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Abstract

We prove a common fixed point theorem for four mappings defined on an ordered
metric space and apply it to find new common fixed point results. The existence of
common fixed points is established for two or three noncommuting mappings
where T is either ordered S-contraction or ordered asymptotically S-nonexpansive on
a nonempty ordered starshaped subset of a hyperbolic ordered metric space. As
applications, related invariant approximation results are derived. Our results unify,
generalize, and complement various known comparable results from the current
literature.
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1 Introduction
Metric fixed point theory has primary applications in functional analysis. The interplay

between geometry of Banach spaces and fixed point theory has been very strong and

fruitful. In particular, geometric conditions on underlying spaces play a crucial role for

finding solution of metric fixed point problems. Although, it has purely metric flavor,

it is still a major branch of nonlinear functional analysis with close ties to Banach

space geometry, see for example [1-4] and references mentioned therein. Several

results regarding existence and approximation of a fixed point of a mapping rely on

convexity hypotheses and geometric properties of the Banach spaces. Recently, Khamsi

and Khan [5] studied some inequalities in hyperbolic metric spaces, which lay founda-

tion for a new mathematical field: the application of geometric theory of Banach spaces

to fixed point theory. Meinardus [6] was the first to employ fixed point theorem to

prove the existence of invariant approximation in Banach spaces. Subsequently, several

interesting and valuable results have appeared about invariant approximations [7-9].

Existence of fixed points in ordered metric spaces was first investigated in 2004 by

Ran and Reurings [10], and then by Nieto and Lopez [11].

In 2009, Dorić [12] proved some fixed point theorems for generalized (ψ, �)-weakly

contractive mappings in ordered metric spaces. Recently, Radenović and Kadelburg

[13] presented a result for generalized weak contractive mappings in ordered metric

spaces (see also, [14,15] and references mentioned theirin). Several authors studied the
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problem of existence and uniqueness of a fixed point for mappings satisfying different

contractive conditions (e.g., [16-18,13,19]). The aim of this article is to study common

fixed points of (i) four mappings on an ordered metric space (ii) ordered Cq-commut-

ing mappings in the frame work of hyperbolic ordered metric spaces. Some results on

invariant approximation for these mappings are also established which in turn extend

and strengthen various known results.

2 Preliminaries
Let (X, d) be a metric space. A path joining x Î X to y Î X is a map c from a closed

interval [0, l] ⊂ ℝ to X such that c(0) = x, c(l) = y, and d(c(t), c(t’)) = |t - t’| for all t, t’

Î [0, l]. In particular, c is an isometry and d(x, y) = l. The image of c is called a metric

segment joining x and y. When it is unique the metric segment is denoted by [x, y].

We shall denote by (1 - l)x ⊕ ly the unique point z of [x, y] which satisfies

d(x, z) = λd(x, y), and d(z, y) = (1 − λ)d(x, y).

Such metric spaces are usually called convex metric spaces (see Takahashi [20] and

Khan at el. [21]). Moreover, if we have for all p, x, y in X

d
(
1
2
p ⊕ 1

2
x,

1
2
p ⊕ 1

2
y
)

≤ 1
2
d(x, y),

then X is called a hyperbolic metric space. It is easy to check that in this case for all

x, y, z, w in X and l Î [0, 1]

d((1 − λ)x ⊕ λy, (1 − λ)z ⊕ λw) ≤ (1 − λ)d(x, z) + λd(y, w).

Obviously, normed linear spaces are hyperbolic spaces [5]. As nonlinear examples

one can consider Hadamard manifolds [2], the Hilbert open unit ball equipped with

the hyperbolic metric [3] and CAT(0) spaces [4].

Let X be a hyperbolic ordered metric space. Throughout this article, we assume that

(1 - l)x ⊕ ly ≤ (1 - l)z ⊕ lw for all x, y, z, w in X with x ≤ z and y ≤ w. A subset Y

of X is said to be ordered convex if Y includes every metric segment joining any two

of its comparable points. The set Y is said to be an ordered q-starshaped if there exists

q in Y such that Y includes every metric segment joining any of its point comparable

with q.

Let Y be an ordered q-starshaped subset of X and f, g : Y ® Y. Put,

Yf
q = {yλ : yλ = (1 − λ)q ⊕ λfx and λ ∈ [0, 1], q ≤ x or x ≤ q}.

Set, for each x in X comparable with q in Y, d(gx, Y
f
q) = inf

λ∈[0,1]
d(gx, yλ).

Definition 2.1. A selfmap f on an ordered convex subset Y of a hyperbolic ordered

metric space X is said to be affine if

f ((1 − λ)x ⊕ λy) = (1 − λ)fx ⊕ λfy

for all comparable elements x, y Î Y , and l Î [0, 1].

