Towards an Operational Semantics of Rules
in Knowledge Systems

Mohamed A. Khamsi* Driss Misanef Gerd Wagner!

Abstract

We develop a general closure semantics for deduction rules in knowledge bases, using the
concept of a (deductive) knowledge system proposed in [Wag94a] where rules are interpreted
as update functions operating on knowledge bases. We first present four important examples
of basic knowledge systems: relational databases, (defeasible) factbases, temporal databases,
and epistemic states. We then define the notion of a supported closure, and we show that ev-
ery ampliative deductive knowledge base has a supported closure. Choosing those supported
closures which satisfy a certain stability condition as the preferred (or intended) ones we ob-
tain the stable closure semantics for deductive knowledge bases (including normal, extended,
disjunctive, and other logic programming and rule-based systems).

Contents
1 Introduction 2

2 Basic Concepts 3
2.1 Knowledge Systems e 4
2.2 Regular Knowledge Systems L oo 6

2.3 Further Examples of Knowledge Systems 7

2.3.1 Factbases L 7
2.3.2 Defeasible Factbases o oL 8
2.3.3 Temporal Databases 9

0

2.3.4 Epistemic States L. e 1
2.4 Some Formal Properties of Knowledge Systems 11
2.5 Nonmonotonicity L 12
3 Deductive Knowledge Bases 13
4 The Immediate Consequence Operator 17
5 Monotonic DKBs 19

*Department of Mathematics, Univ. of Texas at El Paso, TX 79968, E-Mail: mohamed@math.ep.utexas.edu
"Univ. Mohammed V, Faculte des Sciences, Dep. de Mathematiques, Rabat, Moroco
Univ. Leipzig, Inst.f.Informatik, Augustusplatz 10-11, D-04109 Leipzig, Germany, gw@inf .fu-berlin.de

6 Persistent Ampliative DKBs 19

7 Monotonic Ampliative DKBs 22
8 Ampliative DKBs 22
9 Non-Ampliative DKBs 23
10 Conclusion 24

1 Introduction

While reasoning on the basis of rule knowledge has turned out to be essential in AI, standard
logics do not allow for rules as expressions of the representation language. The only possibility
to process rule knowledge in a standard logic is to translate a rule expression ' <— G into an
implicational formula G — F of the resp. language.! Such a translation, however, is only faithful
in special cases. For instance, in the case of positive logic programming rules ag < a1 A...Aay,,
it is possible to process them as implications a1 A ... Aa, — ag in classical or intuitionistic logic,
or even as definite clauses —aj V...V —a, V qq in classical or three-valued logic, without making
any difference. This is no longer the case when the rule language is more expressive, i.e. when
the conclusion or the premise of a rule contain additional logical operators, such as disjunction,
or negation.

Historically, this difficulty is reflected in the recent shift in logic programming semantics,
abandonning earlier classical logic approaches, such as the Horn clause reading for positive logic
programs, or Clark’s completion semantics for positive and normal logic programs, and seeking
for new rule-oriented semantics, such as the answer set semantics of [GL90], or the partial
semantics of [Wag91], for extended logic programs. In the latter proposals, and in the proposal
to be presented below, the semantics of rules does not imply the Contraposition principle,
which would allow to infer ~¢ from {p, ~p < ¢}. Contraposition, however, is essential in most
standard semantics of implication, such as in classical, intuitionistic, or relevance logic. A notable
exception where Contraposition does not hold is Nelson’s constructive logic with strong negation
N, and indeed, as shown in [Pea93], a rule of an extended logic program can be interpreted as a
constructive implication in N. However, rules operating on disjunctive information, such as in

{pVqg, repreq}

differ from constructive implication: in N, we would obtain r (the corresponding inference
principle is called ‘Disjunction in the Premise’), whereas a rule-oriented semantics would not
necessarily allow this inference.

In this paper, we present a new and direct approach to the semantics of deduction rules.? The
key concepts for this approach are that of a knowledge system, and that of a deductive knowledge

! Another possibility, in the spirit of Gdel’s translation * of intuitionistic logic into S4, is the explicit epistemic
interpretation of a rule F + G as O(G* — F*).

2We do not identify ‘semantics’ with model theory. There are also proof-theoretic semantics of logical systems.
Only in ‘nice’ cases, e.g. in classical logic, it is clear that model theory is more fundamental (conceptually simpler
and more ‘declarative’) than proof theory. There are other cases, however, where this is not clear (e.g. relevance

base (DKB), proposed in [Wag94a|. Inspired by Belnap’s notion of an information state [Bel77],
rules are interpreted as update functions operating on knowledge bases, and the semantics of
a deductive knowledge base is determined by the existence of preferred closures being common
fixpoints of all rules. Our theory, therefore, is both a fixpoint theory for certain nonmonotonic
functions, and a semantical theory for the concept of deductive knowledge bases comprising
various deductive database and logic programming systems. It is conceptually simpler than
many other (quite technical) proposals on the semantics of logic programming rules, and it is at
the same time more general.

While monotonic ampliative DKBs have a unique minimal closure which is naturally the
intended one, one has to find an appropriate preference criterion in order to define the intended
closures of a nonmonotonic DKB. Such a preference criterion then selects from the supported
closures the intended ones in a conservative fashion: in the special case of a monotonic ampliative
DKB this has to be the unique minimal closure.

Since nonmonotonic rules do not necessarily contain negation-as-failure (there are other
non-persistent operators, such as exclusive disjunction, or certain modal operators), a general
semantics for DKBs cannot refer to negation-as-failure, or any other specific logical operator.
Rather, it has to account for the way in which the application (successive detachment) of a set
of rules yields an intended closure. It turns out that the notion of a stable closure is a key for
the semantics of DKBs. While certain ‘well-behaved’ DKBs have a unique stable closure, there
may be several stable closures, or none, in the general case.?

2 Basic Concepts

A signature o = (Rel, Fun, Const) consists of a set of relation symbols Rel, a set Fun of function
symbols, and a set of constant symbols Const. We consider the following logical functors:
conjunction (A), disjunction (V), strong negation (~), weak negation (alias negation-as-failure,
denoted by —), exclusive disjunction (|), and the truth constant 1; relation symbols are denoted
by p,q,r,...; constant symbols by c,d,...; and variables by z,y,.... Quantifiers, 3 and V, are
only incidentally considered. If F is a set of logical functors, L(o;F) denotes the corresponding
set of wellformed formulas. L(o) = L(o; —, ~,A,|,V) is the smallest set containing the atomic
formulas of o, and being closed with respect to the following condition: if F,G € L(o), then
{(~F,~F,FAG, FV G, F|G} C L(0).

With respect to a signature o we define the following sublanguages: At(c) = L(o;0), the
set of all atomic sentences (also called atoms); Lit(c) = L(o; ~), the set of all literals; and
XLit(o) = Lit(o)U{—I : I € Lit(o)}, the set of all extended literals. We shall frequently omit the
reference to a specific signature, and simply write L instead of L(c). We introduce the following
convention: when L is a set of sentences, L* denotes the corresponding set of formulas.

logics, or default logic). Our definition of a knowledge system does not require a model-theoretic semantics, but
neither does it preclude one.

