence, we may suppose that Eα =
⋂

γ<α
Eγ for each 

limit ordinal α < κ. Since Eα is a one-local retract of E and E has a normal structure, Eα has a normal 
structure (Lemma 3.4). Hence, either Eα is a singleton, say xα, or rEα

(Eα) \δEα
(Eα) �= ∅. In both cases, Eα

is a ball of Eα (since E is reflexive, (xα, xα) ∈ r for any r ∈ E). Hence the first case, Eα = BEα
(xα, r�Eα

), 
whereas in second case, Eα ⊆ BEα

(x, r) for some x ∈ Eα, r ∈ rEα
(Eα) \δEα

(Eα). Hence, Lemma 3.6 applies 
with Bα = Eα and gives that Eκ is nonempty. Let us prove that Eκ := E�Eκ

is a one-local retract of E. 
We apply Lemma 3.2. Let (BE(xi, ri))i∈I , xi ∈ Eκ, ri ∈ E be a family of balls such that the intersection is 
nonempty. Since Eα is a one-local retract of E, the intersection Bα := Eα

⋂ ⋂
i∈I

BE(xi, ri) is nonempty for 

every α < κ. Now, Lemma 3.6 applied to the sequence (Eα, Bα)α<κ tells us that Bκ := Eκ

⋂ ⋂
i∈I

BE(xi, ri)

is nonempty. According to Lemma 3.2, E�Bκ
is a one-local retract of E.

The above conclusion on P translates into the following result:

Theorem 3.7. Let E := (E, E) be a reflexive and involutive binary relational system. Assume E has a compact 
normal structure. Then the intersection of every down-directed family of one-local retracts is a nonempty 
one-local retract.

As Baillon [5] did, we next give the main result about the existence of common fixed points of a commu-
tative family of endomorphisms.

Theorem 3.8. Let E := (E, E) be a reflexive and involutive binary relational system. Assume E has a 
compact normal structure. Then any commuting family F of homomorphisms of E has a common fixed 
point. Furthermore, the restriction of E to the set Fix(F) of common fixed points of F is a one-local retract 
of E.

Proof. For a subset F ′ of F , let Fix(F ′) be the set of fixed points of F ′. Using Proposition 3.5, we conclude 
that E�Fix(F ′) is a nonempty one-local retract of E for every finite subset F ′ of F . Indeed, we show this 
by induction on the number n of elements of F ′. If n = 1, this is the conclusion of Proposition 3.5. Let 
n ≥ 1. Suppose that the property holds for every subset F ′′ of F ′ such that |F ′′| < n. Let f ∈ F ′ and 
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F ′′ := F ′ \ {f}. From our inductive hypothesis, E�Fix(F ′′) is a one-local retract of E. Thus, according 
to Lemma 3.4, E�Fix(F ′′) has a compact normal structure. Now since f commutes with every member g
of F ′′, f preserves Fix(F ′′) setwise. Indeed, if u ∈ Fix(F ′′), we have g(f(u)) = f(g(u)) = f(u), that is 
f(u) ∈ Fix(F ′′). Thus f induces an endomorphism f ′′ of E�Fix(F ′′). According to Proposition 3.5, the 
restriction of E�Fix(F ′′) to Fix(f ′′), that is E�Fix(F ′), is a nonempty one-local retract of E�Fix(F ′′). Since 
the notion of one-local retract is transitive it follows that E�Fix(F ′) is a nonempty one-local retract of E. 
Let P := {Fix(F ′′) : |F ′′| < ℵ0} and P :=

⋂
P. According to Theorem 3.7, E�P is a one-local retract of E. 

Since P = Fix(F) the conclusion follows. �
4. Illustrations

Inspired by the work of Baillon, our results apply naturally to metric spaces and also to various kinds of 
generalizations of metric spaces, including ordered sets, graphs and transition systems.

In this section, we consider first generalized metric spaces and particularly those for which the set of 
distance values is a dual involutive integral quantale (previously called Heyting algebra). Then, we go on 
from ordinary metric spaces to ordered sets and graphs.

4.1. Towards generalized metric spaces

We present first a natural association of generalized metric spaces and binary relational systems.
We recall that if ρ and τ are two binary relations on the same set E, then their composition ρ ◦ τ is the 

binary relation made of pairs (x, y) such that (x, z) ∈ τ and (z, y) ∈ ρ for some z ∈ E. It is customary to 
denote it τ · ρ.

The set Inv2(F) of binary relations on E preserved by all f belonging to a set F of self maps on E has 
some very simple properties which we state below (the proofs are left to the reader). For a construction of 
many more properties by means of primitive positive formulas (see [45]).

Lemma 4.1. Let F be a set of unary operations on a set E. Then the set R := Inv2(F) of binary relations 
on E preserved by all f ∈ F satisfies the following properties:

(a) ΔE ∈ R;
(b) R is closed under arbitrary intersections; in particular E × E ∈ R;
(c) R is closed under arbitrary unions;
(d) If ρ, τ ∈ R then ρ ◦ τ ∈ R;
(e) If ρ ∈ R then ρ−1 ∈ R.