Let f and g be two selfmaps on X. A point x Î X is called (1) a fixed point of f if f(x)

= x; (2) coincidence point of a pair (f, g) if fx = gx; (3) common fixed point of a pair (f,

g) if x = fx = gx. If w = fx = gx for some x in X, then w is called a point of coincidence
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of f and g. A pair (f, g) is said to be weakly compatible if f and g commute at their

coincidence points.

We denote the set of fixed points of f by Fix(f).

Definition 2.2. Let (X, ≤) be an ordered set. A pair (f, g) on X is said:

(i) weakly increasing if for all x Î X, we have fx ≤ gfx and gx ≤ fgx, ([22])

(ii) partially weakly increasing if fx ≤ gfx, for all x Î X.

Remark 2.3. A pair (f, g) is weakly increasing if and only if ordered pair (f, g) and

(g, f) are partially weakly increasing.

Example 2.4. Let X = [0, 1] be endowed with usual ordering. Let f, g : X ® X be

defined by fx = x2 and gx =
√
x. Then fx = x2 ≤ x = gfx for all x Î X. Thus (f, g) is par-

tially weakly increasing. But gx =
√
x �≤ x = fgx for x Î (0, 1). So (g, f) is not partially

weakly increasing.

Definition 2.5. Let (X, ≤) be an ordered set. A mapping f is called weak annihilator

of g if fgx ≤ x for all x Î X.

Example 2.6. Let X = [0, 1] be endowed with usual ordering. Define f, g : X ® X by

fx = x2 and gx = x3. Then fgx = x6 ≤ x for all x Î X. Thus f is a weak annihilator of g.

Definition 2.7. Let (X, ≤) be an ordered set. A selfmap f on X is called dominating

map if x ≤ fx for each x in X.

Example 2.8. Let X = [0, 1] be endowed with usual ordering. Let f : X ® X be

defined by fx = x
1
3. Then x ≤ x

1
3 = fx for all x Î X. Thus f is a dominating map.

Example 2.9. Let X = [0, ∞) be endowed with usual ordering. Define f : X ® X by

fx =
{

n
√
x for x ∈ [0, 1),

xn for x ∈ [1, ∞),

n Î N. Then for all x Î X, x ≤ fx so that f is a dominating map.

Definition 2.10. Let (X, ≤) be a ordered set and f and g be selfmaps on X. Then the

pair (f, g) is said to be order limit preserving if

gx0 ≤ f x0,

for all sequences {xn} in X with gxn ≤ fxn and xn ® x0.

Definition 2.11. Let X be a hyperbolic ordered metric space, Y an ordered q-starshaped

subset of X, f and g be selfmaps on X and q Î Fix(g). Then f is said to be:

(1) ordered g-contraction if there exists k Î (0, 1) such that

d(fx, fy) ≤ kd(gx, gy);

for x, y Î Y with x ≤ y.

(2) ordered asymptotically S-nonexpansive if there exists a sequence {kn}, kn ≥ 1,

with lim
n→∞ kn = 1 such that

d(f n(x), f n(y)) ≤ knd(gx, gy)

for each x, y in Y with x ≤ y and each n Î N. If kn = 1, for all n Î N , then f is

known as ordered g-nonexpansive mapping. If g = I (identity map), then f is

ordered asymptotically nonexpansive mapping;

Abbas et al. Fixed Point Theory and Applications 2011, 2011:25
http://www.fixedpointtheoryandapplications.com/content/2011/1/25

Page 3 of 14



(3) R-weakly commuting if there exists a real number R > 0 such that

d(fgx, gfx) ≤ Rd(fx, gx);

for all x in Y.

(4) ordered R-subweakly commuting [23] if there exists a real number R > 0 such

that

d(fgx, gfx) ≤ Rd(gx, Yf
q)

for all x Î Y.

(5) ordered uniformly R-subweakly commuting [23] if there exists a real number

R > 0 such that

d(f ngx, gf nx) ≤ Rd(gx, Yfn
q )

for all x Î Y.

(6) ordered Cq-commuting [24], if gfx = fgx for all x Î Cq(f, g), where Cq(f, g) = U

{C(g, fk) : 0 ≤ k ≤ 1} and fkx = (1 - k)q ⊕ kfx.

(7) ordered uniformly Cq-commuting, if gf nx = f ngx for all x Î Cq(g, f
n) and n Î N.

(8) uniformly asymptotically regular on Y if, for each h >0, there exists N(h) = N

such that d(f nx, f n+1x) <h for all h ≥ N and all x Î Y .

For other related notions of noncommuting maps, we refer to [7]; in particular,

here Example 2.2 and Remark 3.10(2) provide two maps which are not Cq-commut-

ing. Also, uniformly Cq-commuting maps on X are Cq-commuting and uniformly

R-subweakly commuting maps are uniformly Cq-commuting but the converse state-

ments do not hold, in general [23,25]. Fixed point theorems in a hyperconvex metric

space (an example of a convex metric space) have been established by Khamsi [26]

and Park [27].

