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Abstract

In this study, we introduce the concept of externally complete ordered sets. We
discuss the properties of such sets and characterize them in ordered trees. We also
prove some common fixed point results for order preserving mappings. In particular,
we introduce for the first time the concept of Banach Operator pairs in partially
ordered sets and prove a common fixed point result which generalizes the classical
De Marr’s common fixed point theorem.
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1. Introduction
This article focuses on the externally complete structure, a new concept that was initi-

ally introduced in metric spaces as externally hyperconvex sets by Aron-szajn and

Panitchpakdi in their fundamental article [1] on hyperconvexity. This idea developed

from the original work of Quilliot [2] who introduced the concept of generalized

metric structures to show that metric hyperconvexity is in fact similar to the complete

lattice structure for ordered sets. In this fashion, Tarski’s fixed point theorem [3]

becomes Sine and Soardi’s fixed point theorems for hyperconvex metric spaces [4,5].

For more on this, the reader may consult the references [6-8].

We begin by describing the relevant notation and terminology. Let (X, ≺) be a par-

tially ordered set and M ⊂ X a non-empty subset. Recall that an upper (resp. lower)

bound for M is an element p Î X with m ≺ p (resp. p ≺ m) for each m Î M; the least-

upper (resp. greatest-lower) bound of M will be denoted sup M (resp. inf M). A none-

mpty subset M of a partially ordered set X will be called Dedekind complete if for any

nonempty subset A ⊂ M, sup A (resp inf A) exists in M provided A is bounded above

(resp. bounded below) in X. Recall that M ⊂ X is said to be linearly ordered if for

every m1, m2 Î M we have m1 ≺ m2 or m2 ≺ m1. A linearly ordered subset of X is

called a chain. For any m Î X define

(←,m] = {x ∈ X; x ≺ m} and [m,→) = {x ∈ X;m ≺ x}.

Recall that a connected partially ordered set X is called a tree if X has a lowest point

e, and for every m Î X, the subset [e, m] is well ordered.
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A subset Y of a partially ordered set X is called convex if the segment [x, y] = {z Î X;

x ≺ z ≺ y} ⊂ Y whenever x, y Î Y. A map T: X ® X is order preserving (also called

monotone, isotone, or increasing) if T(x) ≺ T(y) whenever x ≺ y.

2. Externally complete sets
Inspired by the success of the concept of the externally hyperconvex subsets intro-

duced by Aronszajn and Panitchpakdi [1], we propose a similar concept in partially

ordered sets.

Definition 2.1. Let (X, ≺) be a partially ordered set. A subset M of X is called exter-

nally complete if and only if for any family of points (xa)aÎГ in X such that

I(xα) ∩ I(xβ) �= ∅for any a, b Î Γ, and I(xα) ∩ M �= ∅, we have
(

∩
α∈�

I(xα)
)

∩ M �= ∅,

Where I(x) = (¬, x] or I(x) = [x, ®).

The family of all nonempty externally complete subsets of X will be denoted by

EC(X).
Proposition 2.1. Let X be a partially ordered set. Then, any M ∈ EC(X)is Dedekind

complete and convex.

Proof. Let A ⊂ M ∈ EC(X) be nonempty and bounded above in X. The set U(A) = {b

Î X; A ⊂ (¬, b]} is not empty since A is bounded above. It is clear that the families (I

(a))aÎA, where I(a) = [a, ®) and (I(b))bÎU(A), where I (b) = (¬, b], intersect 2-by-2.

Moreover, we have I(a) ∩ M �= ∅ and I(b) ∩ M �= ∅, for any (a, b) Î A × U(A). Since M

is in EC(X), we conclude that

J =
(

∩
a∈A

I(a)
)

∩
(

∩
b∈U(A)

I(b)
)

∩ M �= ∅.

Let m Î J. Then, for any a Î A, we have a ≺ m. So, m is an upper bound of A. Let b

be any upper bound of A, then b Î U(A). Hence, m ≺ b which forces m to be the least

upper bound of A, i.e. m = sup A. Similarly, one can prove that inf A also exists and

belongs to M provided A is bounded below in X. Next, we prove that M is convex. Let

x, y Î M. Obviously, if x and y are not comparable, then [x, y] = ∅ and we have nothing

to prove. So, assume x ≺ y. Let a Î [x, y]. Obviously, we have (¬, a] ⋂ [a, ®) = {a}.