3We shall present a generalization of the logic programming concept of stratification for deductive knowledge
bases in a sequel paper where we show that, mathematically, the notion of stratification is not related to negation-
as-failure, but rather to the problem of the computational stability of a set of nonmonotonic rules and the
uniqueness of the resp. closure.

An atom a € At is called proper, if a # 1. We use a,b,..., l,k,..., and F,G,H,... as
metavariables for atoms, literals, and well-formed formulas, respectively.

With each negation a complement operation for the resp. type of literal is associated: a = ~a
and ~a = a, | = —] and —I = [. These complements are also defined for sets of resp. literals
L C Lit, and E C XLit: L ={l : 1 € L}, resp. E = {€ : e € E}. We distinguish between the
positive and negative elements of E C XLit by writing E1 := ENLit and E~ := {l: -] € E}.

If Y is an ordered set, then Min(Y) denotes the set of all minimal elements of Y, i.e.
Min(Y)={XeY|-3X' €Y : X' < X}

2.1 Knowledge Systems

Before presenting the formal definitions, we start with a semi-formal discusssion of the basic con-
cepts to be introduced, notably: knowledge base, query, inference, answer, information ordering,
input and update.

In general, a knowledge base (KB) can consist of any kind of data structures capable of
representing knowledge, e.g. a set, or multiset, or sequence, of (logical) expressions, or a directed
graph, etc. For the sake of simplicity, we shall assume that a KB is a set of expressions from
a representation language. Only certain formulas may make sense for representing knowledge,
that is, there will be a specific representation language Lgepr, and a KB will be a (usually finite)
collection of elements of Lgepr, possibly constrained in some way determined by the set Lxg of
all admissible KBs: KB € Lgp C 2'rerr. Likewise, since not every formula may be appropriate
as a sensible query, the set of admissible queries is specified by Lquery-

The basic scenario of a knowledge system (KS) consists of two operations: an inference
operation processing queries posed to the KB, and an update operation processing inputs entered
by users or by other (e.g. sensoric) information suppliers. A KS restricts the admissible inputs
to elements of a specific input language Linpyt, and an update is performed by processing the
input formula in an appropriate way in order to assimilate its information content into the KB.
Since it appears reasonable to require that any information entered to a KB can be queried
afterwards, we shall assume that Linput € Lquery-

Definition 1 (Knowledge System) An abstract knowledge system K is a quintuple:*
K = <LKB7 }_7 LQuerya Upd, LInput)

where the inference relation = C Lxp X LQuery, together with the update operation Upd : Lxp X
Linput —+ Lk, satisfy for any X € Lgs,

(KS1) X + 1, and Upd(X, 1) = X.
(KSQ) LInput g LQuery-

4The formulation of a KS in terms of query and input processing was already implicitly present in Belnap’s
[1977] view of a KS. In [Lev84] it was proposed as a ‘functional approach to knowledge representation’. In
[Wag94a, Wag95a] the concept of knowledge systems was further extended and used as an integrating framework
for knowledge representation and logic programming.

(KS3) Upd(X,F) & F, for any F € Liyput which is consistent with X .5

If elements of Lkp are finite sets (resp. structures), K is called finitary. In the sequel, we shall
sometimes simply write ‘KB’ in formal expressions standing for an arbitrary knowledge base
X € Lkg. An inference operation C' is defined as usual:

C(KB) = {F € Lquery : KBF F}

In many cases, it is useful to be able to update by a set of inputs and we ‘overload’ the symbol
Upd to denote also this more general update operation

Upd : LKB X 2L1“p“t — LKB

which has to be defined in such a way that for any finite A C Linpyt, Upd(KB, A) = Upd(KB, A A4).
We sometimes write KB+ F' as an abbreviation of Upd(KB, F'), resp. KB — F' as an abbreviation
of Upd(KB, —F). Similarly,

KB-I—iFi=(...((KB+F1)—I—F2)+...)+Fm
=1

Example 1 (Relational Databases) A KB consisting of ground atoms corresponds to a
relational database.® For instance, X = {r(S), m(P, L)} may represent the information that
Susan is a resident, and that Peter is married with Linda.

As a kind of natural deduction from positive facts an inference relation - between a relational
database X C At and a ground formula F € L(—,A,V,|) is defined in the following way:

(Fa) XFa if aeX

(F —a) Xk—a if a¢gX

FA) XFFAG if XFF & XFG

(Fv) XFFVG if XEFForXEG

) XFFG if XFFAN-GorXFGA—-F

This inductive definition is completed by assuming the following DeMorgan-style rewrite rules:

—(FVG) — —-FA-G
—(FAG) — —FV-G
——F — F

Updates are insertions, Upd(X,a) := X U {a}, and deletions, Upd(X,—a) := X — {a}. For
consistent E C At U At, we have Upd(X,E) = X U ET — E~. The KS of relational databases,
denoted by A, is then defined as

A= (2%, F, L(=,A,V,]), Upd, At UAE)

If Linpus = At, and in addition Lquery = L(A,V), the resulting system without weak negation
will be denoted by A™.

®According to some notion of consistency associated with the abstract knowledge system. E.g., one might
want to exclude contradictory pieces of information from this reflexivity principle: Upd({~p},p) I/ p. We shall
not discuss this issue in the present paper, however.

5Model-theoretically, a relational database corresponds to a finite first order interpretation.

2.2 Regular Knowledge Systems

In order to compare knowledge bases in terms of their information content we assume that there
is an information, or knowledge ordering < between KBs such that

KB1 < KBy if KBy contains at least as much information as KBj.

The information ordering should be defined in terms of the structural components of knowledge
bases and not in terms of higher-level notions (like derivability).” The informationally empty
KB will be denoted by 0. By definition, 0 < X for all X € Lkg, i.e. 0 is the least element of
(LB, <).

In general, more information does not mean more consequences. In other words: answers
are not necessarily preserved under growth of information. Queries, for which this is the case,
are called persistent.

Definition 2 (Persistent Queries) A closed query formula F is called persistent (anti-
persistent) if VX1, Xo € Lgp : Xq F F implies Xo - F, whenever X1 < Xy (X1 > X3). If all
F € Lquery are persistent, the KS and its inference relation & are called persistent. The set of
all persistent query formulas is denoted by Lpersq. An operator of the query language is called
persistent, if every query formed with it and with persistent subformulas is again persistent.

Definition 3 (Ampliative Inputs) An input formula F is called (i) ampliative® if KB <
Upd(KB, F), or (ii) reductive if KB > Upd(KB,F). A KS and its update operation Upd
are called ampliative, if all inputs F' € Ly are ampliative. The set of all ampliative input
formulas is denoted by Lampr.

A certain subset Lypnit C Linput designates those elementary expressions which will be called
information units, e.g. atoms, literals, or weighted (resp. labelled, or annotated) atoms, and
the like. An information unit represents an elementary piece of information with a positive
information content. A knowledge base may contain contradictory pieces of information, and we
assume that all inconsistent information units contained in X € Lkp are collected by Inc(X) C
LUnit-

Definition 4 (Regular KS) A knowledge system K is called regular, if there is a preorder
(LB, <,0) with least element 0, a designated set Lynit C Linput, and an operation Inc : Lxpg —
oLunit gych that

(KS4) Unit inputs increase the information content (at least if they are consistent): X < X + u,
for any X € Lgg, and for any u € Ly, such that u & Inc(X), and Inc(X +u) C Inc(X).

