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A NONSTANDARD FIXED POINT RESULT IN L1[0,1]

MOHAMED AMINE KHAMSI

ABSTRACT. We give a survey on Maurey's contribution to metric fixed point
theory

§1. INTRODUCTION

The most frequently cited fixed point theorem in analysis is the Banach
contraction principle, which states that if (M, d) is a complete metric space
and T : M -t M is a contraction mapping (i.e. there exists k E (0,1) such
that d(Tx, Ty) ~ kd(x, y) for all x, y EM), then T has a unique fixed point
in M. Moreover, for each Xo E M, the Picard iterates (Tn(xo)) converges to
a fixed point. This theorem has its origins in Euler and Cauchy's work [8J on
the existence and uniqueness of a solution of the differential equation

dy
dt = f(x, t), y(O) = Yo .

The Lipschitz condition k < 1 is crucial even for the existence part of the
result. Mappings which satisfy the Lipschitz condition for k = 1 are known as
nonexpansive mappiTigs, and the theory of such mappings is fundamentally dif-
ferent from that of contraction mappings. For example, even if a nonexpansive
mapping T has a nonempty set of fixed points Fix(T), the Picard iterates may
fall to converge. Also, Fix(T) need not contain just one point.

In the linear case, the most important result is the theorem of Brouwer [5],
which states that any continuous map T : B(R n) -+ B(R n) has a fixed point,
where B(R n) is the unit ball in R n .

The underlying causes behind Brouwer's theorem are the compactness and
convexity of the unit ball of R ". Thus Schauder [29] extended this result to
obtain the same conclusion for any compact convex set in any linear topological
space which is locally convex. Let us add that this result was known to Poincare
[27] in an equivalent form.

Combining the two fundamental results, we come to the following basic
problem.
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Fixed point pr-oblem in Banach spaces. Given a Banach space X and
a nonempty, closed, bounded convex subset K of X, what types of conditions
on K (or X) will guarantee the existence of fixed points for every nonexpansive
mapping of K onto itself.

Defini tions.

1. A bounded, closed, convex subset K of a Banach space X is said to
have the fixed point property (f.p.p.) if every nonexpansive mapping
T : K --+ K has a nonempty fixed point set (Fix(T)) 1:- 0).

2. The Banach space X is said to have the f.p.p. if every weakly compact
convex subset of X has f.p.p.

As the compactness assumption in Brouwer's theorem is fundamental, one
might naturally conjecture that any Banach space has the fixed point property.
This question was closed in 1978 (published in 1980), when Alspach gave an
example of a weakly compact convex subset K of L1[0, 1] and an isometry T
defined on K, which fails to have a fixed point. Let us add that the problem
as stated before, originated in four papers which appeared in 1965. In the first
of these, Browder [6] proved that the problem has a positive answer when X is
a Hilbert space. Almost immediately thereafter, both Browder [7] and Gohde
[12] extended this conclusion to Banach spaces which are uniformly convex. At
the same time, Kirk [21] observed that the presence of a geometric property
called normal structure guarantees the fixed point property. More on fixed
point property could be found in [1, 11].

§2. BASIC DEFINITIONS AND RESULTS

In this survey we will consider only the weak topology. For other topologies
we recommend the books [1, 11]. Let X be a Banach space and C a nonernpty,
weakly compact, convex subset of X. Assume that C does not have f.p.p.
Therefore there exists a nonexpansive mapping T : C --+ C with an empty
fixed point set. Define

F = {I{ C C ; K nonempty, closed convex and T K C /{} .

Since C is weakly compact, the F is downward directed, i.e. every decreasing
chain of elements of F has a nonempty intersection in F. Using Zorn's lemma,
there exists minimal elements in F.

Definition. A convex set K is said to be minimal for T if K is a minimal
element of F.

Since T does not have a fixed point, then any minimal set consists of more
than one point. Kirk was the first to investigate the structure of minimal sets.

Properties of rnirrimal sets. Let K be a minimal set for T.

