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Abstract

The abstract formulation of Kirk’s !xed point theorem by Penot played a major role in
developing !xed point theorems in nonconvex setting. In this work, we similarly give an abstract
formulation to Sadovskii’s !xed point theorem using convexity structures. As an example, we
discuss these new ideas in the hyperconvex metric setting.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

May be one of the most interesting result in metric /xed point theory is Kirk’s
theorem [9]. The initial attempts to extend it to the nonlinear case were not very
successful. Penot’s formulation [12] of this theorem may be considered as a gateway
to some amazing new results. Specially, the extension of normal structure ideas to
discrete sets (see [7] for more details). In this work we consider, as Penot did, the
notion of convexity structures and discuss Sadovskii’s !xed point theorem [13] in
this setting. Then we give the interesting example of hyperconvex metric spaces. It is
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worth to mention that an extensive research on hyperconvex metric spaces is underway
(see [5]).

2. Basic de�nitions

Recall that Sadovskii’s !xed point theorem states that if M is a nonempty, bounded,
closed and convex subset of a Banach space X , and T :M → M is a continuous
condensing map, then T has a !xed point, i.e. there exists x∈M such that T (x) = x.
The condensing behavior is related to the notion of measure of noncompactness. In
this work, we will not discuss the general theory of measure of noncompactness. The
interested reader may consult [2]. For the purpose of illustrating our ideas, we will only
consider the measures of noncompactness introduced by HausdorH and Kuratowski.

De�nition 1. Let (M; d) be a metric space and let B(M) denote the collection of
nonempty, bounded subsets of M .

(1) The Kuratowski measure of noncompactness � :B(M) → [0;∞) is de!ned by

�(A) = inf

{
	¿ 0;A ⊂

i=n⋃
i=1

Ai with Ai ∈B(M) and diam(Ai)6 	

}
:

(2) The HausdorH (or ball) measure of noncompactness � :B(M) → [0;∞) is de!ned
by

�(A) = inf

{
r ¿ 0;A ⊂

i=N⋃
i=1

B(xi; r) with xi ∈M

}
;

where B(x; r) denote the closed ball centered at x with radius r.
(3) The map T :M → M is said to be �-condensing (resp. �-condensing) if and only

if

�(T (A))¡�(A) (resp: �(T (A))¡�(A))

for any A∈B(M).

The following properties hold in the general case:

(1) For any A∈B(M), we have

06 �(A)6 �(A) = diameter of A:

(2) For any A∈B(M), we have

�(A) = 0 iH A is precompact:

(3) For any A∈B(M) and B∈B(M), we have

�(A ∪ B) = max{�(A); �(B)}:
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(4) For any A∈B(M), we have

�(A)6 �(A)6 2�(A):

(5) If (Ai) is a decreasing chain of nonempty closed bounded sets such that
inf i{�(Ai)} = 0, then ∩Ai is not empty and is compact (i.e. �(∩Ai) = 0).

For our abstract formulation, we need the following de!nition:

De�nition 2. Let M be a metric space and F a family of bounded subsets of M . We
will say

(1) F has the intersection property (IP) if and only if A ∩ B∈F provided A∈F
and B∈F.

(2) F has the chain intersection property (CIP) if and only if ∩Ai ∈F provided (Ai)
is a decreasing chain of elements in F.

In both cases, we may talk about the F-closure of A∈B, which we will denote
coF(A). Indeed, if F has IP, then we set

coF(A) =
⋂

B∈F(A)

B;

where F(A) = {B∈F;A ⊂ B}. And if F has CIP, then the subfamily F(A) satis!es
the assumptions of Zorn’s lemma. Therefore, F(A) has minimal elements. We will
still use the notation coF(A) to designate such minimal elements.

Example. Let C be a closed bounded convex of a normed linear space. Consider F
to be the family of all the closed convex subsets of C. Then clearly F satis!es IP.

In the next section, we will discuss the case of hyperconvex metric spaces in which
a natural family of subsets may be found which satis!es CIP.

In the proof of Sadovskii theorem, one crucial step is the invariance of the measure
of noncompactness with respect to the convex closure of a set. Indeed, if M is a
normed linear space, then we have

�(conv(A)) = �(A);

where conv(A) is the convex closure of A∈B(M). This property suggests the following
de!nition.

De�nition 3. Let M be a metric space and F a family of closed bounded subsets of
M . We will say that F is �-invariant if and only if for any A∈B, we have

�(coF(A)) = �(A):

Of course, we do assume that coF(A) exists for any A∈B(M).