(KS5) The information ordering is compatible with ampliative update and persistent inference:

for all X1, X9 € Lgs,

X1 < Xy ’Lﬁ VFELAmPIVGELperSQ:Xl—I-F}—G:>X2+F|—G

"The usual way to compare the information content of two KBs in standard logic, namely by means of checking
the inclusion of consequences: KB; < KBy if C(KB1) C C(KB3), does not work in a nonmonotonic setting.
8The name is adopted from [Bel77].

(KS6) Ampliative inputs are persistent queries: Lampt = Lpersq N Linput-

(KS7) Consistent Inference: for any X € Lxp, and any F € Liyput, X F F implies Inc(X + F) C
Inc(X).

A regular KS will be represented as a 9-tuple
<Oa <, LKBa |_a LQuerya Upda LInputa IIIC, LUnit)

Example 2 (Standard Logics) A standard logic (such as classical, or intuitionistic, logic),
given by a language L and a consequence relation -C 2V x L, resp. by the corrresponding
consequence operation C, can be viewed as an infinitary knowledge system

(0, C, {X €2": X = C(X)}, +, L, Upd, L, Inc, L)

where 1) a KB is a deductively closed set of formulas, 2) the knowledge ordering is set inclusion,
3) update by F is the addition of F and subsequent closure, i.e. Upd(X,F) = C(X U {F}),°
4) the query, unit and input languages are all equal to L, and 5) Inc(X) = 0 if X # L, and
Inc(X) = X otherwise. KS1-KS7 hold, more or less, trivially. Notice, however, that it is not
clear whether a standard logic corresponds to a sensible finitary knowledge system, because set
inclusion is no longer an adequate knowledge ordering if KBs are not deductively closed (KS5 is
violated).

2.3 Further Examples of Knowledge Systems

2.3.1 Factbases

A KB consisting of ground literals (viewed as positive and negative facts) is called a factbase.”

For instance, the factbase
X1 = {T(S)ar(P)aS(S)aNS(L)aNS(T)a m(PaL)a m(Ta S)}

may represent the information that Susan and Peter are residents, Susan is a smoker, Linda and
Tom are nonsmokers, Peter is married with Linda, and Tom is married with Susan.

As a kind of natural deduction from positive and negative facts an inference relation
between a factbase X C Lit and a sentence is defined in the following way:!!

(Fa) XFa if aeX
(F ~a) XFr~a if ~aeX
(F =) XE-l if 1¢X

(FA) XEFFAG if XFF & XFG
(-v) XFFVG if XFForX+G
) X+FIG if XFFA-GorX+HGA-F
(F3) XF3JzF(z) if XF F(c) for some constant ¢

9Notice that this corresponds to the AGM ezpansion of ‘belief sets’, see [Gars8)].

100Model-theoretically, a factbase corresponds to a finite partial first order interpretation.

1This inductive definition is completed by DeMorgan-style rewrite rules including double negation rules such
as ~—a —» a. See [Wag94a).

For instance, one might ask X “Is someone married with a nonsmoking non-resident 7”,
Xo b 3zy = m(z,y) A~s(y) A —r(y)

As in A, updates are insertions, Upd(X,!) := X U {l}, and deletions, Upd(X, —1) := X — {l},
but now of literals which are the information units of fact bases, Lyn;; = Lit. For consistent
E C XLit, we have Upd(X,E) = X U Et — E~. The knowledge system of factbases is then
defined as

F := (0, C, 2" +, L(—,~,A,V,|,3), Upd, XLit, Inc, Lit)

where Inc(X) = X N X.

We have to show that KS1-KS7 hold. Proof: it is obvious that KS1-KS4 hold. Since Lampr =
Lit, and Lpersq = L(~, A, V), KS5 follows by straightforward induction on the complexity of
query formulas. KS6 and KS7 are again obvious. O

2.3.2 Defeasible Factbases

In a defeasible factbase, contradictory items invalidate (i.e. neutralize) each other. As a kind of
defeasible deduction from positive and negative facts an inference relation - between a factbase
X C Lit and a ground formula is defined in the following way:

(F1) XFHl if leX &1¢gX
G Xtk—l if l¢X
(FA) XFFAG if XFF & X+G

Updates are insertions (in the sense of consolidating revision), and deletions of literals [€ Lit:

X —{I}u{l}, if | € Inc(X)

Upd(X.1) == X U, otherwise
Upd(X,-l) = X —{l}
We also add a unary operator standing for recency-preferring revision:
Upd(X,%l) = X —{I}u{l}

XExl if XFI

Information growth in defeasible factbases may come about in two ways: by the expansion of the
consistent information, or by the reduction of the inconsistent information represeneted. Thus,
the knowledge ordering between defeasible factbases is defined by

X; <Xy iff X —TInc(X)) C Xo—Inc(Xy) & fa.leInc(X)):l€ Xy or [€ Xy

i.e. an inconsistent piece of information is considered as more informative than no information.
For instance,

{p} <{p.q,~a} < {p,q}
The knowledge system of defeasible factbases is then defined as
Fy = (0, <, 2+ L(x,—,~,A), Upd, Lit*~ Inc, Lit)

F; is not regular since it violates KS6: there is no context-free class of ampliative inputs, i.e.
LAmpI = @, While LPersQ m LInput e th_

2.3.3 Temporal Databases

A temporal database is a set of timestamped atoms!'? of the form a@T, which we also consider
as pairs (a, T'), where a € At, and the timestamp T, representing valid time,'® is a consistent list
of closed intervals from a linear discrete temporal domain T (e.g. calendar dates, or the natural
numbers), i.e. it has the form

[(bl,el), (bg,eg), ey (bm,em)]

such that b;,e; € T, b; < e;, and e; < b;y1. The set of all such timestamps is denoted by 7. We
shall abbreviate the single interval list [(b,e)] by [b, €], and the single time point list [(d, d)] by
[d] or just d.

The basic input of a temporal database is a timestamped atom a@QT € At x T

X UaQT if thereisno S € T s.th. a@QS € X

Upd(X,a@QT) = { X — {a@S} U {a@S + T}; otherwise

where S + T is an appropriately defined merge operation for timestamps.
A temporal database can be queried whether a sentence holds or does not hold during a
specific time period:

XFaQT iff a@QSe X &TCS
XF—-a@QT iff a@QSZXorTNS=0

X+ (FAG)QT iff XF FQT & X + G@T
XHFFvVvGEQT iff fa.teT: XFFQtor X - GQt
X F (3zF(z))QT iff fa. ¢t € T there is a constant ¢ s.th. X - F(c)Qt

X FJuF@u iff X+ FQt for somet €T
Non-timestamped queries are decided as follows:
XFF iff XF FQnow

In the sequel, we use t,t1,to,... and T,T1,T5,... also for timepoint and timestamp variables
if no confusion can arise. A complex temporal query, for instance, is “Are there persons who
married the same person again ?7”, formally expressed as

Ty, to, t33x,y 1 t1 < tg < tz3 Am(z,y)Qty A —m(z,y)Qty A m(z,y)Qts

The knowledge ordering between two temporal databases X; and X5 is defined as follows.
X, < X, iff for all facts a@S € X; there is a corresponding fact a@T € X5 such that S C T
In summary, we obtain the following knowledge system:

TA = <®a Sa 2AtXT7 |_a LT(—,/\,V,E), Upd’ At X T’ (b’ At X T>

where Ly = L(—,A,V,3) x T.