And, since (←, a] ∩ M �= ∅ and [a,→) ∩ M �= ∅, then
(←, a] ∩ [a,→) ∩ M = {a} ∩ M �= ∅.

This obviously implies that a Î M, i.e. [x, y] ⊂ M, which completes the proof of our

proposition.

Example 2.1. Let N = {0, 1,...}. we consider the order 0 ≺ 2 ≺ 4 ≺ ··· and 0 ≺ 1 ≺ 3 ≺
···, and no even number (different from 0) is comparable to any odd number. Then, (N,

≺) is a tree. The set M = {0, 1, 2} is in EC(N). Note that M is convex and is not linearly

ordered.

In the next result, we characterize the externally complete subsets of trees.

Theorem 2.1. Let X be a tree. A subset M of X is externally complete if and only if M

is convex, Dedekind complete, and any chain C ⊂ M has a least upper bound in M.
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Proof. Let M ∈ EC(X). Then, M is convex and Dedekind complete. Let C be a none-

mpty chain of M. Let c1, c2 Î C, then we have c1 ≺ c2 or c2 ≺ c1. Hence,

[c1,→) ∩ [c2,→) ∩ M �= ∅.

Since M ∈ EC(X)

J =
(

∩
c∈C

[c,→)
)

∩ M �= ∅.

Obviously, any c Î J is an upper bound of C. Since M is Dedekind complete, sup C

exists in M. Assume conversely that M is a convex, and Dedekind complete subset of

X such that any chain in M has an upper bound in M. Let x, y Î X such that there

exist m1, m2 Î M with x ≺ m1 and m2 ≺ y. Define P(x) = inf{m Î M;x ≺ m}, and P(y)

= sup{m Î M; m ≺ y}. Both P(x) and P(y) exist and belong to M since M is Dedekind

complete. Let (xi)iÎI in X be such that for any i Î I there exists mi Î M such that xi ≺
mi. Also, we have [xi,→) ∩ [xj,→) �= ∅, for any i, j Î I. This condition forces the set

{xi; i Î I} to be linearly ordered since X is a tree. Consider the subset MI = {P(xi); i Î
I} of M. It is easy to check that MI is linearly ordered. Since any linearly ordered subset

of M is bounded above, there exists m Î M such that P(xi) ≺ m for any i Î I. Since xi
≺ P(xi) then

m ∈
(

∩
i∈I
[xi,→)

)
∩ M �= ∅.

Next, let (yj)jÎJ in X such that for any j Î J there exists mj Î M such that mj ≺ yj.

Consider the subset MJ = {P(yj); j Î J} of M. Since X is a tree, the set MJ is bounded

below, so m0 = inf MJ exists in M. It is obvious that m0 ≺ P(yj) ≺ yj for any j Î J. This

implies

m0 ∈
(

∩
j∈J
(←, yj]

)
∩ M = ∅.

Finally, assume that we have (xi)iÎI and (yj)jÎJ in X such that the subsets ([xi, ®))iÎI,

and ((¬, yj])jÎJ intersect 2-by-2 and [xi,→) ∩ M �= ∅ and (←, yj] ∩ M �= ∅ for any (i, j)

Î I × J. As before, set

mI = sup{P(xi); i ∈ I} and mJ = inf{P(yj); j ∈ J}.

For any (i, j) Î I × J,we have P(xi) ≺ P(yj), which implies mI ≺ mJ. Obviously we have

[mI,mJ] ⊂
(

∩
i∈I
[xi,→)

)
∩

(
∩
i∈I
(←, yj]

)
∩ M �= ∅.

Hence, M is in EC(X).
The above proof suggests that externally complete subsets are proximinal. In fact in

[1], the authors introduced externally hyperconvex subsets as an example of proximinal

sets other than the admissible subsets, i.e. intersection of balls. Before we state a simi-

lar result, we need the following definitions.

Definition 2.2. Let X be a partially ordered set. Let M be a nonempty subset of X.

Define the lower and upper cones by

Cl(M) = {x ∈ X; there exists m ∈ M such that x ≺ m}
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and

Cu(M) = {x ∈ X; there exists m ∈ M such that m ≺ x}.