Let R be a set of binary relations on a set E satisfying items (a), (b), (d) and (e) of the above lemma 
(we do not require (c)). To make things more transparent, denote by 0 the set ΔE , set ρ ⊕ τ := ρ · τ . Then 
R becomes a monoid. Set ρ := ρ−1, this defines an involution on R which reverses the monoid operation. 
With this involution R is an involutive monoid. With the inclusion order, that we denote ≤, this involutive 
monoid is an involutive complete ordered monoid.

With these definitions, we have immediately:

Lemma 4.2. Let R be an involutive complete ordered monoid of the set of binary relations on E and let d
be the map from E ×E into R defined by

d(x, y) :=
⋂

{ρ ∈ R : (x, y) ∈ ρ}.

Then, the following properties hold:
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(i) d(x, y) ≤ 0 iff x = y;
(ii) d(x, y) ≤ d(x, z) ⊕ d(z, y);
(iii) d(y, x) = d(x, y).

The general setting to deal with this situation is the following. Let V be an ordered monoid equipped 
with an involution. We denote by ⊕ the monoid operation, by 0 its neutral element and by − the involution, 
so that p⊕ q = q ⊕ p for all p, q ∈ V .

Following [38], we say that a set E equipped with a map d from E×E into V and which satisfies properties 
(i), (ii), (iii) stated in Lemma 4.2 is a V -distance, and the pair (E, d) a V -metric space. Lemma 4.2 justifies 
writing d(x, y) ≤ ρ for the fact that a pair (x, y) belongs to a binary relation ρ on the set E. We then use 
notions borrowed from the theory of metric spaces.

Remark 4.3. From now on, we suppose that the neutral element of the monoid V is the least element of V
for the ordering. In [17] (cf. p.82) the corresponding V -metric spaces are called generalized distance spaces
and the maps d are called generalized metrics.

If (E, d) is a V -metric space and A a subset of E, the restriction of d to A × A, denoted by d�A is 
a V -distance and (A, d�A) is a restriction of (E, d). As in the case of ordinary metric spaces, if (E, d)
and (E′, d′) are two V -metric spaces, a map f : E −→ E′ is a non-expansive map (or a contraction) 
from (E, d) to (E′, d′) provided that d′(f(x), f(y)) ≤ d(x, y) holds for all x, y ∈ E (and the map f is an 
isometry if d′(f(x), f(y)) = d(x, y) for all x, y ∈ E). The space (E, d) is a retract of (E′, d′), if there are 
two non-expansive maps f : E −→ E′ and g : E′ −→ E such that g ◦ f = idE (where idE is the identity 
map on E). In this case, f is a coretraction and g a retraction. If E is a subspace of E′, then clearly E is 
a retract of E′ if there is a non-expansive map from E′ to E such g(x) = x for all x ∈ E. We can easily 
see that every coretraction is an isometry. We say that (A, d�A) is a one-local retract if it is a retract of 
(A ∪ {x}, d�A∪{x}) (via the identity map on A) for every x ∈ E.

Let (E, d) be a V -metric space; for x ∈ E and v ∈ V , the set B(x, v) := {y ∈ E : d(x, y) ≤ v} is a ball. 
One can define diameter and radius as in ordinary metric spaces, but in order to avoid a problem with the 
existence of joins and meets, we suppose that V is a complete lattice. The diameter δ(A) of a subset A of 
E is 

∨
{d(x, y) : x, y ∈ A}, while the radius r(A) is 

∧
{v ∈ V : A ⊆ B(x, v) for some x ∈ A}. A subset A of 

E is equally centered if δ(A) = r(A). Following Penot, who defined the notions for ordinary metric spaces, 
a V -metric space (E, d) has a compact structure if the collection of balls has the finite intersection property 
and it has a normal structure if for every intersection of balls A, either δ(A) = 0 or r(A) < δ(A). This 
condition amounts to the fact that the only equally centered intersections of balls are singletons.

The correspondence between the notions defined for metric spaces and for binary relational systems is 
given in the lemma below.

Lemma 4.4. Let (E, d) be a V -metric space. For v ∈ V , set δv := {(x, y) : d(x, y) ≤ v} and E := (E, {δv :
v ∈ V }). Then E is reflexive and involutive. Furthermore:

(a) A self map f on E is non-expansive iff it is an endomorphism of E.
(b) (E, d) has a compact structure iff E has a compact structure.
(c) For every subset A of E, (A, d�A) is a one-local retract of (E, d) iff E�A is a one-local retract of E.
(d) For every subset A of E, δ(A) is the least element of the set of v ∈ V such that A ⊆ δv; equivalently 

δE(A) = {δv : δ(A) ≤ v}. Also, r(A) =
∧
{v ∈ V : δv ∈ rE(A)}.