12Model-theoretically, a temporal database corresponds to a temporal interpretation over a two-sorted first-
order language.
13 A more elaborate model of a temporal database would in addition include belief time as a second timestamp.

2.3.4 Epistemic States

An epistemic state'* is a collection of sets of literals (each one describing a possible situation).
For instance, if we know that Susan is not blonde and that Peter likes either Linda or Susan,
we get the following KB:

Y1 = {{~b(S), U(P, L)}, {~b(S), (P, S)}}

Formally, the system of epistemic states, denoted by B, is defined as:
B = ({0}, <, 22+, L(~, A, V), Updg, L(~,A,V), Incg, Lit")

where the information ordering between Y7, Yy C 2Lit i5 defined as
Y1 <Y = VXoeYodX;€Y;:X; CXy

yielding a preorder, and for Y C 2Lit,
YFF<foral XeY : XFF

where inference on the basis of literals, X I F', is inference in F'. For instance, the query whether
Peter likes someone who is either blonde or (definitely) not blonde is answered negatively:

Y1/ 3z I(P,z) A (b(x) V ~b(x))
Inputs are processed as follows

(Ul) Updp(Y,1) (XU{l}: X eY)
(UV) Updp(Y,FVG) = Updg(Y,F)UUpdg(Y,G)
(U/\) Ude(YaF/\G) = Ude(Ude(Y, F)aG)

The elementary pieces of information in epistemic states are disjunctions of literals I1 V...V l,.
The set of all such disjunctions is denoted by Lit". The inconsistency measure Incg now collects
all definite and indefinite contradictions:

Incp(Y):={\/L:LeMin({K CLit|VX e YA € K:l€ XNX})}

In order to define two other update operations differing from Updp with respect to inconsistency
handling we first define two functions selecting from a set of possible situation descriptions the
resp. acceptable ones:

Cons(Y) = {XeY|XNnX =0}
MInc(Y) := {XeY|-3ZeY:(ZNnZ)cC (XNX)}

The first operator, Cons, accepts only consistent situation descriptions, while the second one,
Minc, accepts all situation descriptions which are minimally inconsistent. If an epistemic state

M Epistemic states were proposed by Belnap [1977] in order to establish a paraconsistent information processing
system. The concept of a disjunctive factbase, introduced in [Wag93] and further investigated in [Wag95b], is a
generalization of Belnap’s epistemic states.

10

Y is consistent, i.e. if it contains at least one consistent epistemic alternative, then Cons(Y) =
MInc(Y). We can now define

Updez (Y, F) := Cons(Updp(Y, F))
Updnmi(Y, F) := Minc(Updp(Y,F))

While Updp accepts inconsistent inputs in a liberally paraconsistent manner, Upd,, does not
accept inconsistent inputs at all. It implements the ez contradictione sequitur quodlibet (ECSQ)
principle of classical logic by discarding all inconsistent epistemic alternatives. A good compro-
mise between the hypersensitive inconsistency handling mechanism of Upd,, and the too liberal
Updp is the principle of minimal inconsistency proposed in [Pri89], and implemented by Upd,y;.
The corresponding versions of B are denoted by B, and B,;.

For instance, if we have the above KB, and we then learn that Susan or Linda is blonde, we
obtain:

Y2 = Updmi(Y1,b(5) v b(L))
{{b(L)al(Pa L)aNb(S)}a {b(L)al(P, S)aNb(S)}}

Thus, the query whether Peter likes someone who is either blonde or (definitely) not blonde is
now answered positively:

Yo b3z : [(P,z) A (b(z) V ~b(z))

2.4 Some Formal Properties of Knowledge Systems

The following is a list of some fundamental properties a KS may have. The first two conditions
of Contraction and Permutation are well-known as so-called structural rules in Gentzen-style
sequent systems. In a KS, they describe the behaviour of the update operation.

Contraction
Upd(Upd(KB, A), A) = Upd(KB, A)
Permutation
Upd(Upd(KB, A), B) = Upd(Upd(KB, B), A)
Both Contraction and Permutation follow from the property of
Update Synchronicity Upd(Upd(KB, A), B) = Upd(KB, AU B)

which expresses the fact that two inputs in succession (i.e. at different time points) can be
handled as one aggregated input implying that the order of inputs does not matter.

Update Monotonicity
KB; < KBy = Upd(KB;, A) < Upd(KB3, A)

Lemma Redundancy (alias: Cut, Transitivity)

KBFF & Upd(KB,F)FG = KB+ G

11

BN
+

TA

=
m
:

< *
<™

Contraction
Permutation

Update Synchronicity
Update Monotonicity
Cumulativity
Monotonicity

AN AN

NARA R
VIV VIV

IS

AN AN
AN AN NN

<<

Table 1: Formal properties of some basic knowledge systems.

Lemma Compatibility (alias Cautious Monotonicity, due to [Gab85])
KB+ F & KB+G = Upd(KB,F)+ G

Lemma Redundancy and Compatibility can be combined in the following condition of
Cumulativity KBF F = C(Upd(KB, F)) = C(KB)

Even stronger than Cumulativity is the following property proposed in [G&r88],

Vacuity = KB+ F = Upd(KB,F)=KB

2.5 Nonmonotonicity

The following condition of Monotonicity captures the idea that a system is considered monotonic
if all consequences of a KB are preserved after it is updated by some new piece of information.

Monotonicity C(KB) C C(Upd(KB, F))

Though fundamental in the theory of consequence operations due to Tarski, this is too strong a
requirement for knowledge systems in general.

There are two ‘parameters’ on which Monotonicity depends: the update operation may be
ampliative, and the inference relation may be persistent.

Observation 1 A KS is monotonic if it is ampliative and persistent (even if its update op-
eration is nonmonotonic).

For instance, A is nonmonotonic since it allows for non-persistent queries. On the other hand,
B,,;, admitting only for ampliative inputs and persistent queries, is monotonic even though its
update operation Upd,,;, by virtue of its inconsistency handling mechanism, is nonmonotonic.
For instance,

Updmz(ov (p \% Q) A Np) = {{qa Np}} H q

while

Updmi({{~a}}; (pV @) A~p) = {{p,~p,~aq}, {~p.a:~q}} /¢

12

3 Deductive Knowledge Bases

Deductive knowledge bases were introduced in [Wag94a| under the name ‘rule knowledge bases’.
Every knowledge system K = (Lxg, I, LqQuery, Upd, Linpyt) can be inductively extended to
a deductive knowledge system DK. In DK, a knowledge base X € Lkg is supplemented by a
set B C L, e X Lyery of deduction rules r = (F, G) with conclusions F' € Lf, ; and premises

G € L§yery, also written as ‘F' «— G’, such that Free(F) C Free(G), and G is evaluable. Rules of

this form are called range-restricted, the set of such rules will be denoted by R(Linput < LQuery)-
Rules are interpreted as mappings between KBs, r : Lxp — Lkg, since their application is
defined as

r(X) := Upd(X, {Fo : o is a ground substitution for G such that X F Go})

Notice that in the case of a non-applicable rule, we get 7(X) = Upd(X,0) = Upd(X,\0) =
Upd(X,1) = X.