The cone generated by M will be defined by C(M) = Cl(M) ∪ Cu(M).

Theorem 2.2. Let X be a partially ordered set and M a nonempty externally com-

plete subset of X. Then, there exists an order preserving retract P : C(M) → Msuch that

(1) for any x ∈ Cl(M)we have x ≺ P(x), and

(2) for any x ∈ Cu(M)we have P(x) ≺ x.

Proof. First set P(m) = m for any m Î M. Next, let x ∈ Cl(M). We have

x ∈ [x,→) ∩
(

∩
x≺m

(←,m]
)
,

where m Î M. Using the external completeness of M, we get

M ∩ [x,→) ∩
(

∩
x≺m

(←,m]
)

�= ∅.

It is easy to check that this intersection is reduced to one point. Set

M ∩ [x,→)
(

∩
x≺m

(←,m]
)
= {P(x)}.

Similarly, let x ∈ Cu(M). We have

x ∈ (←, x] ∩
(

∩
m≺x

[m,→)
)
,

where m Î M. Using the external completeness of M, we get

M ∩ (←, x] ∩
(

∩
m≺x

[m,→)
)

�= ∅.

It is easy to check that this intersection is reduced to one point. Set

M ∩ (←, x] ∩
(

∩
m≺x

[m,→)
)
= {P(x)}.

In particular, this prove (1) and (2). In order to finish the proof of the theorem, let

us show that P is order preserving. Indeed, let x, y ∈ C(M) with x ≺ y. If y ∈ Cl(M),

then x ∈ Cl(M). Since y ≺ P(y) then x ≺ P(y) which implies P(x) ≺ P(y). Similarly, if

x ∈ Cu(M), then y ∈ Cu(M) and again it is easy to show P(x) ≺ P(y). Assume x ∈ Cl(M)

and y ∈ Cu(M). Since

x ∈ [x,→) ∩
(

∩
x≺m

(←,m]
)

∩ (←, y]

and M is externally complete, we have

M ∩ [x,→) ∩
(

∩
x≺m

(←,m]
)

∩ (←, y] �= ∅,
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where m Î M. But [x,→) ∩
(

∩
x≺m

(←,m]
)
= {P(x)}, this forces P(x) Î (¬, y]. By defi-

nition of P(y), we get P(x) ≺ P(y). In fact, we proved that x ≺ P(x) ≺ P(y) ≺ y. This

completes the proof of the theorem.

We have the following result.

Theorem 2.3. Let X be a partially ordered set and M a nonempty externally com-

plete subset of X. Assume that X has a supremum or an infimum, then there exists an

order preserving retract P: X ® M which extends the retract of C(M)into M.

Proof. Let P : C(M) → M be the retract defined in Theorem 2.2. Assume first that X

has a supremum e. Then, X = Cl(C(M)). Indeed, for any x Î X, we have x ≺ e and

e ∈ Cu(M). Because x ∈ ∩
x≺z

(←, z], where z ∈ Cu(M), and M is externally complete, we

get M ∩
(

∩
x≺z

(←, z]
)

�= ∅, where z ∈ Cu(M). Hence, there exists m Î M such that m ≺

z, for any z ∈ Cu(M) such that x ≺ z. Using the properties of P, we get m ≺ P(z), for

any z ∈ Cu(M) such that x ≺ z. Since M is Dedekind complete, inf{P(z); z ∈ Cu(M) such

that x ≺ z} exists. Set

P̃(x) = inf{P(z); z ∈ Cu(M) such that x ≺ z}.

First note that if x ∈ C(M), then for any z ∈ Cu(M) such that x ≺ z we have P(x) ≺ P

(z). This will imply P(x) ≺ P̃(x). If x ∈ Cu(M), then by definition of P̃, we have

P̃(x) ≺ P(x). Hence, P(x) ≺ P̃(x). If x ∈ Cl(M), then by definition of P̃, we have

P̃(x) ≺ P(P(x)) since x ≺ P(x). Hence, P̃(x) ≺ P(x) which implies again P(x) ≺ P̃(x). So,

P̃ extends P. Let us show that P̃ is order preserving. Indeed, let x, y Î X such that x ≺
y. Since

{P(z); z ∈ Cu(M) such that y ≺ z} ⊂ {P(z); z ∈ Cu(M) such that x ≺ z}

we have

inf{P(z); z ∈ Cu(M) such that x ≺ z} ≺ inf{P(z); z ∈ Cu(M) such that y ≺ z},

or P̃(x) ≺ P̃(y). In order to finish the proof of Theorem 2.3, consider the case when

X has an infimum, say e. Then, X = Cl(C(M)). As for the previous case, define

P̃(x) = sup{P(z); z ∈ Cl(M) such that z ≺ x}.

