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Abstract. We prove the existence of a fixed point for a nonexpansive mapping

operating in a convex subset of a Banach lattice E compact for some natural

topology t on E . In particular, if £ is a Banach space with a 1-unconditional

basis we can take for z the topology of coordinatewise convergence.

1.  INTRODUCTION

If B is a subset of a Banach space, a map T : B -» B is said to be nonex-

pansive when the inequality

||7Xx) - T(y)\\ < ||x-y||

holds for every pair x, y in B .

The main result of this paper (Corollary 1 ) is the following one. Let £ be a

Banach space endowed with a 1-unconditional Schauder basis, i.e. a Schauder

basis («>„)„>„ such that ||x0é>0 + • • • + xneH + ■ ■ ■ || < \\yoe0 + • • • + ynen + • • • || if

\xn\ < \yn\ for every n (in fact, this condition will be slightly weakened). Let B

be a convex nonvoid subset of E, compact for the topology of coordinatewise

convergence. Then every nonexpansive map T: B —► B has a fixed point.

This was proved by Lin [Ln] in the special case where B is a weakly compact

convex set. The method of [Ln] is a refinement of techniques of Maurey [M,

E-L-O-S]. It turns out that this method still works with the topology of coordi-

natewise convergence once a key lemma of Goebel and Karlovitz [G, Ka] has

been generalized (Lemmas 4 and 5). Let us notice that our proof avoids any

use of ultraproducts.

In fact, in the theorem below, we give a more general result, considering ar-

bitrary Banach lattices E and proving the above fixed point property in convex

subsets compact for some natural topology r on E. In usual spaces of mea-

surable functions with order continuous norm (Corollary 2), x is the topology

of convergence in measure on every set with finite measure.
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FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH LATTICES 103

Related results can be found in [B-S] for weakly compact convex subsets

of Banach lattices and in [LD-T] for r-compact star-shaped subsets of Orlicz

spaces. The techniques of [LD-T], using the unicity of "asymptotic centers",

exclude such spaces as c0. In [M, E-L-O-S, B-S] the norm must be in some

sense far from that of /, . The method of [Ln], which is generalized here,

avoids these restrictions.

A survey on fixed points and nonexpansive mappings is given in [Ki2].

Let us recall that Alspach [A] constructed a weakly compact convex subset of

Lx(0 ,1) invariant under some nonexpansive map without fixed point.

Theorem. Let (E ,\

structure satisfying

2. The results

be a real Banach space, endowed with a vector lattice

(a) (x   < y   and x   <y  ) => \\x\\ < \\y\\,

and, for some real constant k < 2,

iß) \x\ < \y\ => \\x\\ < k\\y\\,

x, y in E ,

x ,y in E.

\x\ AwLet x be the coarsest linear topology on E for which the map x

from E to R+ is continuous at 0 for every ue E+ .

Let B be a x-compact nonvoid convex subset of E.

Then every nonexpansive map T: B —> B has a fixed point.

The above topology x may also be defined in the following way: it admits

as a basis of neighborhoods of a point x e E the sets

{y eE:\\\y-x\Au\\<e},       ueE+,e>0.

For example let E be a real Banach space endowed with an unconditional

Schauder basis (en)n>0- Then £ is a vector lattice for the "coordinatewise

order", defined by Y\, xe„ < 5" ye„ when x   < v   for every « > 0. The
J    ¿—'n    n   n — *-~*n y n   n n  — J n J —

topology x is easily seen to be the topology of coordinatewise convergence.

Putting x = Y^=0xnen the conditions (a) and (ß) are respectively equivalent

to

(a') J2SnXnen
«=0

oo

Y.SnXnen
«=0

<\x

< k\\x\\,

0,1, xeE,

e„ = ±1, xeE.

For instance,   (a)   implies   (a)   because, if 0  <  tn   <   1   for every   «,

ErT Lx„e„ lies in the closed convex hull of the points y^ e„xe„, e„ = 0,1.
U     n   n  n r ¿—'U     n   n  n     n

So we get the following special case of the theorem.
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104 M. A. KHAMSI AND PH. TURPIN

Corollary 1. Let E be a real Banach space endowed with an unconditional

Schauder basis satisfying the above conditions (a) and (/?'), with k < 2. Let

B be a nonvoid convex subset of E, compact for the topology of coordinatewise

convergence.

Then every nonexpansive map T : B —► B has a fixed point.