Let [R] denote the instantiation of R. For r = F < G, we will also write C; instead of the
conclusion F', and P, instead of the premise G. If r € [R], then

[Upd(X,C,) ifXF P
r(X) = { X otherwise

In the sequel, if not otherwise noted, we shall identify R with its instantiation [R)].
Observation 2 A ground rule is idempotent, r(r(X)) = r(X), iff Upd satisfies Contraction.

Proof: If X I/ P,, then by definition, r(r(X)) = r(X) = X. Otherwise, r(r(X)) = r(Upd(X, C;)).
Then if Upd(X, C,) I/ P,, we get

r(r(X)) =r(Upd(X, C;)) = Upd(X, C;) = r(X)
Otherwise, by Contraction,
T(T(X)) = Upd(Upd(X, Cr)acr) = Upd(X, Cr) = T(X) O

Observation 3 If the ‘facts” X of a deductive knowledge base (X, R) consist of a set of
compiled input formulas Ax C Linput, X = Upd(0, Ax), then the deductive knowledge base can
be rewritten as a set of rules:

(X,R)y — (0, RU{F <+« 1:Fe€Ax})

where those ‘“mproper’ rules with a trivially true premise, F < 1, represent the ‘facts’.

Definition 5 (Deductive Closure) Z € Lkp is a deductive closure of (X, R) if it extends
X, Z > X, and if it is closed under all rules of R: r(Z) = Z for all r € R.

13

Instead of ‘deductive closure’ we shall also just say ‘closure’.

The semantics of a deductive knowledge base (X, R) is determined by the definition of the
notion of a preferred closure. In general, there may be several preferred closures, or none. We
denote their collection by R(X), and write R(X) - F as an abbreviation of VZ € R(X) : Z + F.
If (X, R) has several preferred closures, a valid consequence must be inferrable from all of them:

(X,R)FqF = R(X)FF

In the specific case where all rules € R are monotonic and ampliative, there is exactly one
preferred closure of (X, R), namely the informationally least one. In the general case, we shall
assume that the stable closures (see below) are the preferred ones. All these cases will be treated
separately in the following sections.

The input language of DK is the same as that of K, and we have

Upda((X, R), F) := (Upd(X, F), R)
Formally,

DK := (Lgp x 2fmewlawe) by Louery, Upda, Linput)
In the sequel, we will omit the subscript d.

Example 3 (DDBs) Deductive knowledge bases of DA correspond to deductive databases
(DDBs), resp. normal logic programs. For instance, the program

Iy = {r(5), U(P, L), l(y,z) « l(z,y)},
corresponding to the deductive knowledge base (X1, R1) with

X1 ={r(S), m(P,L)}, and Ry = {m(y,z) + m(z,y)},
resp. to (Xa, Re) with

Xo={}, and Ry = {r(S) «+ 1, l(P,L) + 1, l(y,z) < l(z,y)},
has the unique minimal closure

R (X1) = Ro(X3) = {r(S), I(P, L), I(L, P)}

Example 4 (ELPs) An extended logic program (ELP, see [GL90]) corresponds to a deduc-
tive factbase in the system DF'. In deductive factbases, one can express default rules by combining
both kinds of negation. For instance, the rule

f(z) < b(z) AN —~f(z)
expresses the default that birds (normally) fly.

Example 5 (EDLPs) An ezxtended disjunctive logic program (EDLP, see [MR93]) without
negation-as-failure corresponds to a deductive epistemic state. For instance,

Iy = {b(L)a Z(Pa L) v Z(Pa S)a Nb(S)a b(‘r) — l(P,.T)}
corresponds to (Ya, Ro), where Yy is as in section 2.3.4, and Ry = {b(z) < (P, xz)}, ezpressing
that every woman Peter likes is blonde. In DBy, Ro(Y2) = {{b(L),l(P,L),~b(S)}}.

14

Definition 6 A mapping f : A — A from a preorder (A, <) into itself is called monotonic
if f(z) < f(y) whenever z <y. It is called ampliative if z < f(z). A rule is called monotonic
(resp. ampliative) if it is a monotonic (resp. ampliative) mapping. A rule is called persistent
if its premise is a persistent query formula. A rule knowledge base (X, R) is called persistent
(ampliative, monotonic) if all rules v € R are persistent (ampliative, monotonic).

Observation 4 If Update Monotonicity holds, a rule is monotonic whenever it is a) both
persistent and ampliative, or b) both anti-persistent and reductive.

Proof of a): Let X; < X5. We have to distinguish three cases. The first case, where r is neither
applicable in X7 nor in X, is trivial. If r is not applicable in X7 but in X5, then by Ampliative
Update:

r(X1) = X1 £ Xp < Upd(Xy, C;) = r(Xa)
Otherwise, by Update Monotonicity and Persistent Inference:
T(X1) = Upd(Xl,Cr) < Upd(XQ,CT) = T(XQ) a

Rules of positive logic programs, for instance, are persistent, ampliative and monotonic. Normal
logic programs consist of ampliative rules, while active databases, resp. production rule systems
such as OPS5 where the application of rules may cause the deletion of information, allow also
for non-ampliative rules.

Definition 7 (Supported Closure) A closure Z of a deductive knowledge base (X, R) is
called supported if there is an ordinal o and a sequence of rules (1i)1<ica C [R], such that its
composition, 1 = Qa>i>17i, computes Z: Z =r(X).1?

Example 6 InTA, let X = {r(c)@3, ¢(c)Q[2,5] }, and R = { p(z)Qt + q(z)QtA—r(z)Qt }.
Then the only supported closure is

R(X) = {r(c)@3, q(c)Q[2,5], p(c)Q[(2,2), (4,5)] }

Other minimal closures, such as {r(c)Q[3,5], ¢(c)Q[2,5], p(c)@Q2}, are not supported.

We have to explain how the composition r = (Qg>i>17; is defined in the infinite case, i.e. when
« is an infinite ordinal. In this case we shall make two restrictive assumptions: 1) that the
information ordering (Lxp, <) is a complete lattice (being the case, for instance, in DA and in
DF), and 2) that all rules in R are ampliative. We now inductively define (X;)1<i<o C LxB as
follows:

1. X1 = X.

2. Assume that X; has been defined for i < 3, and X; < X; whenever 1 < j < (.

5Notice that this definition of supportedness differs from that one introduced in [ABW88] by capturing a kind
of grounded bottom-up support rather than the non-grounded top-down support captured there.

15

(a) If B is a successor ordinal, then Xg_; exists and we can define
Xp = rp-1(Xp-1)
Since rg_; is ampliative, Xg_; < Xpg.
(b) If 8 is a limit ordinal, then we define

Xg:=supX;
i<p

This supremum exists since it is assumed that the information ordering is a complete
lattice.