Let Y be a closed subset of an ordered metric space X. Let x Î X. Define d(x, Y ) =

inf{d(x, y) : y Î Y, y ≤ x or x ≤ y}. If there exists an element y0 in Y comparable with x

such that d(x, y0) = d(x, Y ), then y0 is called an ordered best approximation to X out

of Y. We denote by PY (x), the set of all ordered best approximation to x out of Y. The

reader interested in the interplay of fixed points and approximation theory in normed

spaces is referred to the pioneer work of Park [28] and Singh [9].

3 Common fixed point in ordered metric spaces
We begin with a common fixed point theorem for two pairs of partially weakly

increasing functions on an ordered metric space. It may regarded as the main result of

this article.

Theorem 3.1. Let (X, ≤, d) be an ordered metric space. Let f, g, S, and T be selfmaps

on X, (T, f) and (S, g) be partially weakly increasing with f(X) ⊆ T(X), g(X) ⊆ S(X), and

dominating maps f and g be weak annihilator of T and S, respectively. Also, for every

two comparable elements x, y Î X,

d(fx, gy) ≤ hM(x, y),
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where

M(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(Sx, gy) + d(fx,Ty)
2

} (3:1)

for h Î [0, 1) is satisfied. If one of f(X), g(X), S(X), or T(X) is complete subspace of X,

then {f, S} and {g, T} have unique point of coincidence in X provided that for a nonde-

creasing sequence {xn} with xn ≤ yn for all n and yn ® u implies xn ≤ u. Moreover, if

{f, S} and {g, T } are weakly compatible, then f, g, S, and T have a common fixed point.

Proof. For any arbitrary point x0 in X, construct sequences {xn} and {yn} in X such

that

y2n−1 = f x2n−2 = Tx2n−1 ≤ fTx2n−1, and y2n = gx2n−1 = Sx2n ≤ gSx2n.

Since dominating maps f and g are weak annihilator of T and S, respectively so for all

n ≥ 1,

x2n−2 ≤ f x2n−2 = Tx2n−1 ≤ fTx2n−1 ≤ x2n−1,

and

x2n−1 ≤ gx2n−1 = Sx2n ≤ gSx2n ≤ x2n.

Thus, we have xn ≤ xn+1 for all n ≥ 1. Now (3.1) gives that.

d(y2n+1, y2n+2) = d(f x2n, gx2n+1) ≤ hM(x2n, x2n+1)

for n = 1, 2, 3,..., where

M(x2n, x2n+1)

= max{d(Sx2n, Tx2n+1), d(f x2n, Sx2n), d(gx2n+1, Tx2n+1),
d(f x2n,Tx2n+1) + d(gx2n+1, Sx2n)

2

}

= max{d(y2n, y2n+1), d(y2n+1, y2n), d(y2n+2, y2n+1), d(y2n+1, y2n+1) + d(y2n+2, y2n)
2

}

= max{d(y2n, y2n+1), d(y2n+1, y2n+2), d(y2n, y2n+1) + d(y2n+1, y2n+2)
2

}
= max{d(y2n, y2n+1), d(y2n+1, y2n+2)}.

Now if M(x2n, x2n+1) = d(y2n, y2n+1), then d(y2n+1, y2n+2) ≤ hd(y2n, y2n+1).

And if M(x2n, x2n+1) = d(y2n+1, y2n+2), then d(y2n+1, y2n+2) ≤ hd(y2n+1, y2n+2)

which implies that d(y2n+1, y2n+2) = 0, and y2n+1 = y2n+2. Hence

d(yn, yn+1) ≤ hd(yn−1, yn) for n = 3, 4, . . .

Therefore

d(yn, yn+1) ≤ hd(yn−1, xn)

≤ h2d(yn−2, yn−1) ≤ · · · ≤ hnd(y0, y1)

for all n Î N. Then, for m > n,

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · · + d(ym−1, ym)

≤ [hn + hn+1 + · · · + hm]d(y0, y1)

≤ hn

1 − h
d(y0, y1),
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and so d(yn, ym) ® 0 as n, m ® ∞. Hence {yn} is a Cauchy sequence. Suppose that S

(X) is complete. Then there exists u in S(X), such that Sx2n = y2n ® u as n ® ∞. Con-

sequently, we can find v in X such that Sv = u. Now we claim that fv = u. Since, x2n-2
≤ x2n-1 ≤ gx2n-1 = Sx2-n and Sx2n ® Sv. So that x2n-1 ≤ Sv and since, Sv ≤ gSv and gSv

≤ v, implies x2n-1 ≤ v. Consider

d(fv, u) ≤ d(fv, gx2n−1) + d(gx2n−1, u)

≤ hM(v, x2n−1) + d(gx2n−1, u),

where

M(v, x2n−1) = max{d(Sv,Tx2n−1), d(fv, Sv), d(gx2n−1, Tx2n−1),

d(fv,Tx2n−1) + d(gx2n−1, Sv)
2

}

for all n Î N. Now we have four cases:

If M(v, x2n-1) = d(Sv, Tx2n-1), then d(fv, u) ≤ hd(Sv, Tx2n-1)+d(gx2n-1, u) ® 0 as n ®
∞ implies that fv = u.