(e) A subset A of E is equally centered w.r.t. the space (E, d) iff it is equally centered w.r.t. the binary 
relational system E.
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Proof. The first three items are obvious.
Item (d). Let r := δ(A). By definition, r =

∨
{d(x, y) : (x, y) ∈ A2}. In particular, A ⊆ δr. Let v

such that A ⊆ δv; this means d(x, y) ≤ v for every (x, y) ∈ A2, hence r ≤ v. This proves that δ(A) =
Min{v ∈ V : δv ∈ δE(A)}. The verification of the other assertions is immediate. Item (e). By Item (d), 
r(A) :=

∧
{v ∈ V : δv ∈ rE(A)} and δ(A) := Min{v ∈ V : δv ∈ δE(A)}. If rE(A) = δE(A), this immediately 

implies r(A) = δ(A). Conversely, suppose that r(A) = δ(A). In this case A �= ∅, hence δE(A) ⊆ rE(A). If 
δE(A) ⊆ rE(A) then since δ(A) = Min{v ∈ V : δv ∈ δE(A)} and r(A) =

∧
{v ∈ V : δv ∈ rE(A)} it follows 

that r(A) < δ(A), a contradiction. �
With this lemma in hand, Theorem 3.8 becomes:

Theorem 4.5. If a generalized metric space (E, d) has a compact normal structure then every commuting 
family F of non-expansive self maps has a common fixed point. Furthermore, the restriction of (E, d) to the 
set Fix(F) of common fixed points of F is a one-local retract of (E, d).

The fact that a space has a compact structure is an infinistic property (any finite metric space enjoys it). 
A description of generalized metric spaces with a compact normal structure eludes us. In the next subsection 
we describe a large class of generalized metric spaces with a compact normal structure.

4.2. Hyperconvexity

We say that a generalized metric space (E, d) is hyperconvex if for every family of balls B(xi, ri), i ∈ I, 
with xi ∈ E, ri ∈ V , the intersection 

⋂
i∈I B(xi, ri) is nonempty provided that d(xi, xj) ≤ ri ⊕ rj for all 

i, j ∈ I. This property amounts to the fact that the collection of balls of (E, d) has the 2-Helly property
(that is an intersection of balls is nonempty provided that these balls intersect pairwise) and the following 
convexity property:

Any two balls B(x, r), B(y, s) intersect if and only if d(x, y) ≤ r ⊕ s. (4.1)

An element v ∈ V is self-dual if v = v, it is accessible if there is some r ∈ V with v � r and v ≤ r ⊕ r

and inaccessible otherwise. Clearly, 0 is inaccessible; every inaccessible element v is self-dual (otherwise, v
is incomparable to v and we may choose r := v). We say that a space (E, d) is bounded if 0 is the only 
inaccessible element below δ(E).

Lemma 4.6. Let A be an intersection of balls of (E, d). If δ(A) is inaccessible then A is equally centered; the 
converse holds if (E, d) is hyperconvex.

Proof. Suppose that v := δ(A) is inaccessible. According to (d) of Lemma 4.4, r(A) =
∧
rE(A). Let 

r ∈ rE(A). Then there is some x ∈ A such that A ⊆ B(x, r). This yields d(a, b) ≤ d(a, x) ⊕d(x, b) ≤ r⊕r for 
every a, b ∈ A. Thus v ≤ r⊕ r. Since v is inaccessible, v ≤ r, hence v ≤ r(A). Thus v = r(A). Suppose that 
A is equally centered. Let r be such that v ≤ r⊕r. The balls B(x, r) (x ∈ A) intersect pairwise and intersect 
each of the balls containing A; since (E, d) is hyperconvex, these balls have a nonempty intersection. Any 
member a of this intersection is in A and satisfies A ⊆ B(a, r), hence r ∈ rE(A). Since A is equally centered 
r(A) = v. Hence, v ≤ r. Since v is self-dual, v ≤ r. Thus v is inaccessible. �

This lemma, with the fact that the 2-Helly property implies that the collection of balls has the finite 
intersection property, yields:

Corollary 4.7. If a generalized metric space (E, d) is bounded and hyperconvex then it has a compact normal 
structure.
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From Theorem 4.5, we obtain:

Theorem 4.8. If a generalized metric space (E, d) is bounded and hyperconvex then every commuting family 
of non-expansive self maps has a common fixed point.

4.3. Metric spaces over an involutive Heyting algebra, alias a dual integral involutive quantale

Hyperconvex spaces have a simple characterization provided that the set V of values of the distance is a 
complete lattice and satisfies the following distributivity condition:

∧
α∈A,β∈B

uα ⊕ vβ =
∧
α∈A

uα ⊕
∧
β∈B

vβ (4.2)

for all uα ∈ V (α ∈ A) and vβ ∈ V (β ∈ B).
In this case, we say that V is an involutive Heyting algebra; according to Kaarli and Radeleczki [23], we 

could call it a dual integral involutive quantale (see [41,20] about quantales).
On an involutive Heyting algebra V , we may define a V -distance. This fact relies on the classical notion 

of residuation (see [13] for the context of residuation). Let v ∈ V . Given β ∈ V , the sets {r ∈ V : v ≤ r⊕β}
and {r ∈ V : v ≤ β ⊕ r} have least elements, that we denote by �v ⊕ −β� and �−β ⊕ v� respectively and 
call the right and left quotient of v by β (note that �−β ⊕ v� = �v̄ ⊕−β̄�). It follows that for all p, q ∈ V , 
the set

D(p, q) := {r ∈ V : p ≤ q ⊕ r̄ and q ≤ p⊕ r} (4.3)

has a least element. This least element is �p̄⊕−q̄� ∨ �−p ⊕ q�, we denote it by dV (p, q).
As shown in [22], the map (p, q) −→ dV (p, q) is a V−distance.
Let ((Ei, di))i∈I be a family of V -metric spaces. The direct product

∏
i∈I

(Ei, di), is the metric space (E, d)

where E is the cartesian product 
∏
i∈I

Ei and d is the “sup” (or 	∞) distance defined by d 
(
(xi)i∈I , (yi)i∈I

)
=

∨
i∈I

di(xi, yi). We recall the following result of [22].