Thus, in the infinite case, under the above assumptions, we get

Qa>i>1mi(X) = sup X;
<o

as a supported closure, while in the finite case we have
Oa>z’21""i(X) =7q-10...0T207] (X)

If Z = Qasi>17i(X) is a supported closure of (X, R), then we may assume (without loss of

generality) that for every i < o, we have r;0...0mp 07 (X) F P, ,, and

Z=X+)Y C,
1<i<a
respectively, if Update Synchronicity holds,
Z=X+{C,:1<i<a}

In general, however, we may not conclude that Z - P, for all i € [1,).

Not all supported closures are acceptable. There are even cases of minimal supported closures
which do not correspond to our intuition of an acceptable, or, in other words, intended closure
as the following example shows.

Example 7 In DA, let X = {s}, and R = {r < s, ¢ < —r, p < —q}. Both {q,r,s}, and
{p,r,s} are minimal supported closures, but only the latter one is an intended closure.

We shall prefer closures which are stable in the sense that each rule application within the
computation sequence preserves the applicability of all previously applied rules. The notion of
a stable closure was introduced in [Wag94b|.

Definition 8 (Stable Closure) A closure Z of a deductive knowledge base (X, R) is called
stable if there is a sequence of rules {r; € R : 1 < i < a}, such that its composition, r =
Qa>i>1Ti, forms a stable computation of Z in the following sense: Z = r(X), and

If rg_io...om(X) P, then rpo...0or(X)F Py, for all n,k witha>n >k > 1.

16

If Z = Qa>i>17i(X) is a stable closure of (X, R), then we may assume (without loss of generality)
that for every i < o, and j <7 +1,

rio...orgor(X)F P,
implying that Z I P, for all j € [1,).

Definition 9 (Preferred Closures) We define the preferred, or intended, closures of a de-
ductive knowledge base to be the minimally inconsistent stable ones:

R(X) := MInc({Z € Lks : Z is a stable closure of (X, R)})

In the sequel, we shall identify the singleton R(X) = {Z} with its single element Z, i.e. we shall
write R(X) instead of Z.

Example 8 The deductive factbase (B, {~q < — ~p, ~p < —q}) has ezactly one stable
closure: {~p}.

Example 9 In DF, let X = {~p}, and R={p+ —q, ¢+ —p}. Then R(X) = {{~p,q}}.
If a deductive knowledge base does not have any stable closure, it is called unstable.

Example 10 In DFy, the deductive factbase ({~p}, {q < pV —p, p « q}) is unstable, while
in DF it has a stable closure: {~p,q,p}.

4 The Immediate Consequence Operator

Definition 10 For any deductive knowledge base (X, R), and any Z € Lkg, we define
Tx r(Z) =Upd(X,{F:F+ Gel[R] & Z}G})

and its cumulative version
Tr(Z) :=Tzr(Z)

for which the following iteration sequence can be formed:
X0 =Xx, X = TR(XY) (i >0)

In the case of positive logic programs, i.e. for DA™, one obtains the classical Tp-operator: let
(X, R) be the DKB corresponding to a program P, ie. X ={a:a + 0 € P}, and R = {a +
A€ P: A#(}, then for I C At,

Tp(I)={a:a+ A€ [P] & I = A}
as defined by Van Emden and Kowalski in [VEK76], is equal to T'x gr(I).

Observation 5 If Update Synchronicity holds, the fixpoints of Tr are exactly the KBs closed
under R.

17

Proof: Let Z be a closure, then for any rule r € R we have r(Z) = Z. Let us show that
Upd(Z,{C, : Z+P.})=Z

For every r such that Z - P,, we have Upd(Z,C,) = Z. Therefore, by Update Synchronicity,
we get the desired conclusion.

Conversely, if Z is a fixpoint of Tg, then Upd(Z,{C, : Z + P.}) = Z. This clearly implies,
by Update Synchronicity, that Upd(Z, C,) = Z, whenever Z - P,. Therefore, Z is closed under
R. O

Observation 6 If Contraction holds, the fizpoints of T'x g are also fizpoints of Tr.

Proof: Let Z be a fixpoint of T'x g, then we have

Z =Txr(Z)=Upd(X,{Cr:r€R & ZF P})
By Contraction we get

Upd(Z, A) = Upd(Upd(X, A),A) =Upd(X,A) =Z
where A={C,:r€R & Z+ P.}. O

Observation 7 If Z is closed under R such that for some A C {C, :r € R & ZtF P},
Z = Upd(X, A), then Z is a fizpoint of Tx g.

Proof: Let Z be closed under R such that Z = Upd(X, A) where AC {C,:r€ R & Z+ P.}.
Let B={C,:r€ R & ZF P.} — A. By Update Synchronicity, we get

Z = Upd(Z, B) = Upd(Upd(X, A),B) = Upd(X,{C, : T €R & Z}+ P}

and consequently, Z = Tx r(Z). O

Claim 1 If Update Synchronicity holds, then every stable closure of (X, R) is a fizpoint of
Tx,r and Tkg.

Proof: Let Z be a stable closure of (X, R). Then for some set of rules {r; : 1 <i < a} C R,
Z =Upd(X,{Cy, : 1 <i<a})

By observation 7, Z is a fixpoint of T'x g. By observation 6, Z is also a fixpoint of T. O

18

5 Monotonic DKBs

Recall that a deductive knowledge base (X, R) is monotonic if all 7 € R are monotonic mappings.
This is, e.g., the case if Update Monotonicity holds, and all » € R are persistent and ampliative
(see observation 4).16

For instance, all deductive temporal databases whose rules do not contain the weak negation
—, such as p(z)QT + (q(z) V Jyr(z,y))QT A p(z)@2, are monotonic. In B, although Up-
date Monotonicity does not hold, rules with definite conclusions are monotonic. On the other
hand, there are no monotonic rules at all in DF';, and hence there are no monotonic deductive
defeasible factbases.

More exoticaly, anti-persistent reductive rules, such as the DA rule —p < —gq, are also
monotonic if Update Monotonicity holds.

Claim 2 A monotonic DKB has at most one supported closure which is its least closure.

Proof: Assume that X = QOa>i>17i(X) is a supported closure of (X, R). Let Z be any deductive
closure of (X, R). Since 71 is monotone, we get

r(X)<rZ)=2Z
It is obvious that we can get
Opziz1mi(X) < Z

for every 8 < « in this way. Consequently, X < Z. O

6 Persistent Ampliative DKBs

Recall that persistent ampliative DKBs are monotonic if Update Monotonicity holds. If a knowl-
edge system violates Update Monotonicity, such as Fy and B,,;, rules may be nonmonotonic
even if they are persistent and ampliative. Notice that there are no ampliative rules at all in
DF,.

Let R be persistent, and Z; and Z3 be two fixpoints of T'x g, such that Z; < Z,. Because of
Persistence, Z;, - P, implies that Z, - P,.. Therefore,
{C,,-:’I‘GR & le—Pr}g{CT:reR & ZQ"PT}
and consequently, provided that Update Synchronicity holds,
Zy = Upd(X,{C,:r€R & Zy+ P.})
= Upd(X,{C, : Z1 - P }U{C,:Z2+ P, & Z1 1/ P,.})
= Upd(Upd(X,{Cy:Z1 - P.}),{Cr:Zo+ P, & Z1 1t/ P})
= Upd(Zla{Cr 1 Zy P & 74 |71Pr})

6Notice that we do not require in this section that the KS is monotonic, but only that the DKB is monotonic.