If M(v, x2n-1) = d(fv, Sv), then d(fv, u) ≤ hd(fv, Sv) + d(gx2n-1, u). Taking limit as n ®
∞ we get d(fv, u) ≤ hd(fv, u). Since h <1, so that fv = u.

If M(v, x2n-1) = d(gx2n-1, Tx2n-1), then d(fv, u) ≤ hd(gx2n-1, Tx2n-1) + d(gx2n-1, u) ® 0

as n ® ∞ implies that fv = u.

If M(v, x2n−1) =
d(fv,Tx2n−1) + d(gx2n−1, Sv)

2
, then

d(fv, u) ≤ h
[d(fv,Tx2n−1) + d(gx2n−1, Sv)]

2
+ d(gx2n−1, u).

Taking limit as n ® ∞ we get d(fv, u) ≤ h
2
d(fv, u). Since h <1, so that fv = u.

Therefore, in all the cases fv = Sv = u.

Since u Î f(X) ⊂ T(X), there exists w Î X such that Tw = u. Now we shall show that

gw = u. As, x2n-1 ≤ x2n ≤ fx2n = Tx2n+1 and Tx2n+1 ® Tw and so x2n ≤ Tw. Hence, Tw

≤ fTw and fTw ≤ w, imply x2n ≤ w. Consider

d(gw, u) ≤ d(gw, f x2n) + d(f x2n, u)

= d(f x2n, gw) + d(f x2n, u)

≤ hM(x2n,w) + d(f x2n, u),

where

M(x2n,w) = max
{
d(Sx2n, Tw), d(f x2n, Sx2n), d(gw, Tw),

d(f x2n,Tw) + d(gw, Sx2n)
2

}
for all n Î N.

Again we have four cases:

If M(x2n,w) = d(Sx2n, Tw), then d(gw, u) ≤ h d(Sx2n, Tw) + d(fx2n, u) ® 0 as n ® ∞.

If M(x2n,w) = d(fx2n, Sx2n), then d(gw, u) ≤ h d(fx2n, Sx2n) + d(fx2n, u) ® 0 as n ® ∞.

If M(x2n,w) = d(gw, Tw), then d(gw, u) ≤ hd(gw, Tw)+d(fx2n, u) = hd(gw, u)+ d(fx2n,
u). Taking limit as n ® ∞ we get d(gw, u) ≤ hd(gw, u) which implies that gw = u. If

M(x2n, w) =
d(f x2n,Tw) + d(gw, Sx2n)

2
, then
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d(gw, u) ≤ h
d(f x2n,Tw) + d(gw, Sx2n)

2
+ d(f x2n, u)

≤ h
2
[d(f x2n, u) + d(gw, Sx2n)] + d(f x2n, u).

Taking limit as n ® ∞ we get d(gw, u) ≤ h
2
d(gw, u) which implies that gw = u. Fol-

lowing the arguments similar to those given above, we obtain gw = Tw = u. Thus {f, S}

and {g, T} have a unique point of coincidence in X. Now, if {f, S} and {g, T} are weakly

compatible, then fu = fSv = Sfv = Su = w1 (say) and gu = gTw = Tgw = Tu = w2 (say).

Now

d(w1, w2) = d(fu, gu) ≤ hM(u, u),

where

M(u, u) = max{d(Su, Tu), d(fu, Su), d(gu, Tu), d(fu,Tu) + d(gu, Su)
2

}
= d(w1, w2).

Therefore d(w1, w2) ≤ hd(w1, w2) gives w1 = w2. Hence

fu = gu = Su = Tu.

That is, u is a coincidence point of f, g, S,, and T. Now we shall show that u = gu.

Since, v ≤ fv = u,

d(u, gu) = d(fv, gu)

≤ hM(v, u)

where

M(v, u) = max
{
d(Sv,Tu), d(fv, Sv), d(gw,Tu),

d(fv,Tu) + d(gu, Sv)
2

}

= d(u, gu).

Thus, d(u, gu) ≤ hd(u, gu) implies that gu = u. In similar way, we obtain fu = u.

Hence, u is a common fixed point of f, g, S, and T.

In the following result, we establish existence of a common fixed point for a pair of

partially weakly increasing functions on an ordered metric space by using a control

function r : R+ ® R+.