Theorem 4.9. (V, dV ) is a hyperconvex V -metric space and every V -metric space embeds isometrically into 
a power of (V, dV ).

This result is due to the fact that for every V -metric space (E, d) and for all x, y ∈ E the following 
equality holds:

d (x, y) =
∨
z∈E

dV (d(z, x), d(z, y)). (4.4)

A generalized metric space E is an absolute retract if it is a retract of every isometric extension. The 
space E is injective if for all V -metric space E′ and E′′, for each non-expansive map f : E′ −→ E and for 
every isometry g : E′ −→ E′′ there is a non-expansive map h : E′′ −→ E such that h ◦ g = f .

With this result follows the characterization given in [22].

Theorem 4.10. For metric spaces over an involutive Heyting algebra V , the notions of absolute retract, 
injective, hyperconvex and retract of a power of (V, dV ) coincide.

Note that if v is accessible in V and V is an involutive Heyting algebra, then v is accessible in the initial 
segment ↓ v of V (indeed, if v ≤ r⊕ s then since by distributivity (r ∧ v) ⊕ (r ∧ v) = (r⊕ r) ∧ (r⊕ v) ∧ (v⊕
r) ∧ (v ⊕ v), we have v ≤ (r ∧ v) ⊕ (r ∧ v).
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4.4. One-local retracts and hole-preserving maps

In this subsection, we relate the notions of one-local retracts and the notion of hole-preserving maps. 
A large part is borrowed from subsection II-4 of [22].

Let E and E′ be two V -metric spaces. If f is a non-expansive map from E into E′, and h is a map from 
E into V , the image of h is the map hf from E′ into V defined by hf (y) :

∧
{h(x) : f(x) = y} (in particular 

hf (y) = 1 where 1 is the largest element of V for every y not in the range of f). A hole of E is any map 
h : E → V such that the intersection of balls B(x, h(x)) of E (x ∈ E) is empty. If h is a hole of E, the map 
f preserves h provided that hf is a hole of E′. The map f is hole-preserving if the image of every hole is a 
hole.

Let B := (B(xi, ri))i∈I be a family of balls of E. For every x ∈ E, set VB(x) = {r ∈ V : B(xi, ri) ⊆
B(x, r) for some i ∈ I} and hB(x) :=

∧
VB(x). We note that:
⋂

B =
⋂
x∈E

B(x, hB(x)). (4.5)

We omit the routine proof.
A hole h of E is finite if 

⋂
x∈F B(x, h(x)) = ∅ for some finite subset F of E, otherwise it is infinite.

A poset is well-founded if every nonempty subset contains some minimal element. We recall that if a 
lattice is well-founded, every element x which is the infimum of some subset X is the infimum of some finite 
subset. In general, the order on a Heyting algebra is not well-founded, still there are interesting examples 
(see Subsection 4.6 and 4.8).

The following lemma relates holes and compactness of the collection of balls (it contains a correction of 
Proposition II-4.9. of [22]):

Lemma 4.11. If a generalized space E has a compact structure then every hole is finite; the converse holds 
if V is well-founded.

Proof. Let h be a hole. Then, by definition, 
⋂

x∈E B(x, h(x)) = ∅. Since E has a compact structure, ⋂
x∈F B(x, h(x)) = ∅ for some finite subset, hence h is finite. Conversely, let B := (B(xi, ri))i∈I be a 

family of balls of E such that 
⋂

B = ∅. There are two ways of associating a finite hole to B. We may 
define h : E → V by setting h(x) :=

∧
{ri : xi = x}. We may also associate hB. By Formula (4.5), 

this is a hole. These holes are finite. We conclude by using hB. Let F be some finite subset of E such 
that 

⋂
x∈F B(x, hB(x)) = ∅. Since V is well-founded, for each x ∈ E, there is some finite subset Vx of 

VB(x) = {r ∈ V : B(xi, ri) ⊆ B(x, r) for some i ∈ I} such that 
∧
VB(x) =

∧
Vx. For each x ∈ F , there 

is a finite subset Ix such that for each r ∈ Vx there is some i ∈ Ix such that B(xi, ri) ⊆ B(x, r). Setting 
IF :=

⋃
x∈F Ix we get 

⋂
i∈IF

B(xi, ri) = ∅ proving that the intersection of the finite subfamily (B(xi, ri))i∈IF

of B is nonempty. �
Lemma 4.12. A non-expansive map f from a V -metric space E into a V -metric space E′ is hole-preserving 
iff f is an isometry of E onto its image and this image is a 1-local retract of E′.

The routine proof is based on Lemma 3.2. We omit it.
Replacing isometries by hole-preserving maps in the definition of absolute retracts and injectives, we have 

the notions of absolute retracts and injectives w.r.t. hole preserving maps.
We recall the following result of [22].