19

Claim 3 If Update Synchronicity holds, and R is persistent and ampliative, the operator T'x r
18 monotone.

Proof: Let Z; < Z5. Because all premises of R are persistent we have
{Cr:reR & Z1FP}C{C,:T€R & Zy+ P}
which implies
Tx,r(Z2) = Upd(X,{C;:r€R & Zy+ F})
= Upd(Tx,r(Z1),{Cr:7€R & Zo+ P, & Z1 1/ P.})
Since all conclusions of R are ampliative, we get Tx r(Z1) < Tx,r(Z2). O

Claim 4 Any supported closure of a persistent ampliative DKB is stable.

Proof: Let Z = Qq>i>17i(X) be a supported closure of (X, R). Assume that the rules (r;)1<i<a
are ampliative and persistent. Abbreviating X; := (O;>i>17:(X), we can assume, without loss
of generality, that for every j < a, we have X - P,... Clearly, this implies that

X1 =Upd(X;,Cp) = X + Y G,
1<i<y
Since all inputs C;; are ampliative, we get X; > X; for all 1 < j. Because all premises F,; are
persistent, X; - Py, for all s < 5. O

Assume that r; and ry are ampliative and persistent, and Z - P, for ¢« = 1,2. If Update
Synchronicity holds, we get

riory(Z) =rqori(Z) = Upd(Z,{C;,,Cr,})

Therefore, we conclude that if the rules (r;)1<i<q are ampliative and persistent, and Z + P,
for 1 < ¢ < «, then to compute Oa>i>17i(Z), the order in which the rules are applied is not
important. Therefore, under the assumption of Update Synchronicity, if (X, R) is ampliative
and persistent and

R CRy:={reR:ZF P}

we can write QR/(Z) for the composition of all the rules in R’ applied to Z without specifying
the order in which these rules are applied. Moreover we have QR'(Z) = Upd(Z,{C, : r € R'}).

Since for a persistent and ampliative DKB (X, R) the operator T'x g is monotone, the corre-
sponding fixpoint set Fiz(Tx r) is a complete sublattice. Hence there exists a least fixed point

of T'x, g denoted X. The general theory implies that
X =1limTk z(X)

It is easy to show then, under the assumption of Update Synchronicity, that the iterates of T'x g
are equal to the iterates of T, i.e. for every 7 we have

Tk r(X) = T(X) = X*

20

First notice that by definition, T r(X) = Tr(X) = X'. We want to prove that X! =
Upd(X,{C, : X’ + P,}). Let us show it for i = 2. We have X < X! (because of ampliativity),
then if X F P, we have X' - P,. Hence

X% = Tr(X')=Upd(X'{C,: X' P})
= Upd(Upd(X,{C, : X+ P,}),{C, : X'+ P,})
= Upd(X,{C,: XFP}U{C,: X'FP})
= Upd(X,{C,: X'F P}
= Txgr(X')

since {C, : X F P} C {C, : X! - P.}. In the general case the proof is identical using the fact
that the sequence X" is monotone. Consequently, we get the following:

Claim 5 Let (X, R) be a persistent ampliative DKB. Then, if Update Synchronicity holds,
X =1lim Tk p(X) = lim X" = sup X'

We may ask if there is a relationship between X and the supported closures. The answer is
given by the following result.

Claim 6 In a KS satisfying Update Synchronicity and where the information ordering is a
partial order, any supported closure of a persistent ampliative DKB 1is equal to X. Therefore
every persistent ampliative DKB has a unique supported closure.

Proof: Let Z be a supported closure of a persistent ampliative DKB (X, R). We know that Z
is stable. Write

Z = Oa>121’r‘i(X) = Upd(X, {Cﬁ, 1 < CM})

with Z = P,, for every ¢« < a. Since Z is stable, then Z is a fixpoint of T’x g. Therefore we
have X < Z. Let us prove that Z < X. Since X + P,, and X! = Upd(X,{C, : X - P.}), then
r1(X) < X!. Using the properties of the sequence X*, one can easily prove that

Opzis1ri(X) < XP
for every 8 < a. Therefore

7 = sup Oﬂ>i>1ri(X) < X Od
B<a -

Notice that X is not the least closure, in general. However if the rules are monotone, it is the
least closure.

21

7 Monotonic Ampliative DKBs

Observation 8 The composition of two monotonic ampliative mappings r1 and ro will always
provide an upper bound for both of them: 11 ory > 11,739, TESP.

ri(ro(X)) > ri(X) forall X € Lgp, and i = 1,2

Proof: Because r; is ampliative, r1(ry(X)) > r2(X). It remains to show that r1(ry(X)) > 1 (X).
If 79 is not applicable, then 71 (r2(X)) = r1(X) > X = r2(X). Otherwise, since 9 is ampliative,
r9(X) > X, and by monotonicity,

ro(X) > X = ri(re(X) > ri(X) O

Therefore, the set of all compositions of rules from a monotonic ampliative rule set R is a directed
set. This can be used, under the further assumption of continuity, to apply Scott’s theory of
continuos lattices [Sco72] in order to obtain the intended closure of (X, R), as proposed in
[Bel77]. We are, however, more interested here to study the existence of intended closures under
assumptions weaker than continuity.

Claim 7 A monotonic ampliative DKB has a unique supported closure which is the least
closure.

Proof: Let (X, R) be a monotonic ampliative DKB. Since the rules are ampliative, there exists
a supported closure X. Let Z be a closure such that X < Z. Then for any rule r we have
r(X) < r(Z) = Z. Therefore, we have X < Z. O

We do not know whether X is stable. It is clear that X is the least fixpoint of T’r since the
fixpoints of Tr are exactly the closures. But we do not know whether X is the least fixpoint
of T'x r. Notice that in this case it is unclear whether T'x r is monotone while it is obvious for
Tg. Therefore, we have two theories: one for persistent ampliative DKBs and the other one for
monotonic ampliative DKBs. They can be combined in the case of persistent ampliative DKBs
of a KS satisfying Update Monotonicity.

8 Ampliative DKBs

Typical examples for non-persistent ampliative DKBs are all kinds of logic programs (normal,
extended, disjunctive, epistemic, etc.) where non-persistent operators, such as negation-as-
failure or epistemic modalities, are allowed in the premise of a rule but not in the conclusion.

Claim 8 FEvery ampliative deductive knowledge base has a supported closure if Update Syn-
chronicity holds (in the infinite case we also need to assume that the information ordering is a
complete lattice).

Proof: Let (X, R) be an ampliative DKB. Set X; := X. If for all » € R we have r(X;) = X3, we
set r1 := Id (the identity map). Otherwise we choose 71 € R such that r1(X;) # X;. Assume
that (r;)1<i<e has been constructed. We set

Xo = Qa>i>17i(X)

22

where « is an ordinal. If for all » € R we have r(X,) = X,, we set r, := Id. Otherwise we
choose r,, € R such that 7,(X,) # X,. Since all r € R are ampliative, (X,) is monotonically
increasing, and according to ZF set theory, there is an ordinal 8 < vy, such that Xz = Xg 4,
and 7 corresponds to the well-ordering type of R.