Theorem 3.2. Let (X, ≤, d) be an ordered metric space. Let f and g be R-weakly

commuting selfmaps on X, (g, f) be partially weakly increasing with f(X) ⊆ g(X), dom-

inating map f is weak annihilator of g. Suppose that for every two comparable ele-

ments x, y Î X,

d(fx, fy) ≤ r(d(gx, gy)),

where r : R+ ® R+ is a continuous function such that r(t) <t for each t > 0. If either f

or g is continuous and one of f(X) or g(X) is complete subspace of X, then f and g have

a common fixed point provided that for a nondecreasing sequence {xn} with xn ≤ yn for

all n and yn ® u implies xn ≤ u.
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Proof. Let x0 be an arbitrary point in X. Choose a point x1 in X such that

f xn = gxn+1 ≤ fgxn+1.

Since dominating map f is weak annihilator of g, so that for all n ≥ 1,

xn ≤ f xn = gxn+1 ≤ fgxn+1 ≤ xn+1.

Thus, we have xn ≤ xn+1 for all n ≥ 1. Now

d(f xn, f xn+1) ≤ r(d(gxn, gxn+1))

= r(d(f xn−1, f xn))

< d(f xn−1, f xn).

Thus {d(fxn, fxn+1)} is a decreasing sequence of positive real numbers and, therefore,

tends to a limit L. We claim that L = 0. For if L > 0, the inequality

d(f xn, f xn+1) ≤ r(d(f xn−1, f xn))

on taking limit as n ® ∞ and in the view of continuity of r yields L ≤ r(L) <L, a con-

tradiction. Hence, L = 0.

For a given ε > 0, since r(ε) < ε, there is an integer k0 such that

d(f xn, f xn+1) < ε − r(ε) ∀n ≥ k0. (3:2)

For m, n Î N with m >n, we claim that

d(f xn, f xm) < ε ∀n ≥ k0. (3:3)

We prove inequality (3.3) by induction on m. Inequality (3.3) holds for m = n + 1,

using inequality (3.2) and the fact that ε - r (ε) <ε. Assume inequality (3.3) holds for

m = k. For m = k + 1, we have

d(f xn, f xm) ≤ d(f xn, f xn+1) + d(f xn+1, f xm)

< ε − r(ε) + r(d(gxn+1, gxm))

= ε − r(ε) + r(d(f xn, f xm−1))

= ε − r(ε) + r(d(f xn, f xk))

< ε − r(ε) + r(ε) = ε.

By induction on m, we conclude that inequality (3.3) holds for all m ≥ n ≥ k0.

So {fxn} is a Cauchy sequence. Suppose that g(X) is a complete metric space. Hence

{fxn} has a limit z in g(X). Also gxn ® z as n ® ∞.

Let us suppose that the mapping f is continuous. Then ffxn ® fz and fgxn ® fz.

Further, since f and g are R - weakly commuting, we have

d(fgxn, gf xn) ≤ Rd(f xn, gxn).

Taking limit as n ® ∞, the above inequality yields gffxn ® fz. We now assert that

z = fz. Otherwise, since xn ≤ fxn, so we have the inequality

d(f xn, ff xn) ≤ r(d(gxn, gf xn)).

Taking limit as n ® ∞ gives d(z, fz) ≤ r(d(z, fz)) < d(z, fz), a contradiction.

Hence, z = fz. As f(X) ⊆ g(X), there exists z1 in X such that z = fz = gz1.
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Now, since fxn ≤ ffxn and ffxn ® fz = gz1 and gz1 ≤ fgz1 ≤ z1 imply fxn ≤ z1. Consider,

d(ff xn, f z1) ≤ r(d(gf xn, gz1)) < d(gf xn, gz1).

Taking limit as n ® ∞ implies that fz = fz1. This in turn implies that

d(fz, gz) = d(fgz1, gf z1) ≤ Rd(f z1, gz1) = 0,

i.e., z = fz = gz. Thus z is a common fixed point of f and g. The same conclusion is

found when g is assumed to be continuous since continuity of g implies continuity of f.

4 Results in hyperbolic ordered metric spaces
In this section, existence of common fixed points of ordered Cq-commuting and

ordered uniformly Cq-commuting mappings is established in hyperbolic ordered metric

spaces by utilizing the notions of ordered S-contractions and ordered asymptotically S-

nonexpansive mappings.

Theorem 4.1. Let Y be a nonempty closed ordered subset of a hyperbolic ordered

metric space X. Let T and S be ordered R- subweakly commuting selfmaps on Y such

that T(Y ) ⊂ S(Y ), cl(T(Y )) is compact, q Î Fix(S) and S(Y ) is complete and q-star-

shaped where each x in X is comparable with q. Let (T, S) be partially weakly increas-

ing, order limit preserving and weakly compatible pair such that dominating map T is

weak annihilator of S. If T is continuous, S-ordered nonexpansive and S is affine, then

Fix(T) ∩ Fix(S) is nonempty provided that for a nondecreasing sequence {xn} with xn ®
u implies that xn ≤ u.