When B is weakly compact, the above statement is due to Lin [Ln].

Example 1. Let B be a nonvoid convex subset of the space /,(N) of absolutely

summable sequences, weak *-compact for the usual duality with c0(N) (or,

equivalently, coordinatewise compact for the canonical basis (en) of /,(N)).

Then B has a fixed point for a mapping T : B —► B if T is nonexpansive for

the norm

PÁ(x) = \\x\\xV(X\\x\\J

where X is some real number, \\(xn)\\x = £~ \xn\, IK-xJH^ = sup,, \xn\.

This result is evident for the weakly compact convex sets since these sets are

in fact compact in norm, but we see no obvious way to deduce it from known

results for arbitrary weak*-compact convex sets if X > 2.

For instance, let us consider the weak'-compact convex set B = {x e

¡i- ||*||[ < !}• It contains the unit vectors en, n > 0. If X > 2, then,

for every x e B, pk(x - en) tends to the diameter X of B as « —> oo. This

shows that B has no weak'-normal structure [Ki2] if X > 2. So the methods

using normal structures cannot be applied in this case.

On the other hand, in [B-S], Borwein and Sims generalize the technique of [M]

to some Banach lattices E with a "Riesz angle" a(E) = sup{|| \x\ V | v| || : ||x|| V

||y|| < 1} satisfying a(E) < 2. The Riesz angle of (/, , px) is equal to 2,

so the space (/, , px) does not fall under the scope of [B-S]. Moreover only

weakly compact convex sets are considered in [B-S]. However, let us consider

the Banach lattice c(N) of convergent sequences, endowed with the supremum

norm. It is proved in [B-S] that every weakly compact convex subset of c(N)

has the "nonexpansive fixed point property." This is not given by our theorem.

Indeed the topology x of c(N) is the norm-topology.

Let us observe that the conclusion of Corollary 1 is false for k = 2, as shown

by an example of Lim [Lm, Ln].

Corollary 1 is concerned with sequence spaces. It can be generalized to spaces

of measurable functions in the following way.

Let (Q, sé , p) be a measure space and let M = M(Q ,sé ,p) be the vector

lattice of all /¿-classes of //-measurable functions on (íl, sé , p). An order ideal

of M is a vector subspace E of M such that x e E as soon as x e M and

|*| < I y I for some element y of E. A norm ||-|| on E is said to be sequentially

order continuous when limn ||.xj| = 0 for every decreasing sequence (xn) of

E+ with inf„ xn = 0.

Corollary 2. Let E be an order ideal of M(£l ,sé ,p) and a Banach space for

a sequentially order continuous norm satisfying conditions (a) and (ß) of the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH LATTICES 105

theorem, for some constant k < 2. We assume also that an element x of E

is null provided x = 0 a.e. on every set A e sé with finite measure. Let B

be a nonvoid convex subset of E, compact for the topology a of convergence in

measure on every set A ese with finite measure. Then every nonexpansive map

T: B —» B has a fixed point.

This topology a on E admits as a basis of neighborhoods of a point xQe E

the family of sets

V(x0,A,a ,e) -{xeE: p(An(\x - x0\ > a)) < e} ,

where a > 0, e > 0 and A e sé with p(A) < oo. When p is the counting

measure on the power set 2 of a nonvoid set F, a is the topology of pointwise

convergence.

Proof of Corollary 2. It suffices to check that a is finer than x, i.e. that the map-

ping x -* || \x\ A u\\ from (E, a) to R+ is continuous at 0 for every u e E+ ,

and to apply the theorem. So, let u e E+ , «^0, and let {A¡)ieI be a maximal

disjoint family of sets A¡ G sé such that fi(A¡) < oo and ||«1^ || > 0, where

lA is the characteristic function of A¡. Using the sequential order continuity

of the norm, it is easily checked that I is finite or countable. Applying again this

property, one can find a set A e sé for which p(A) < oo and \\u - ulA\\ < e,

where e > 0 is given. One can also find real numbers a > 0, b > 0, w > 0

satisfying ||«l(„<a)|| < e, \\bu\\ < e and ||wlB|| < e for any B e sé with

p(B) < n. Then, if x e E and p(A n (|jc| > ab)) < n, we get (using condition

(a) ) || \x\ A u\\ < \\u -ulA\\ + \\ul(u<a)\\ + \\bu\\ + HkI^i^II < 4e.