Theorem 4.13. On an involutive Heyting algebra V , the absolute retracts and the injectives w.r.t. hole-
preserving maps coincide. The class H of these objects is closed under products and retractions. Moreover, 
every metric space embeds into some member of H by some hole-preserving map.
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The proof relies on the notion of the replete space H(E) of a metric space E. The space E is an absolute 
retract w.r.t. hole-preserving maps or not depending whether E is a retract of H(E) or not. Furthermore, 
with the introduction of this space, one can prove the transferability of hole-preserving maps (Lemma II-4.6 
of [22]), that is the fact that for every non-expansive map f : E → F , and every hole-preserving map 
g : E → G there is a hole-preserving map g′ : F → E′ and a non-expansive map f ′ : G → E′ such 
that g′ ◦ f = f ′ ◦ g. Indeed, one may choose E′ = H(E). For details, see [22], notably Lemma II-4.4 and 
Lemma II-4.5.

Problems 1. Let E be a generalized metric space with a compact normal structure.

(a) When is a one-local retract of E a retract?
(b) When is the set Fix(f) of fixed points of a non-expansive self map a retract?

Note that if (a) has a positive answer then spaces with a compact normal structure are absolute retracts 
w.r.t. hole-preserving maps. For these problems, it could be fruitful to consider the case of posets; there is 
a vast literature on fixed-point and this type of question (see [43,4,34]).

4.5. The case of ordinary metric spaces

Let R+ be the set of non negative reals with the addition and natural order, the involution being the 
identity. Let V := R+ ∪ {+∞}. Extend the addition and order to V in a natural way. Then, metric spaces 
over V are direct sums of ordinary metric spaces (the distance between elements in different components 
being +∞). The set V is an involutive Heyting algebra, the distance dV , when restricted to R+, is derived 
from the absolute value. The inaccessible elements are 0 and +∞ hence, if one deals with ordinary metric 
spaces, unbounded spaces in the above sense are those which are unbounded in the ordinary sense. If one 
deals with ordinary metric spaces, infinite products can yield spaces for which +∞ is attained. One may 
replace powers with 	∞-spaces (if I is any set, 	∞R (I) is the set of bounded families (xi)i∈I of reals numbers, 
endowed with the sup-distance). Doing so, the notions of absolute retract, injective, hyperconvex and retract 
of some 	∞R (I) space coincide.

According to Corollary 4.7, a hyperconvex metric space has a normal structure iff its diameter is bounded. 
In fact, if a subset A of a hyperconvex space is an intersection of balls, its radius is half of its diameter. No 
description of metric spaces with a compact normal structure seems to be known.

The existence of a fixed point for a non-expansive map on a bounded hyperconvex space is the famous 
result of Sine and Soardi. Theorem 3.8 applied to a bounded hyperconvex metric space is Baillon’s fixed 
point theorem. Applied to a metric space with a compact normal structure, this is the result obtained by 
the first author [28].

4.6. The case of ordered sets

In this subsection, we consider posets as binary relational systems as well as metric spaces over an 
involutive Heyting algebra.

Let P := (E, ≤) be an ordered set. Let E := {≤, ≤−1} and E := (E, E). By definition, E is reflexive and 
involutive. For x ∈ E, set ↑ x := {y ∈ E : x ≤ y} and ↓ x := {y ∈ E : y ≤ x}; these sets are called the 
principal final, resp. initial, segment generated by x. With our terminology of balls of E, these sets are the 
balls B(x, ≤) and B(x, ≤−1).

Let V be the following structure. The domain is the set {0, +, −, 1}. The order is 0 ≤ +, − ≤ 1 with 
+ incomparable to −; the involution exchanges + and − and fixes 0 and 1; the operation ⊕ is defined by 
p ⊕ q := p ∨ q for every p, q ∈ V . As it is easy to check, V is an involutive Heyting algebra.
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If (E, d) is a V -metric space, then Pd := (E, δ+), where δ+ := {(x, y) : d(x, y) ≤ +}, is an ordered 
set. Conversely, if P := (E, ≤) is an ordered set, then the map d : E × E → V defined by d(x, y) := 0 if 
x = y, d(x, y) := + if x < y, d(x, y) := − if y < x and d(x, y) := 1 if x and y are incomparable. Clearly, 
if (E, d) and (E′, d′) are two V -metric spaces, a map f : E → E′ is non-expansive from (E, d) into (E′, d′)
iff it is order-preserving from Pd into Pd′ . Depending on the value of v ∈ V , a V -metric space has four 
types of balls: singletons, corresponding to v = 0, the full space, corresponding to v = 1, the principal 
final segments, ↑ x := {y ∈ E : x ≤ y}, corresponding to balls B(x, +), and principal initial segments, 
↓ x := {y ∈ E : y ≤ x}, corresponding to balls B(x, −). The set V can be equipped with the distance 
dV given by means of the formula (4.3). The corresponding poset is the four element lattice {−, 0, 1, +}
with − < 0, 1 < +. The retracts of powers of this lattice are all complete lattices. This is confirmed by the 
following fact.

Proposition 4.14. A metric space (E, d) over V is hyperconvex iff the corresponding poset is a complete 
lattice.