Proof. Define Tn : Y ® Y by

Tn(x) = (1 − λn)q ⊕ λnTx,

for each n ≥ 1, where ln Î (0, 1) with lim
n→∞ λn = 1. Then Tn is a selfmap on Y for

each n ≥ 1. Since S is ordered affine and T(Y ) ⊂ S(Y ), therefor we obtain Tn(Y ) ⊂ S

(Y ). Note that,

d(TnSx, STnx ) = d((1 − λn)q ⊕ λnTSx, (1 − λn)q ⊕ λnSTx)

≤ (1 − λn)d(q, q) + λnd(TSx, STx)

= λnd(TSx, STx)

≤ λnRd(Sx, (1 − λn)q ⊕ λnTx)

= λnRd(Sx, Tnx).

This implies that the pair {Tn, S} is ordered lnR-weakly commuting for each n. Also

for any two comparable elements x and y in X, we get

d(Tnx, Tny) = d((1 − λn)q ⊕ λnTx, (1 − λn)q ⊕ λnTy)

≤ λnd(Tx, Ty) ≤ λnd(Sx, Sy).

Now following lines of the proof of Theorem 3.2, there exists xn in Y such that xn is

a common fixed point of S and Tn for each n ≥ 1. Note that

d(xn, Txn) = d(Tnxn, Txn) = d((1 − λn)q ⊕ λnTxn, Txn)

= (1 − λn)d(q, Txn).

Since cl(T(Y )) is compact, there exists a positive integer M such that

d(xn, Txn) ≤ (1 − λn)M.
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The compactness of cl(Tn(Y )) implies that there exists a subsequence {xk} of {xn}

such that xk ® x0 Î Y as k ® ∞. Now,

d(x0, Tx0) ≤ d(Tx0, Txk) + d(Txk, xk) + d(xk, x0)

and continuity of T give that x0 Î Fix(T). Since, T is dominating map, therefore Sxk
≤ TSxk. As T is weak annihilator of S and T is dominating, so TSxk ≤ xk ≤ Txk. Thus

Sxk ≤ Txk and order limit preserving property of (T, S) implies that Sx0 ≤ Tx0 = x0.

Also x0 ≤ Sx0. Consequently, Sx0 = Tx0 = x0. Hence the result follows.

Theorem 4.2. Let Y be a nonempty closed subset of a complete hyperbolic ordered

metric space X and let T and S be mappings on Y such that T(Y - {u}) ⊂ S(Y - {u}),

where u Î Fix(S). Suppose that T is an S-contraction and continuous. Let (T, S) be par-

tially weakly increasing, dominating maps T is weak annihilator of S. If T is continuous,

and S and T are R-weakly commuting mappings on Y - {u}, then Fix(T)∩Fix(S) is none-
mpty provided that for a nondecreasing sequence {xn} with xn ≤ yn for all n and yn ® u

implies xn ≤ u.

Proof. Similar to the proof of Theorem 3.2.

Theorem 3.1 yields a common fixed point result for a pair of maps on an ordered

startshaped subset Y of a hyperbolic ordered metric space as follows.

Theorem 4.3. Let Y be a nonempty closed q- starshaped subset of a complete hyper-

bolic ordered metric space X and let T and S be uniformly Cq- commuting selfmapps

on Y - {q} such that S(Y ) = Y and T(Y - {q}) ⊂ S(Y - {q}), where q Î Fix(S). Let (T, S)

be partially weakly increasing, order limit preserving and weakly compatible pair, domi-

nating map T is weak annihilator of S, T is continuous and asymptotically S- nonex-

pansive with sequence {kn}, as in Definition 2.11 (2), and S is an affine mapping. For

each n ≥ 1, define a mapping Tn on Y by Tnx = (1 - an)q ⊕ anT
nx, where αn =

λn

kn
and

{ln} is a sequence in (0, 1) with lim
n→∞ λn = 1. Then for each n Î N, F (Tn) ∩ Fix(S) is

nonempty provided that for a nondecreasing sequence {xn} with xn ≤ yn for all n and yn
® u implies xn ≤ u.

Proof. For all x, y Î Y, we have

d(Tn(x), Tn(y))

= d((1 − αn)q ⊕ αnT
nx, (1 − αn)q ⊕ αnT

ny)

≤ αnd(Tn(x), Tn(y)) ≤ λnd(Sx, Sy).

Moreover, since T and S are uniformly Cq-commuting and S is affine on Y with Sq = q,

for each x Î Cn(S, T ) ⊆ Cq(S, T ), we have

STnx = S((1 − αn)q ⊕ αnTnx) = (1 − αn)q ⊕ αnSTnx

= (1 − αn)q ⊕ αnTnSx = TnSx.

Thus S and Tn are weakly compatible for all n. Now, the result follows from Theo-

rem 3.1.

The above theorem leads to the following result.