It remains to show that Xz is closed under r; for i« < (3, since it is closed trivially under
all other rules r € R — {r; : 1 < i < 3}, being not applicable. Clearly, for every i < [3, we
have X; 1 = r;(X;) = Upd(X;, Cy,;). Therefore, if Xg I/ Py, then Xg is trivially closed under r;.
Otherwise,

ri(Xg) = ri(Upd(X,{Cr; : 1 <5 <B}))
= Upd(Upd(X,{C;; : 1 <j < B}),Cr,)
— Upd(X,{C,, :1<j < B})
= X3 O

Thus, the situation of ampliative DKBs is similar to that of normal logic programs. Although
they always have supported closures, resp. minimal models, we are rather interested in their
stable closures, resp. models. Therefore, an important question is: under which conditions
does an ampliative DKB have a unique stable closure 7 Can we generalize the logic program-
ming notions of acyclicity [AB90] and stratification [ABW88, Prz88, PP90, BF91] for deductive
knowledge bases 7 This will be the subject of a sequel paper.

9 Non-Ampliative DKBs

Little is known on non-ampliative DKBs. And it does not seem to be clear whether non-
ampliative deduction rules can be useful at all in knowledge representation (whereas it is obvious
that action rules may be non-ampliative). We only discuss some examples.

Example 11 (Reductive Rules) Rules in DA can have weakly negated conclusions, repre-
senting reductive input. For instance, we could have r1 = —q < p, ro = s < p, and R = {r1,r2}.
If applied to X = {p}, we obtain R(X) = {p,s}. The non-ampliative rule r1 is redundant in this
case: R(X) = ro(X). On the other hand, certain non-ampliative DKBs with reductive rules,
like

(X,R) = ({p,q}, {—q < p})

do not have any closure, and are in this sense unsatisfiable. Reductive rules, therefore, do not
seem to make sense in deductive knowledge bases: either they are redundant, or unsatisfiable.

Example 12 (Non-Ampliative Non-Reductive Rules) In F,, inputs are neither am-
pliative nor reductive. Thus, we could have the following non-ampliative non-reductive rule set
R = {q + —p}, which is non-redundant in cases like X =0,

R({0}) = {{¢}}

and unsatisfiable in certain other cases like X = {~q}, which cannot be closed under R.

23

10 Conclusion

The framework of deductive knowledge systems allows the formulation of a general theory of
(possibly nonmonotonic) rules. We have classified certain important cases of deductive knowl-
edge bases and presented some results on the existence of closures for them. Although several
problems had to be left open, we have provided the theoretical foundations for many new ex-
tensions of logic programming and deductive database systems.

References

[ABW88] K.R. Apt, H. Blair and A. Walker: Towards a Theory of Declarative Knowledge, in J. Minker
(Ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, 1988.

[AB90] K.R. Apt and M. Bezem: Acyclic Programs, Proc. ICLP 1990, MIT Press, 1990.

[BG93] C. Baral and M. Gelfond: Logic Programming and Knowledge Representation, Technical Report,
University of Texas at El Paso, 1993.

[Bel77] N.D. Belnap: A Useful Four-valued Logic, in G. Epstein and J.M. Dunn (Eds.), Modern Uses of
Many-valued Logic, Reidel 1977, 8-37.

[BF91] N. Bidoit and C. Froidevaux: Negation By Default and Unstratifiable Logic Programs, Theoretical
Computer Science 78 (1991), 85-112.

[VEK76] M.H. van Emden and R.A. Kowalski: The Semantics of Predicate Logic as a Programming
Language, J. of the ACM 23:4 (1976), 733-742.

[Gab85] D. Gabbay: Theoretical Foundations for Nonmonotonic Reasoning in Expert Systems, in K.R.
Apt (Ed.), Proc. NATO Advanced Study Institute on Logics and Models of Concurrent Systems,
Springer Verlag, 1985, 439-457.

[Gar88] P. Girdenfors: Knowledge in Fluz, MIT Press, Cambridge, 1988.

[vGT91] A. van Gelder and R.W. Topor: Safety and Translation of Relational Calculus Queries, ACM
Transactions on Database Systems 16:2 (1991), 235-278.

[GL88] M. Gelfond and V. Lifschitz: The Stable Model Semantics for Logic Programming, Proc. ICLP
1988, MIT Press, 1988.

[GLI0] M. Gelfond and V. Lifschitz: Logic Programs with Classical Negation, Proc. ICLP 1990, MIT
Press, 1990.

[GLI1] M. Gelfond and V. Lifschitz: Classical Negation in Logic Programs and Disjunctive Databases,
J. New Generation Computing 9 (1991), 365-385.

[Lev84] H.J. Levesque: Foundations of a Functional Approach to Knowledge Representation, Al 23:2
(1984), 155-212.

[MR93] J. Minker and C. Ruiz: Semantics for Disjunctive Logic Programs with Explicit and Default
Negation, Proc. ISMIS’98, Springer LNAI, 1993.

24

[Pea93] D. Pearce: ‘Answer Sets and Constructive Logic, IT: Extended Logic Programs and Related Non-
monotonic Formalisms, in L.M. Pereira and A. Nerode (Eds.), Logic Programming and Nonmonotonic
Reasoning, MIT Press, 1993.

[Pri89] G. Priest: Reasoning about Truth, AI 39 (1989), 231-244.

[PP90] H. Przymusinska and T.C. Przymusinski: Weakly Stratified Logic Programs, Fundamenta Infor-
maticae 13 (1990), 51-65.

[Prz88] T.C. Przymusinski: On the Declarative Semantics of Logic Programs with Negation, in J. Minker
(Ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, 1988.

[Sco72] D. Scott: ‘Continous Lattices: Toposes, Algebraic Geometry and Logic’, Springer Lecture Notes
in Mathematics 274 (1972), 97-136.

[Wag91] G. Wagner: A Database Needs Two Kinds of Negation, in H.-D. Gerhard and B. Thalheim
(Eds.), Proc. 3rd Int. Symp. on Mathematical Fundamentals of Database and Knowledge Base Systems
MFDBS-91, Springer LNCS 495 (1991), 357-371.

[Wag93] G. Wagner: Disjunctive Fact Bases and Logic Programming — Preliminary Report, in C. Baral
and M. Gelfond (Eds.), Proc. ILPS’93 Workshop on Logic Programming with Incomplete Information,
1993.

[Wag94a] G. Wagner: Vivid Logic — Knowledge-Based Reasoning with Two Kinds of Negation, Springer
LNAI 764 (1994).

[Wag94b] G. Wagner: Transforming Deductive into Active Databases, in N. Fuchs and G. Gottlob (Eds.),
Proc. of 10th Workshop on Logic Programming Zirich 1994.

[Wag95a] G. Wagner: From Information Systems to Knowledge Systems, in E. Falckenberg (Ed.), Proc.
of IFIP Working Conf. on Information System Concepts (ISCO3), Chapman & Hall 1995.

[Wag95b] G. Wagner: Belnap’s Epistemic States and Negation-as-Failure, in H. Wansing (Ed.), Negation
in Focus, de Gruyter 1996.

25