Example 2. Let L, = L,(Çl,sé ,p) be an Orlicz space, <f> being a convex

Orlicz function (see [L-T]). In Corollary 2 we can take for E the closed linear

subspace L, of L, generated by the /z-integrable simple functions, endowed

with any Riesz norm equivalent to the usual Luxemburg norm (in this case the

topologies a and : on £ are identical).

Let us observe [LD-T, Theorem 10.1] that if <p verifies the condition A2

(i.e. if L° — L.) and if E = L, is endowed with the Luxemburg norm, the

set B of Corollary 2 need not be convex: it suffices to suppose B star-shaped,

bounded in norm and compact for the topology a .

3. Proof of the theorem

The hypotheses are those of the theorem.

_
Lemma 1.

(a) The topology x is a Hausdorff linear topology, coarser than the topology

defined by the norm.

(b) Every convex x-compact subset C of E is norm-bounded.

(c) If K is a x-compact subset of E, every sequence (xn) of points of K

contains a x-convergent subsequence.
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106 M. A. KHAMSI AND PH. TURPIN

Proof of (a). Obvious.
Proof of (b). When C is nonvoid, let Ec be the vector subspace of E

generated by C. Clearly, the functional ||x||c = inf{i > 0: x e t(C - C)},

x e Ec, is a norm on Ec , the canonical injection of (Ec , \\ ■ \\c) into (E, x)

is continuous, and (Ec , \\ • \\c) is a Banach space: if (xn) c C - C is a Cauchy

sequence for || • ||c and x is a r-cluster point of (*„), it is easily seen that

H* _ x«llc tena"s to 0. It remains to apply the closed graph theorem to the

canonical injection of (Ec , || • ||c) into (E , \\ • \\).

Proof of (c). Let L be the closure in (E, x) of the set of the elements y

of E satisfying |y| < NY!q l*„l for some integer TV ( L is the r-closed order

ideal of E generated by the xn 's). Let xL be the linear topology on L which

admits as a basis of zero-neighborhoods the sets

^(e) = |xGJL:|||x|A¿|x„|||<el ,       e>0, N = 0,l.

This topology xL on L is coarser than the topology induced by x. Let

us prove that xL is Hausdorff (then xL is metrizable, x and xL coincide on

K n L by compactness, and we are done). We have to show that x is null if

x e L and \x\ A Y^ \xn\ = 0 for every N. But {y G E: \x\ A \y\ = 0} is a

T-closed order ideal of E (it is easily checked that the lattice operations of E

are t-continuous), so it contains x, whence x = 0.

Lemma 2. Let (un) and (vn) be sequences of E converging to some point ceE

for the topology x, with limn |[ |m — c\ A \vn — c\ \\ = 0. Then, for every sequence

(wn) of E and for every xeE, we have

2lim sup 11«;^ - c|| < limsup||u;n - x|| +limsup||tün - un\\
n n n

+ lim sup ||u;  - v \\.r "     n n>>
n

Proof. For u and x in E let

Su(x) = x   A\u\-x   A\u\.

Then, for u , v , x , y in E the following inequalities hold.

(1) \\Su(x)\\<\\x\\A(k\\u\\),

(2) ||x-.Su(x)|| < ||jc — w||,

(3) \\Su(x)-Su(y)\\<2k\\\x-y\A\u\\\,

(4) \\Su(x) + Sv(x)\\<\\x\\ + k\\\u\A\v\\\.

We get (1) using (a) and (ß) since (Su(x))+ < x+, (Su(x))~ < x~ and

^„(x)! < \u\. We also have (x - 5"M(x))+ = (x - |w|)+ < (x - u)+ and, changing

x and u into their opposites, (x - 5"u(x))~ < (x - u)~ ; this gives (2). The

inequality (3) is given by

\Su(x) - Su(y)\ < \x+ A \u\ - y+ A \u\ \ + \y~ A \u\ - x~ A \u\ |

< |x+ - y+| A |m| + \y~ -x~\ A \u\ < 2(\x - y| A \u\).
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FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH LATTICES 107

We get (4) using (1) and the equality Su(x) + Sv(x) = S|u|vM(x) + S|u|A|!;|(x),

an easy consequence of the identity a + b = avb + aAb.