Theorem 4.4. Let Y be a nonempty closed q- starshaped subset of a hyperbolic

ordered metric space X and let T and S be selmaps on Y such that S(Y ) = Y and T(Y -

{q}) ⊂ S(Y - {q}), q Î Fix(S). Let (T, S) be partially weakly increasing, order limit preser-

ving, T is continuous, uniformly asymptotically regular, asymptotically S-nonexpansive
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and S is an affine mapping. If cl(Y - {q}) is compact and S and T are uniformly

Cq-commuting selfmaps on Y - {q}, then Fix(T) ∩ Fix(S) is nonempty provided that for

a nondecreasing sequence {xn} with xn ≤ yn for all n and yn ® u implies xn ≤ u.

Proof. By Theorem 4.3, for each n Î N, F(Tn) ∩ Fix(S) is singleton in Y. Thus,

Sxn = xn = (1 − αn)q ⊕ αnTnxn.

Also,

d(xn, Tnxn) = d((1 − αn)q ⊕ αnTnxn, Tnxn)

= (1 − αn)d(q, Tnxn).

Since T(Y - {q}) is bounded so d(xn, T
nxn) ® 0 as n ® ∞. Note that,

d(xn, Txn)

≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + d(Tn+1xn, Txn)

≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + kld(STnxn, Sxn)

≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + kld(STnxn, S((1 − αn)q ⊕ αnT
nxn))

≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + kld(STnxn, (1 − αn)q ⊕ αnSTnxn)

≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + k1(1 − αn)d(STnxn, Sq)

≤ d(xn, Tnxn) + d(Tnxn, Tn+1xn) + k1(1 − αn)d(STnxn, Sq).

Consequently, d(xn, Txn) ® 0, when n ® ∞. Since cl(Y - {q}) is compact and Y is closed,

therefore there exists a subsequence {xni} of {xn} such that xni → x0 ∈ Y as i ® ∞. By the

continuity of T , we have T(x0) = x0. Since, T is dominating map, therefore Sxk ≤ TSxk. As

T is weak annihilator of S and T is dominating, so TSxk ≤ xk ≤ Txk. Thus, Sxk ≤ Txk and

order limit preserving property of (T, S) implies that Sx0 ≤ Tx0 = x0. Also x0 ≤ Sx0. Conse-

quently, Sx0 = Tx0 = x0. Hence, the result follows.

As another application of Theorem 3.1, we obtain yet an other result for two maps

satisfying a very general contractive condition on the set Y.

Theorem 4.5. Let Y be a nonempty q-starshaped complete subset of a hyperbolic

ordered metric space and T, f, and g be selfmaps on Y . Suppose that T is continuous,

cl(T(Y )) is compact and f and g are affine and continuous and T(Y ) ⊂ f(Y ) ∩g(Y ).

Let (T, f) and (T, g) be partially weakly increasing, and dominating maps f and g be

weak annihilators of T. If the pairs {T, f} and {T, g} are Cq-commuting and satisfy for

all x, y Î Y,

d(Tx, Ty) ≤ max{d(fx, gy), d(fx, YT
q ), d(gy, Y

T
q ),

1
2
[d(fx, YT

q ) + d(gy, YT
q )]},

(4:1)

then T, f, and g have a common fixed point provided that for a nondecreasing

sequence {xn} with xn ≤ yn for all n and yn ® u implies xn ≤ u.

Proof. Define Tn : Y ® Y by

Tn(x) = (1 − λn)q ⊕ λnTx,

where ln Î (0, 1) with lim
n→∞ λn = 1. Then Tn is a selfmap on Y for each n ≥ 1. Since f

and g are affine and T(Y ) ⊂ f(Y ) ∩ g(Y ), therefore we obtain Tn(Y ) ⊂ f (Y ) ∩ g(Y ).
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Now f and T are Cq-commuting and f is affine on Y with fq = q, for each x Î Cn(f, T )

⊆ Cq(f, T ), so we have

f Tnx = f ((1 − λn)q ⊕ λnTx) = (1 − λn)q ⊕ λnfTx

= (1 − λn)q ⊕ λnTfx = Tnfx.

Thus, f and Tn are weakly compatible for all n. Also since g and T are Cq-commuting

and g is affine on Y with gq = q, therefore, g and Tn are weakly compatible for all n.

Moreover using (4.1) we have

d(Tnx, Tny) ≤ λnd(Tx, Ty)

≤ λn max{d(fx, gy), d(fx, YT(x)
q ),

d(gy, YT(y)
q ),

1
2
[d(fx, YT(y)

q ) + d(gy, YT(x)
q )]

}

≤ λn max{d(fx, gy), d(fx, Tnx),
d(gy, Tny),

1
2
[d(fx, Tny) + d(gy, Tnx)]}.

By Theorem 3.1, for each n ≥ 1, there exists xn in Y such that xn is a common fixed

point of f, g and Tn. The compactness of cl(T (Y )) implies that there exists a subse-

quence {Txk} of {Txn} such that Txk ® y as k ® ∞. Now, the definition of Tkxk gives

that xk ® y and the result follows using continuity of T, f, and g.