1. conv (T /{) = tc.
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2. ([25]) Let a: K -+ [0,00) be a lower semi-continuous convex function.
Assume that

a((Tx) ~ a(x) ,

for every x E K. Then a is a constant function.
3. ([21]) r(x) = sup {llx - yll ; y E K} = diam (K), for any x E K.
4. ([10, 16]) Let (xn) be in K so that

lim Ilxn - TXnl = 0 .
:>;-00

Then for any x E K, we have

lim Ilxn - xii = diam (K) .
n-oo

A point x E K is said to be diametral if

r(x) = sup{lIx - yll ; y E K} = diam (K) .

A set consisting only of diametral points is called diametral.

Definition. A Banach space has normal structure if it ·does not contain a
diametral weakly compact convex subset.

This property was introduced in 1948 by Brodskii and Milman [4]. For a
while it was thought that any reflexive Banach space has normal structure
property. James disproved this statement by renorming the Hilbert space f.2
with the new norm

Ilxll13 = max{llxlll2' Ilxlk",} ,
for j3 > O. Write X13 = (£2, II 1113)' James proved that X..j2 fails to have normal
structure. In fact, X..j2 has normal structure if and only if j3 < ...;2. Once
this question was resolved, it was natural to ask wether Xv'}. has f.p.p. This
question was answered positively in [16]. The main idea is based on property 4
of minimal sets. Since a non expansive map could have a nonempty fixed point
set, it is natural to ask if sequences defined in property 4 exist. The answer
is yes. Indeed let C be a bounded closed convex set and T : C -+ C be a
nonexpansive mapping. Then for every e E (0,1), the map

Tf(x) = (1- f)T(X) + ez ,

where Z is a given point in C, is a contraction and therefore has a unique fixed
point. Denote by Xn the fixed point of T1/n. It is easy to see that

Ilxn - T(xn)11 ~ .!. diam (C) .
n

Therefore,
lim IIxn - t(xn)1I = 0 .

n-oo

Such sequences are called approximated fixed point sequences (a.f.p.s.).
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§3. USE OF ULTRAPRODUCTS

Since approximate fixed point sequences always exist, it is somehow natural
to think about an extension of the Banach space X generated by sequences.
One of these extensions is the ultrapower extension.

Let U be a nontrivial ultrafilter over N, the set of natural numbers. The
ultrapower space X of X is the quotient space of

l'oo(X) = {(xn) ; Xn such that sup IIxnll < oo]
n

by the closed subspace

N = ((xn) E l'oo(X) ; Xn E X such that limllxnll = 0 .u

We will not distinguish between (xn) E l'oo(X) and (xn) = Xn +N E X. It is
not hard to show that the quotient norm is given by

It is also clear that X is-isometric to a subspace of X through the mapping

X-(X,X,···).

We will write X, y, ... for the general elements of X and by x,y,··· for the
general elements of X viewed as a subspace of X. For more on this construction
we recommend [1,30].

Remork. Another definition of the ultrapower space X of X not using filters
is as follows. Consider the Banach space

l'oo(X) = {(xn) ; Xn E X such that sup Ilbxnll < oo}
n

and its closed subspace

co(X) = ((xn) E l'oo(X) ; Xn E X such that lim Ilxnll = O} .
n--+.nJty

The ultrapower space X of X is the quotient space of l'oo(X) by co(X). It is
not hard to see that the quotient norm is given by

l(xn)lIx = lim sup IIxnllx
n--+oo

Among the most interesting properties satisfied by X is a canonical extension
defined as follows. Let D be a subset of X and define

iJ = {(xn) EX; Xn ED}
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Then jj will be a bounded, closed, convex subset provided D is a bounded,
closed, convex subset of X. Moreover, if T : D --+ D is a map, then

defined by

is a map provided

limllTxn - tYnl1= 0, whenever limllxn - Ynll = 0 .u u

If Tis nonexpansive, then i' exists and is also nonexpansive. It is not hard to
see that Fix(i') consists of approximate fixed point sequences of T. Therefore,
Fix(i') is never empty.