Now we prove Lemma 2 as follows. Without loss of generality, we assume

c = 0. Using (2) we have

2IKII < lls„„K) + SJwn)\\ + \\wn - SUn(wn)\\ + k - SVn(wn)\\

< II^.K) + SvS^M + IK -un\\ + ik - vn\\.

By (3) and since limn un = 0 for the topology x, we have

lim sup US   (wn) -S   (wn -x)\\ < 2/climsup|||x| A\un\\\ = 0,
n " " n

and similarly \\SV (wn) - Sv (wn - x)\\ tends to 0. So, using (4)

limsupllS   (wn) + S  (wn)\\ = limsupllS   K -x) + S  K -x)||
n n

< limsup||tiJn - x|| -l- A: lim sup || \un\ A \vn\ \\ — limsup||ton -x||.
n n n

This achieves the proof of Lemma 2.

A sequence (z ) of B is said to be an "approximate fixed points sequence"

when it verifies

(5) lim ||r(zj-zn|| = 0.

Lemma 3. There exists in B a point c and an approximate fixed points sequence

(zn) satisfying

(6) lim sup \\zn - c\\ < \(k + 2) Diam(TJ),
n

where Diam(ß) = sup{||x - y\\: (x ,y) e B x B}.

Proof. For u e B and X e (0 , 1 ) the mapping

TuX(x) = (l -X)u + XT(x),        xeB,

satisfies \\TU x(x) - Tu x(y)\\ < X\\x - y\\ for x, y in B.  So it has a unique

fixed point u(X) e B . We have for u , v in B and X e (0,1 )

(7) T(u(X)) = (l-X~l)u + X~iu(X),

(8) ||m(A)-m|| <X(l -A)_1||r(«)-M||,

(9) ||«(A)-ü(A)||<||k-t;||.

The equality (7) is obvious. Since Tu k is A-Lipschitzian and Tu k(u(X)) =

u(X), we have clearly \\u(X) -x|| < (1 - A)-' ||7^ x(x) - x\\ for every x e B,

whence (8) taking x = u. Finally, we deduce (9) from

\\u(X) - v(X\\ = (1 - X)(u -v) + X(T(u(X)) - T(v(X))\\

<(1 -X)\\u-v\\+X\\u(X)-v(X)\\.

As is well known, the u(X) 's yield approximate fixed points sequences since

||:T(w(/))-m(/)|| = \\(l-X)(T(u(X))-u)\\ <(\-X) Diam(ß), with Diam(5) < oo
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(Lemma 1(b)). So, using Lemma 1(c), we can find in B an approximate fixed

points sequence (cn)n>0 t-converging to some point c e B. By definition of

t , we may even assume that || \c2n - c\ A \c2n+x -c\\\ tends to 0. Hence, letting

Un=C2n>Vn=C2n+l>™hilVe

(10) lim \\T(un) - un\\ = hm ||7>„) - v\\ =0,

(11) x - lim u   = t - lim ti  = c ,
v      ' n       " n      "

(12) lim || \un - c\ A \vn - c\ || = 0.

Then the sequence wn = \(un + vn), « = 0,1,..., satisfies

(13) limsup|K-c||<!Diam(5).
n 2

Indeed, for x , y in E we have

II* + y\\ <\\x + y- 2(x+ A y+) + 2(x~ A y-)|| + 2||x+ A y+ - x~ A y' \\

<k\\x-y\\ + 2k\\\x\A\y\\\,

since |x+ A y+ - x- A y ~ \ < \x\ A \y | and the identity a + b - 2(a A b) = \a — b\

gives \x + y - 2(x+ A y+) + 2(x~ A y~)\ = | |x+ - y+\ - \x~ — y~\ | < \x - y\.
Applying this with x = un - c and y = vn - c and using (12) we get (13).

Let us now pick some fixed number X e (0, 1). From (9) and (13) we deduce

(14) limsup|K(A)-c(¿)|| < |Diam(5).
n

Furthermore we have

(15) limsup(|K(A) - uj V |K(A) - vj) < i Diam(5)
n

Indeed, by (8) and (10), limn \\un(X) - un\\ = 0, so using (9),

lim sup ||wn(X) - un\\ < limsup||t(;n - un\\ < \ Diam(5).
n n

The same is true for IK(A) - vn\\, whence (15). In view of (11), (12), (14)

and (15), Lemma 2 gives

limsup|K(A)-c|| < \(k + 2)T>iam(B).
n

Now, if Xn G (0, 1), « = 0,1, ... , with limn Xn = 1, there exists a sequence

zn ■ whSK) such that limsupn \\zn - c\\ < \(k + 2)Diam(A). By (7), (zn) is

an approximate fixed points sequence: this proves Lemma 3.