Proof. Suppose that (E, d) is hyperconvex. Let ≤:= δ+ and Pd := (E, δ+). We prove that every subset 
A has a supremum in Pd. This amounts to prove that A+ := {y ∈ E : x ≤ y for all x ∈ A} has a least 
element. Since (E, d) satisfies the convexity property, and + ∨ + = + ∨ − = 1, B(x′, +) ∩B(x′′, +) �= ∅ for 
every x′, x′′ ∈ E; since (E, d) satisfies the 2-Helly property, AΔ =

⋂
x∈A B(x, +) �= ∅. Applying again the 

convexity and the 2-Helly property, we get that the intersection of balls B(x, +) for x ∈ A and B(y, −), 
for b ∈ AΔ is nonempty. This intersection contains just one element, this is the supremum of A. A similar 
argument yields the existence of the infimum of A, hence Pd is a complete lattice. Conversely, let B(xi, ri), 
(i ∈ I), be a family of balls such that d(xi, xj) ≤ ri ∨ rj . We prove that C :=

⋂
i∈I B(xi, ri) �= ∅. If there is 

some i ∈ I such that ri = 0, then xi ∈ C. If not, let A := {i ∈ I : ri = +}, B := {j ∈ I : rj = −}. Then 
xi ≤ xj for all xi ∈ A, xj ∈ B. Set c :=

∨
A and observe that c ∈ C. �

Since 0 is the only inaccessible element of V , Theorem 4.8 applies: Every commuting family of order-
preserving maps on a complete lattice has a common fixed point. This is Tarski’s theorem (in full).

Posets coming from V -metric spaces with a compact normal structure are a bit more general than 
complete lattices, hence Theorem 3.8 on compact normal structure could say a bit more than Tarski’s fixed 
point theorem. As we will see, in the case of one order-preserving map this is no more than Abian-Brown’s 
fixed-point theorem.

We observe first that the f.i.p. property of the collection of balls BE := {↓ x : x ∈ E} ∪ {↑ y : y ∈ E}
is an infinistic condition: it holds for every finite poset. In order to describe it we introduce the following 
notions.

A pair of subsets (A, B) of E is called a gap of P if every element of A is dominated by every element 
of B but there is no element of E which dominates every element of A and is dominated by every element 
of B (cf. [19]). In other words: (

⋂
x∈A B(x, ≤)) ∩ (

⋂
y∈B B(y, ≥)) = ∅ while B(x, ≤) ∩B(y, ≥) �= ∅ for every 

x ∈ A, y ∈ B. A subgap of (A, B) is any pair (A′, B′) with A′ ⊆ A, B′ ⊆ B, which is a gap. The gap (A, B)
is finite if A and B are finite, otherwise it is infinite. Say that an ordered set Q preserves a gap (A, B) of P
if there is an order-preserving map g of P to Q such that (g(A), g(B)) is a gap of Q. On the preservation 
of gaps, see [34].

Lemma 4.15. Let P := (E, E) be a poset. Then:

(a) P is a complete lattice iff P contains no gaps;
(b) An order-preserving map f : P → Q preserves all gaps of P iff it preserves all holes of P with values 

in V \ {0} iff f(P ) is a one-local retract of Q;
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(c) BE satisfies the f.i.p. iff every gap of P contains a finite subgap iff every hole is finite.

The routine proof is omitted. We may note the similarity of (b) and Lemma 4.12.
From item (c) of Lemma 4.15 it follows that every nonempty chain in a poset P for which the collection 

of balls has the f.i.p, has a supremum and an infimum. Such a poset is called chain-complete.
Abian-Brown’s theorem [1] asserts that in a chain-complete poset with a least or largest element, every 

order-preserving map has a fixed point. The fact that the collection of intersection of balls of P has a normal 
structure means that every nonempty intersection of balls of P has either a least or largest element. Being 
the intersection of the empty family of balls, P has either a least element or a largest element. Consequently, 
if P has a compact normal structure, we may suppose without loss of generality that it has a least element. 
Since every nonempty chain has a supremum, it follows from Abian-Brown’s theorem that every order 
preserving map has a fixed point.

On the other hand, a description of posets with a compact normal structure is still open. We only mention 
some examples. Let 

∨
be the 3-element poset consisting of 0, +, − with 0 < +, − and + incomparable to −. 

We denote by 
∧

its dual. Then the reader will observe that retracts of powers of 
∨

have a compact normal 
structure.

Theorem 3.8 above yields a fixed point theorem for a commuting family of order-preserving maps on any 
retract of a power of 

∨
or of a power of 

∧
. But this result says nothing about retracts of products of 

∨
and 

∧
. These two posets fit in the category of fences. A fence is a poset whose comparability graph is a 

path. For example, a two-element chain is a fence. Each larger fence has two orientations, for example on 
the three vertices path, these orientations yield the 

∨
and the 

∧
.

From Theorem 4.23, proved in Subsection 4.7.1, follows:

Theorem 4.16. If a poset Q is a retract of a product P of finite fences of bounded length, every commuting 
set of order-preserving maps on Q has a fixed point.

Since every complete lattice is a retract of a power of the two-element chain, this result contains Tarski’s 
fixed point theorem.

4.7. The case of directed graphs

A directed graph G is a pair (E, E) where E is a binary relation on E. We say that G is reflexive if E is 
reflexive and that G is oriented if E is antisymmetric (that is (x, y) and (y, x) cannot be in E simultaneously 
except if x = y). All graphs we consider will be reflexive. If E is symmetric, we identify it with a subset of 
pairs of E and we say that the graph is undirected.