Maurey was the first to investigate the structure of ic, where K is a minimal
set associated to a nonexpansive map T.

Properties of ic. Let K be a minimal set [or T, where T is a nonexpansive
map. Consider i' and k . Then the following hold.

1. diam (k) = diam (K) = diam (Fix(i'))
2. ([25])Fix(i') is metrically convex, i.e. for any i: and ii in Fix(i') and

0' E [0,1], there exists i E Fix(i') so that

IIi:- ill = (1- a)lli - iill, and llii - ill = alii: - iill

3. ([23])Let (wn) be an a.f.p.s. for i' in k, then for any x E K we have

lim IIwn - xII = diam (K) .
n_oo

4. ([23]) Let W be any nonempty closed convex subset of ic which is
inaviant under i: Then for every x E K we have

sup{IIW - xII ; wE W} = diam (K) .

§4. SOME FIXED POINT THEOREMS

Before we give Maurey's theorem, we need some preliminary results on the
ultapower of L1 [0,1], Let U be an ultrafilter on the set of natural numbers N
and (Xn) be abstract sets. Consider the cartesian product nXn and define the
relation R as follows

(XN) R (Yn) if and only if {n; Xn = Yn} E U.
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--The ultraproduct of (Xn), denoted (Xn), is defined as the quotient of IIXn over
R. When Xn = X for all n, (X:) = X is called the ultrapower of X.

Let (0, E,,.,) be a measure space. Without any loss of generality, we will
.'

restrict our attention to the case when ,., is a probability measure. Consider
the following collection of subsets of 0:

It is easy to verify that Eo is a Boolean algebra on n. We define a measure jJo
on Eo by setting --jJo((J4n» = lim,.,(An) .

u

It is not hard to see that the measure jJo is u-additive on Eo. Consequently, jJo
can be extended to a u-additive measure jJ on E, the least u-algebra containing
Eo.

Heinrich [13] proved that the ultrapower of L1[0, 1] is canonically isometric
to an L1-sum of L1[[0,1]] and L1(1I), for some measure 1/. Let K be a weakly
compact convex subset of L1[0, 1]. Using the fact that K is equi-integrable,
one can show that the convex subset K of the ultrapower of L1 [0,1] is in fact
a subset of L1[[0,1]]. Therefore the elements of K can be seen as functions in
aLl-space. Maurey [25] proved the following fundamental lemma.

Lemma. Let K be a weakly compact convex subset of L1[0, 1] that fails
£.p.p. and let T : K -+ K be nonexpansive with empty fixed point set. Assume
that K is minimal for T. Consider T : K -+ K in the ultrapower of L1[0, 1].
Let xo, Xl,'" , xn be fixed points ofT, such that

n

IIx,. - xoll = L IIxi - xi-III·
i=l

Then the functions (Ixi - Xi-d) have disjoint support.

Let K and T as above. Let X and iI be in Fix(T), with IIx-illl = diam (K) >
0. Since Fix(T) is metrically convex, then there exists i EFix(T) such that

1Ilx - ill = 1Ii1- ill = 211x- illl .

Iterating this process, we can find for every n E N, XO,X1,'" ,Xn E Fix(T)
such that

n

IIxn - xoll = L IIxi - xi-III .
i=l

Using the fundamental lemma, we get that the functions (Ixi - Xi-I) have
disjoint support. Set

_._ Xi-Xi-1
Z, - 11_ - II'Xi - Xi-1
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Hence
n n

IILo:;idl = Llo:.l .
•=1 ;=1

This implies that the closed subspace generated by K contains fJ. isometrically
for every I n. If K was supposed to be a subset of a reflexive subspace 'R
of L1 [0,1], we get a contradiction with the fact that any ultrapower of 'R is
reflexive [28] (see also [24]). This completes the proof of the following result.

Theorem [25]. Let R: be a reflexive subspace of L1[0, 1]. Ttien R: has the
fixed point property.

The second interesting result proved by Maurey concerns the Banach space
Co. Let us recall that before Maurey's result it was unknown wether Cohas the
the fixed point property. However some partial results were known [26]. Let us
mention that the proof given there is highly technical and uses a careful study
of the structure of some weakly compact convex subsets of co.