The following lemma is essentially due to Goebel and Karlovitz [G, Ka]. In

[G and Ka] the topology a below is the weak topology.

Lemma 4 (Goebel, Karlovitz). Let F be a Banach space and let K be a convex

bounded nonvoid subset of F, compact for some Hausdorff topology a. We

assume that, for every sequence (xn) of K, the map r(c) = limsupn ||xn - c||,

c e K, is lower semicontinuous on K for the topology a. Let T: K —» K be a
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FIXED POINTS OF NONEXPANSIVE MAPPINGS IN BANACH LATTICES 109

nonexpansive mapping. We suppose that K is minimal, in the sense that every

a-compact convex nonvoid T-invariant subset of K is equal to K.

Then we have

lim||xn-c|| = T)idim(K)

for every approximate fixed points sequence (xn) of K and every ceK.

As the above mapping r(c) is weakly lower semicontinuous (it is convex and

norm-continuous), Lemma 4 contains the statement of Goebel and Karlovitz.

Proof. First we prove that we have, for every x e K,

(16) sup{\\x-c\\:ceK} = Diam{K).

When a is the weak topology this is a result of Kirk [Kil], and we follow Kirk's

proof. Of course the hypothesis on a implies that the map x -» ||x - c||,

x G K, is a-l.s.c. for every c e K ; hence, so is the map d(x) = supc€A- ||x - c||.

Therefore, if m = infx&Kd(x), the set K0 — {x e K: d(x) — m) is a nonvoid

a-compact convex subset of K. It remains to prove that KQ is T-invariant

(then K0 = K and m = Diam(K) ). So, let x G A:o. The set {ceK: \\T(x) -

c\\ < m} is an a-compact convex set which is nonvoid and T-invariant since

it contains T(K) by nonexpansiveness of T. Hence it is equal to K and

T(x) e K0.

As a consequence of (16) we get sup{r(c): c e K} = Diam(A) for every

sequence (xn) of K if r(c) = limsup||xn - c|| : indeed r(c) > ||x - c|| if

x is an a-cluster point of (xn), by a-lower semicontinuity (a-l.s.c). But if

(xj is an approximate fixed points sequence, the map r(c) is convex, a-l.s.c.

and verifies r(T(c)) < r(c). By minimality of A', it is constant on K. So

r(c) = Diam(A) for every ceK, which easily gives the lemma.

The following result shows that Lemma 4 can be applied to the space E of

the theorem, with a-x.

Lemma 5. For every norm-bounded and relatively x-compact sequence (xn ) of

E, the mapping r(c) = limsupn ||xn - c||, c e E, is lower semicontinuous on

(E,x).

Proof. Let c e E and e > 0. It suffices to show that r(c + x) > r(c) - s for

every x in some r-neighborhood V of the origin. Using Lemma 1 we have

r(c) = limn ||yj| for some subsequence (yn) of (xn - c) converging to some

point y e E for the topology x. The set V = {x G E: \\ \y\ A \x\ || < k~le/3}

is a T-neighborhood of the origin. Let x eV . Since limn || |yn - y| A |x| || = 0

we have

lim sup || |yj A |x| || < k~ e/3.
n

Using the functions Su (cf. Lemma 2) this gives

limsup ||y„ - x|| > lim sup ||y  - Sx(yn) - (x - S  (x))\\ - 2e/3
n n '
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110 M. A. K.HAMSI AND PH. TURPIN

since \Sx(yn)\ = |S^(x)| = |v„|A|x|. But y„-Sx(yn) and x - Syn(x) are

easily seen to be disjoint. So (condition (a) of the theorem), we get

limsup||yfl -x|| >limsup||yn -Sx(yn)\\-2e/3
n n

>lun||yJ-£

whence r(c + x) > r(c) - e .

Proof of the theorem. Using Zorn's lemma we may assume that the set B of

the theorem is minimal (cf. Lemma 4). Let us consider the approximate fixed

points sequence (zn) c B and the point c e B given by Lemma 3. In view of

Lemmas 4 and 5 (and Lemma 1(b)) we have limn ||zn -c|| = Diam(ß), whence

Diam(7?) = 0 if k < 2 .
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