In the next section, we will discuss an interesting example which will help us shed
some light on the diHerence between IP and CIP.
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3. The hyperconvex case

Recall that a metric space M is said to be hyperconvex if and only if for any
family (xi)i∈I of points in M and any family (ri)i∈I of positive numbers such that
d(xi; xj)6 ri + rj, for all i; j∈ I , then we have⋂

i∈I

B(xi; ri) 	= ∅:

The notion of hyperconvexity is due to Aronszajn and Panitchpakdi [1] who proved that
a hyperconvex space is a nonexpansive absolute retract, i.e. it is a nonexpansive retract
of any metric space in which it is isometrically embedded. The corresponding linear
theory is well developed and associated with the names of Gleason, Goodner, Kelley
and Nachbin (see for instance [11, p. 92]). The nonlinear theory is still developing.
The recent interest into these spaces goes back to the results of Sine [14] and Soardi
[15] who proved independently that !xed point property for nonexpansive mappings
holds in bounded hyperconvex spaces. Since then many interesting results have been
shown to hold in hyperconvex spaces (see [5]).

One of the most elegant results in this direction was discovered by Baillon [3] who
showed that if M is a hyperconvex metric space and (Hi) is a decreasing chain of
bounded hyperconvex subsets of M , then

⋂
i Hi is not empty and is hyperconvex.

Therefore, the family

H = {H ⊂ B(M);H 	= ∅ and is hyperconvex}
satis!es CIP (but fails to satisfy IP, i.e. the intersection of two hyperconvex is not
necessarily hyperconvex). Another natural family considered by many is the family of
admissible subsets of M , denoted by A(M), and de!ned by

A∈A(M) if and only if A is a nonempty intersection of closed balls:

It is easy to see that A(M) satis!es IP. This family was used extensively in the study
of metric !xed point property, the theory which deals with the existence of !xed points
of nonexpansive mappings. But when it comes to condensing mappings, Espinola [4]
noticed that it is not a natural family to work with. Indeed, one may easily come up
with a compact set A in l∞ such that coA(l∞)(A) is not compact. Therefore, the family
A(l∞) is not �-invariant.

First let us note the following property of the two measures of noncompactness �
and �.

Proposition 1. Let H be a hyperconvex metric space and A a bounded subset of H .
Then we have

�(A) = 2�(A):

Proof. It is enough to prove that

2�(A)6 �(A):
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Let 	¿�(A). Then there exists A1; : : : ; An subsets of A such that

A =
⋃

16i6n

Ai

with �(Ai)6 	, for i = 1; : : : ; n. Since H is hyperconvex, then there exists hi ∈H , for
i = 1; : : : ; n, such that

Ai ⊂ B
(
hi;

	
2

)
:

Hence

A ⊂
⋃

16i6n

B
(
hi;

	
2

)
;

which gives �(A)6 	=2. Therefore

�(A)6
�(A)

2
;

which completes the proof of Proposition 1.

Note that a similar result exists in any in!nite-dimensional Banach spaces for closed
balls. Indeed, in these spaces, we have

�(B(x; r)) = 2�(B(x; r)) = 2r:

Before we show that for a hyperconvex metric space, the natural family H is
�-invariant, we need some basic results due to Isbell [6]. Indeed, let H be a bounded
hyperconvex metric space and H the above natural family. Isbell has shown that for
any subset A of H , all the minimal elements of the subfamily

H(A) = {C ∈H;A ⊂ C}
are isometric to the set 	(A), called the injective envelope of A. The set 	(A) is the
set of all extremal functions de!ned on A. Recall that the function f :A → [0;∞) is
extremal if

d(x; y)6f(x) + f(y) for all x; y in A

and is pointwise minimal, i.e. if g :A → [0;∞) such that

d(x; y)6 g(x) + g(y) for all x; y in A

and g(x)6f(x) for all x∈A, then we must have f = g. Note that if f∈ 	(A), then it
satis!es

f(x)6d(x; y) + f(y) for all x; y in A:

This inequality implies that 	(A) ⊂ Lip1(A), where Lip1(A) is the set of all Lipschitzian
functions de!ned on A with Lipschitz constant 1. Before, we show the �-invariance of
the family H, we need the following technical lemma (which appeared !rst in [4] with
a diHerent proof). Note that this result may be seen as an adaptation of the classical
Arzela–Ascoli Theorem.
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Lemma 1. Let M be a metric space. Consider the space %[a;b](M) of Lipschitzian
real-valued functions de/ned on M with Lipschitz constant less than % with values in
the interval [a; b]. Then we have

�(%[a;b](M))6 2%�(M):

Proof. Let 	0 ¿�(M). Without loss of generality, we may assume that there exists
x1; : : : ; xn in M such that for any x∈M , there exists i∈ [1; n] such that d(x; xi)6 	0.
Since [a; b] is compact, for any 	¿ 0, there exists c1; : : : ; cm in [a; b] such that for any
c∈ [a; b] there exists i∈ [1; m] such that

|c − ci|6 	:

Let  : {1; : : : ; n} → {1; : : : ; m} be an application. De!ne

% = {f∈ %[a;b](M); sup
16i6n

|f(xi) − c (i)|6 	}:

This set may be empty. On the other hand, we have

%[a;b](M) =
⋃

 ∈{1;:::;m}{1;:::; n}

% :

Let f; g∈ % . For any x∈M , there exists i∈ [1; n] such that d(x; xi)6 	0. Then we
have

|f(x) − g(x)|6 |f(x) − f(xi)| + |f(xi) − g(xi)| + |g(xi) − g(x)|;
which gives

|f(x) − g(x)|6 %	0 + 2	 + %	0:

Hence

sup
x∈M

|f(x) − g(x)|6 2%	0 + 2	:

Since the set {1; : : : ; m}{1; :::; n} is !nite, we get

�(%[a;b](M))6 2%	0 + 2	:

Since 	 was chosen arbitrarily positive, we get

�(%[a;b](M))6 2%	0;

which clearly implies

�(%[a;b](M))6 2%�(M):

From this lemma, we deduce the following result.

Corollary. Let M be any bounded metric space and 	(M) its injective envelope. Then
we have

�(	(M)) = �(M):
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Proof. Since 	(M) ⊂ %[0; �](M), where %=1 and � is the diameter of M , then we have

�(	(M))6 2�(M):

Using Proposition 1, we get

�(	(M))6 �(M):

Since M can be isometrically embedded into 	(M), then

�(M)6 �(	(M)):

In particular, if A is a bounded subset of a hyperconvex metric space H , and h(A)
is any minimal element of the family

H(A) = {C ∈H;A ⊂ C};
then Isbell [6] proved that h(A) is isometric to 	(A). Hence we have

�(h(A)) = �(	(A)) = �(A):

Using Proposition 1, we get

�(h(A)) = �(A):

This clearly implies that the family H, associated to any hyperconvex metric space
H , is �-invariant.

4. Abstract formulation of Sadovskii’s theorem

Let M be a metric space and F a family of bounded subsets of M . We will say that
F satis!es the property (S) (for Schauder) if and only if for any C ∈F nonempty
compact and any T :C → C continuous map, there exists x∈C such that T (x)= x, i.e.
T has a !xed point.

Khamsi [8] has shown that if M is hyperconvex, then the family H satis!es (S).

Theorem 1. Let M be a metric space and F a family of bounded subsets of M .
Assume F satisfy IP (or CIP), and the property (S). We will also assume that F
is �-invariant. Then, for any nonempty C ∈F and any continuous T :C → C, which
is condensing, has a /xed point.

Proof. First let us give the proof of this theorem when F satis!es IP. Let m∈C and
de!ne

F(m; T ) = {D∈F;m∈D and T (D) ⊂ D}:
Let

C(m) =
⋂

D∈F(m;T )

D:



836 M.A. Khamsi / Nonlinear Analysis 53 (2003) 829–837

Since C ∈F(m; T ), then C(m) does exist. It is easy to see that C(m) is T -invariant
(i.e. T (C(m)) ⊂ C(m)) and is not empty since m∈C(m). Let us show that C(m) is
compact. Indeed, we have coF(T (C(m)) ∪ {m}) ⊂ C(m). Hence we deduce

T (coF(T (C(m))) ∪ {m}) ⊂ T (C(m)) ⊂ coF(T (C(m)) ∪ {m}):
By minimality of C(m), we deduce that

C(m) = coF(T (C(m)) ∪ {m}):
Since F is �-invariant, we get

�(coF(T (C(m)) ∪ {m})) = �(T (C(m)) ∪ {m}) = �(T (C(m))):

Therefore, we have

�(C(m)) = �(T (C(m))):

Since T is condensing, we deduce that C(m) is compact. Using the property (S), we
conclude that T has a !xed point (in C(m)). When F satis!es the property CIP, the
proof is identical. We just need to be a little more careful about coF. Indeed, once
C(m) is de!ned, we consider the family

F(C(m); T ) = {D∈F;T (C(m)) ∪ {m} ⊂ D; and T (D) ⊂ D}:
This family is not empty since C(m)∈F(C(m); T ). Let C∗(m) be a minimal element
of F(C(m); T ). This element exists since F satis!es CIP. By minimality of C(m), we
conclude that C(m) = C∗(m). In other words,

coF(T (C(m)) ∪ {m}) = C(m):

The end of the proof is similar to the case described above.

As a corollary, we get the following result.

Corollary. Let H be a bounded hyperconvex metric space and T :H → H a contin-
uous condensing map. Then T has a /xed point.

Note that this result was !rst obtained by Kirk and Shin [10].
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