If G := (E, E) and G′ := (E′, E ′) are two directed graphs, a homomorphism from G to G′ is a map 
h : E → E′ such that (h(x), h(y)) ∈ E ′ whenever (x, y) ∈ E for every (x, y) ∈ E × E.

Let us recall that a finite path is an undirected graph L := (E, E) such that one can enumerate the vertices 
into a non-repeating sequence v0, . . . , vn such that edges are the pairs {vi, vi+1} for i < n. A reflexive zigzag
is a reflexive graph such that the symmetric hull is a path. If L is a reflexive oriented zigzag, we may 
enumerate the vertices in a non-repeating sequence v0 := x, . . . , vn := y and to this enumeration we may 
associate the finite sequence ev(L) := α0 · · ·αi · · ·αn−1 of + and −, where αi := + if (vi, vi+1) is an edge 
and αi := − if (vi+1, vi) is an edge. We call such a sequence a word over the alphabet Λ := {+, −}. If the 
path has just one vertex, the corresponding word is the empty word, that we denote by �. Conversely, to a 
finite word u := α0 · · ·αi · · ·αn−1 over Λ we may associate the reflexive oriented zigzag Lu := ({0, . . . n}, Lu)
with end-points 0 and n (where n is the length 	(u) of u) such that Lu = {(i, i + 1) : αi = +} ∪ {(i + 1, i) :
αi = −} ∪ Δ{0,...,n}.
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4.7.1. The zigzag distance
Let G := (E, E) be a reflexive directed graph. For each pair (x, y) ∈ E×E, the zigzag distance from x to 

y is the set dG(x, y) of words u such that there is a non-expansive map h from Lu into G which sends 0 on 
x and n := 	(u) (the length of u) on y.

This notion is due to Quilliot [39,40] (Quilliot considered reflexive directed graphs, not necessarily ori-
ented, and in defining the distance, considered only oriented paths). A general study is presented in [22]; 
some developments appear in [42] and [25].

Because of the reflexivity of G, every word obtained from a word belonging to dG(x, y) by inserting letters 
will also be in dG(x, y). This leads to the following framework.

Let Λ∗ be collection of words over the alphabet Λ := {+, −}. Extend the involution on Λ to Λ∗ by setting 
� := � and u0 · · ·un−1 := un−1 · · ·u0 for every word in Λ∗. Order Λ∗ by the subword ordering, denoted by 
≤. If u := α1α2 . . . αm, v := β1β2 . . . βn ∈ Λ∗ set

u ≤ v if and only if αj = βij for all j = 1, . . .m with some 1 ≤ j1 < . . . jm ≤ n.

Let F(Λ∗) be the set of final segments of Λ∗, that is subsets F of Λ∗ such that u ∈ F and u ≤ v imply 
v ∈ F . Setting X := {u : u ∈ X} for a set X of words, we observe that X belongs to F(Λ∗). Order 
F(Λ∗) by reverse of the inclusion, denote by 0 its least element (that is Λ∗), set X ⊕ Y the concatenation 
X · Y := {uv : u ∈ X, v ∈ Y }. Then, one sees that HΛ := (F(Λ∗), ⊕, ⊇, 0, −) is an involutive Heyting 
algebra. This leads us to consider distances and metric spaces over HΛ. There are two simple and crucial 
facts about the zigzag distance (see [22]).

Lemma 4.17. A map from a reflexive directed graph G into an other is a graph-homomorphism iff it is 
non-expansive.

Lemma 4.18. The distance d of a metric space (E, d) over HΛ is the zigzag distance of a reflexive directed 
graph G := (E, E) iff it satisfies the following property for all x, y, z ∈ E, u, v ∈ F(Λ∗): uv ∈ d(x, y) implies 
u ∈ d(x, z) and v ∈ d(z, y) for some z ∈ E. When this condition holds, (x, y) ∈ E iff + ∈ d(x, y).

Due to Lemma 4.18, the various metric spaces mentioned above (injective, absolute retracts, etc.) are 
graphs equipped with the zigzag distance; in particular, the distance dHΛ defined on Hλ is the zigzag 
distance of some graph. A fairly precise description of absolute retracts in the category of reflexive directed 
graphs is given in [25].

4.8. The case of oriented graphs

The situation of oriented graphs is different. These graphs cannot be modeled over a Heyting algebra 
(Theorem IV-3.1 of [22] is erroneous), but the absolute retracts in this category can be (this was proved 
by Bandelt, Saïdane and the second author and included in [42]). The appropriate Heyting algebra is the 
MacNeille completion of Λ∗.