Theorem [25]. The Banach space Co has the fixed point property.

Proof. Assume the contrary, and let K, T, k and ic be defined as usual. Let
(xn) be an a.f.p.s. of Tin K. We may suppose that (xn) is weakly convergent
to 0 and that diam(K) = 1. Using the canonical basis of co, one can find a
subsequence (xn') of (xn) such that

and
lim Ilxn - x~11 = 1 .

ntooo

Put Ii = (xn) and y = (2). Then Ii and yare in Fix(t). Let i = (zn) be a
quasi-middle fixed point of Ii and y. Then by use of the lattice inequalities

one can obtain
1

Ilill = lWt IIZnII :s; 2" .

This contradicts the fact that i E Fix(t) and Iii - 01 = 1.
Looking into the proof carefully,one can see that Maurey used the basis

of Co and the lattice structure of co. Clearly any Banach space that has an
unconditional basis "will somehow" share co's result. In particular, the authors
in [3] used the above ideas to get a more general result in a large class of Banach
lattices. But maybe the most important use of Maurey's proof can be found
in [9]. Indeed the authors proved that X/3 = (£2, II 11/3) has the fixed point
property, which settles up a long standing problem. Lin's result [22] on Banach
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spaces with unconditional basis may explain how Maurey's ideas were deep and
profound. First let us recall some basic definitions on Schauder basis.

Recall that a sequence {en} in X is called a Scahuder basis.for X if for each
x E X there exists a unique sequence of scalars (xn) such that

{en} is said to be unconditional if there exists a constant A 2: 1 such that for
every convergent series 2::'=1 xnen and every sequence of signs (en) (en = ±1),
the series 2::'=1 enxnen converges and satisfies

00 00

IlL enxnenll ::; All L xnenll .
n=1 n=1

The smallest constant A is called the unconditional constant of {en}.
Theorem [22]. Let X be a Banach space with an unconditional basis {en}.

Assume that the constant of unconditionality A staisfies

A v'33-3
< 2

Then X has the fixed point property.

As a corollary we get the following result.

Theorem [22]. Let X be Banach space with a montane unconditional Schau-
der basis (i.e. A = 1). Then X has the fixed point property.

In [18] it was noticed that unconditionality is not the key behind this positive
result. Specially that there are Banach spaces-which fails to have an uncondi-
tional basis or even be ernbeded ina Banach space with an unconditional basis.
The most important one is the quasi-reflexive space James' space [14]. Before
we state the main result of [18], we need the following.

Let {en} be a Schauder basis for X. Define the natural projections associated
to {en} as

00

PF(L xnen) = L xnen ,
n=1 nEF

where F is a subset of the set of natural numbers N. Usually we denote by Pn
the natural projection of the segment [1, n]. Set

c = suP{llPnll ; n 2: 1} ,

C1 = sup{III - Pnll ; n 2: I} ,

C2 = sup{IIPFII ; F is a segment of N} ,

J.l = sup{llu - vii; u and v are disjoint blocks with Ilu + vii::; I}

where by a block of {en} we mean any element u = 2:~~; xnen. Note that
these constants are finite.
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Theorem [17]. Let X be a Banach space with Scahuder basis {en}. Assume
that

cill + c + C2 < 4 .

Then X has the fixed point property.

A corollary to this result concerns James quasi-reflexive space J. First let
us give the definition of J. Let (xn) E R(N) and define l!(xn)I!J by

with

where the supremum is taken over all positive integers n and all increasing
sequences of positive integers (PI, P2, ... , Pn).

Definition. The James space J is·the completion oER(N) with respect to

the norm II . IIJ·
We have

C = CI = 1, and C2 = j.t = v'2 .
Since v'2 + v'2 + 1 < 4, we get the following corollary.

Corollary [18]. The quasi-reflexive space J has the fixed point prop~rty:

Let us add that more applications of Maurey's theorem can be found in [2,
15,17,19,20].
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