5 Invariant approximation
In this section, we obtain results on best approximation as a fixed point of R-sub-

weakly and uniformly R-subweakly commuting mappings in the setting of hyperbolic

ordered metric spaces. In particular, as an application of Theorem 4.4 (respectively

Theorem 4.5), we demonstrate the existence of common fixed point for one pair

(respectively two pairs) of maps from the set of best approximation.

Theorem 5.1. Let M be a nonempty subset of a hyperbolic ordered metric space

X, T, and S be continuous selfmaps on X such that T(∂M ∩ M) ⊂ M, ∂M stands for

boundary of M, and u Î Fix(S) ∩ Fix(T) for some u in X, where u is comparable

with all x Î X. Let (T, S) be partially weakly increasing, order limit preserving, T is

uniformly asymptotically regular, asymptotically S-nonexpansive and S is affine on

PM (u) with S(PM (u)) = PM (u), q Î Fix(S), and PM (u) is q-starshaped. If cl(PM (u))

is compact, PM (u) is complete and S and T are uniformly Cq-commuting mappings

on PM (u) ∪ {u} satisfying d(Tx, Tu) ≤ d(Sx, Su), then PM (u) ∩ Fix(T ) ∩ Fix(S) ≠ j
provided that for a nondecreasing sequence {xn} with xn ≤ yn for all n and yn ® u

implies xn ≤ u.

Proof. Let x Î PM (u). Then d(x, u) = d(u, M ). Note that for any l Î (0, 1),

d(yλ, u) = d((1 − λ)u ⊕ λx, u)

= λd(x, u) < d(x, u) = d(u, M).

This shows that YI
λ = {yλ : yλ = (1 − λ)u ⊕ λx} ∩ M = φ. So x Î ∂M ∩ M which

further implies that Tx Î M. Since Sx Î PM (u), u is a common fixed point of S and

T, therefore by the given contractive condition, we obtain

d(Tx, u) = d(Tx, Tu )

≤ d(Sx, Su) = d(Sx, u) = d(u, M).
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Thus, PM (u) is T -invariant. Hence,

T(PM(u)) ⊂ PM(u) = S(PM(u)).

Now the result follows from Theorem 4.4.

Theorem 5.2. Let M be a nonempty subset of a hyperbolic ordered metric space X,

T, f, and g be selfmaps on X such that u is common fixed point of f, g, and T and T

(∂M ∩ M) ⊂ M. Suppose that f and g are continuous and affine on PM (u), q Î Fix(f )

∩ Fix(g), and PM (u) is q-starshaped with f(PM (u)) = PM (u) = g(PM (u)). Let (T, f ) and

(T, g) be partially weakly increasing, and dominating maps f and g be weak annihilator

of T. Assume that the pairs {T, f} and {T, g} are Cq-commuting and satisfy for all x Î
PM (u) ∪ {u}

d(Tx, Ty) ≤
⎧⎨
⎩
d(fx, gu), if y = u
max{d(fx, gy), d(fx, YT

q ), d(gy, Y
T
q ),

1
2 [d(fx, Y

T
q ) + d(gy, YT

q )]}, if y ∈ PM(u).

If cl(PM (u)) is compact and PM (u) is complete, then PM (u)∩Fix(T )∩Fix(f )∩ Fix(g)

≠ j provided that for a nondecreasing sequence {xn} with xn ≤ yn for all n and yn ® u

implies xn ≤ u.

Proof. Let x Î PM (u). Then d(x, u) = d(u, M ). Note that for any l Î (0, 1)

d(yλ, u) = d((1 − λ)u ⊕ λx, u)

= λd(x, u) < d(x, u) = d(u, M),

which shows that M and Yx
λ = {yλ : yλ = (1 − λ)u ⊕ λx} are disjoint. So x Î ∂M ∩ M

which further implies that Tx Î M. Since fx Î PM (u), u is a common fixed point of f,

g, and T, therefore by the given contractive condition, we obtain

d(Tx, u) = d(Tx, Tu )

≤ d(fx, gu) = d(fx, u) = d(u, M).

Thus PM (u) is T -invariant. Hence,

T(PM(u)) ⊂ PM(u) = f (PM(u)) = g(PM(u)).

The result follows from Theorem 4.5.

Remark 5.3.

(a) Theorem 3.2 extends and improves Theorem 2.2 of Al-Thagafi [8] and Theorem

2.2(i) of Hussain and Jungck [25] in the setup of hyperbolic ordered metric spaces.

(b) Theorems 4.4 and 4.5 extend the results in [23] to more general classes of map-

pings defined on a hyperbolic ordered metric space.

(c) Theorems 5.1 and 5.2 set analogues of Theorems 2.11(i) and 2.12(i) in [25],

respectively.
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