The MacNeille completion of Λ∗ is in some sense the least complete lattice extending Λ∗. The definition 
goes as follows. If X is a subset of Λ∗ ordered by the subword ordering then

XΔ :=
⋂
x∈X

↑ x

is the upper cone generated by X, and

X∇ :=
⋂

↓ x

x∈X
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is the lower cone generated by X. The pair (Δ, ∇) of mappings on the complete lattice of subsets of Λ∗

constitutes a Galois connection. Thus, a set Y is an upper cone if and only if Y = Y ∇Δ, while a set W is an 
lower cone if and only if W = WΔ∇. This Galois connection (Δ, ∇) yields the MacNeille completion of Λ∗. 
This completion is realized as the complete lattice {W∇ : W ⊆ Λ∗} ordered by inclusion or alternatively 
{Y Δ : Y ⊆ Λ∗} ordered by reverse inclusion. We choose as completion the set {Y Δ : Y ⊆ Λ∗} ordered by 
reverse inclusion that we denote by N(Λ∗). This complete lattice is studied in detail in [7].

We recall the following characterization of members of the MacNeille completion of Λ∗.

Proposition 4.19. [7] Corollary 4.5. A member Z of F(Λ∗) belongs to N(Λ∗) if and only if it satisfies the 
following cancellation rule: if u + v ∈ Z and u − v ∈ Z then uv ∈ Z.

The concatenation, order and involution defined on F(Λ∗) induce an involutive Heyting algebra NΛ on 
N(Λ∗) (see Proposition 2.2 of [7]). Being an involutive Heyting algebra, NΛ supports a distance dNΛ and 
this distance is the zigzag distance of a graph GNΛ . But it is not true that every oriented graph embeds 
isometrically into a power of that graph. For example, an oriented cycle cannot be embedded. The following 
result characterizes graphs which can be isometrically embedded, via the zigzag distance, into products of 
reflexive and oriented zigzags. It is stated in part in Subsection IV-4 of [22], cf. Proposition IV-4.1.

Theorem 4.20. For a directed graph G := (E, E) equipped with the zigzag distance, the following properties 
are equivalent:

(i) G is isometrically embeddable into a product of reflexive and oriented zigzags;
(ii) G is isometrically embeddable into a power of GNΛ;
(iii) The values of the zigzag distance between vertices of E belong to NΛ.

The proof follows the same lines as the proof of Proposition IV-5.1 p.212 of [22].
We may note that the product can be infinite even if the graph G is finite. Indeed, if G consists of two 

vertices x and y with no value on the pair {x, y} (that is the underlying graph is disconnected) then we 
need infinitely many zigzags of arbitrarily long length.

Theorem 4.21. An oriented graph G := (V, E) is an absolute retract in the category of oriented graphs if and 
only if it is a retract of a product of oriented zigzags.

We just give a sketch. For details, see Chapter V of [42] and the forthcoming paper [8]. The proof has 
three steps. Let G be an absolute retract. First, one proves that G has no 3-element cycle. Second, one proves 
that the zigzag distance between two vertices of G satisfies the cancelation rule. From Proposition 4.19, it 
belongs to N(Λ∗); from Theorem 4.20, G isometrically embeds into a product of oriented zigzags. Since G
is an absolute retract, it is a retract of that product.

As illustrated by the results of Tarski and Sine and Soardi, absolute retracts are appropriate candidates 
for the fixed point property. Reflexive graphs with the fixed point property must be antisymmetric, i.e., 
oriented. Having described absolute retracts among oriented graphs, we derive from Theorem 4.8 that the 
bounded ones have the fixed point property.

We start with a characterization of accessible elements of NΛ. The proof is omitted.

Lemma 4.22. Every element v of NΛ \ {Λ∗, ∅} is accessible.

Theorem 4.23. If a graph G, finite or not, is a retract of a product of reflexive and directed zigzags of bounded 
length then every commuting set of endomorphisms has a common fixed point.
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Proof. We may suppose that G has more than one vertex. The diameter of G equipped with the zigzag 
distance belongs to NΛ \ {Λ∗, ∅}. According to Lemma 4.22, it is accessible, hence as a metric space, G
is bounded. Being a retract of a product of hyperconvex metric spaces it is hyperconvex. Theorem 4.8
applies. �
4.9. Bibliographical comments

Generalizations of the notion of a metric space are as old as the notion of ordinary metric space and 
arise from geometry and logic, as well as probability. The generalization we consider, originating in [22], 
is one among several; the paper [22] contains 71 references, e.g. Blumenthal and Menger [10], [11] [12], as 
well as Lawvere [30], to mention just a few. It was motivated by the work of Quilliot on graphs and posets 
[39,40]. The characterization of hyperconvex spaces due to Aronszjan-Panitchpakdi [3] and the existence of 
an injective envelope, obtained for ordinary metric spaces by Isbell [21], and developed by Dress [18], was 
extended to metric spaces over some ordered monoid (what we called here an involutive Heyting algebra). 
A study of hole-preserving maps and a characterization of absolute retracts w.r.t. these maps by means 
of the replete space were also obtained. For more recent developments, see [7,24,27]. It was pointed out 
recently to the second author that the study of these Heyting algebras goes back to the late 1930’s and the 
work of Ward and Dilworth (1939) [48]. The term “quantale” was introduced in 1984 by Mulvey [33] as a 
combination of “quantum logic” and “locale”. We find it convenient to use the terminology of [23]. A huge 
literature has developed about quantales (see Rosenthal [41] and the recent book of Eklund et al. [20]) and 
spaces over these objects. Inevitably, there is some overlap with the work mentioned above (e.g. compare 
the main result of [9] with the existence of injective envelopes obtained previously in [22]; see also [2]).
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