It is easy to show that P̃(x) exists. In a similar proof, one can show that P̃ extends P

and is order preserving.

Since a tree has an infimum, we get the following result.

Corollary 2.1. Let X be a tree and M a nonempty externally complete subset of X.

Then, there exists an order preserving retract P: X ® M.

A similar result for externally hyperconvex subsets of metric trees maybe found in

[9].

3. Common fixed point
In this section, we investigate the existence of a common fixed point of a commuting

family of order preserving mappings defined on a complete lattice. Here the proof fol-

lows the ideas of Baillon [10] developed in hyperconvex metric spaces. It is amazing

that these ideas extend nicely to the case of partially ordered sets. The ideas in
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question are not the conclusions which maybe known but the proofs as developed in

the metric setting. Maybe one of the most beautiful results known in the hyperconvex

metric spaces is the intersection property discovered by Baillon [10]. The boundedness

assumption in Baillon’s result is equivalent to the complete lattice structure in our set-

ting. Indeed, any nonempty subset of a complete lattice has an infimum and a supre-

mum. We have the following result in partially ordered sets.

Theorem 3.1. Let X be a partially ordered set. Let (Xb)bÎΓ be a decreasing family of

nonempty complete lattice subsets of X, where Γ is a directed index set. Then, ⋂bÎΓ Xb

is not empty and is a complete lattice.

Proof. Consider the family

F =

⎧⎨
⎩

∏
β∈�

Aβ ;Aβ is a nonempty interval in Xβ and (Aβ) is decreasing

⎫⎬
⎭ .

F is not empty since
∏

β∈� Xβ ∈ F . In a complete lattice, any decreasing family of

nonempty intervals has a nonempty intersection and it is an interval. Therefore, F
satisfies the assumptions of Zorn’s lemma. Hence, for every D ∈ F , there exists a mini-

mal element A ∈ F such that A ⊂ D. We claim that if ∏bÎΓ Ab is minimal, then each

Ab is a singleton. Indeed, let us fix b0 Î Γ. We know that Ab0 = [mb0, Mb0]. Consider

the new family

Bβ

{
Aβ

{x ∈ Xβ ;mβ0 ≺ x ≺ Mβ0}
if β0 ≺ β or β not comparable to β0,
if β ≺ β0

Our assumptions on (Xb) and (Ab) imply that (Bβ) ∈ F . Moreover, we have Bb ⊂ Ab

for any b Î Γ. Since ∏bÎΓ Ab is minimal, we get Bb = Ab for any b Î Γ. In particular,

we have

Aβ = {x ∈ Xβ ;mβ0 ≺ x ≺ Mβ0}

for b ≺ b0. If Ab = [mb, Mb], then we must have mb = mb0 and Mb = Mb0. Therefore,

we proved the existence of m, M Î X such that Ab = {x Î Xb; m ≺ x ≺ M}, for any b Î
Γ. It is easy from here to show that in fact we have m = M by the minimality of ∏bÎΓ

Ab, which proves our claim. Clearly, we have m Î Ab for any b Î Γ which implies K =

⋂bÎΓ Xb is not empty. Next, we will prove that K is a complete lattice. Let A ⊂ K be

nonempty. We will only prove that sup A exists in K. The proof for the existence of

the infimum follows identically. For any b Î Γ, we have A ⊂ Xb. Since Xb is a complete

lattice, then mb = sup A exists in Xb. The interval [mb, ®) is a complete lattice.

Clearly, the family ([mb, ®))bÎΓ is decreasing. From the above result, we know that

⋂bÎΓ[mb, ®) is not empty. Therefore, there exists m Î K such that a ≺ m for any a Î
A. Set B = {m Î K; a ≺ m for any a Î A}. For any b Î Γ, define Mb = inf B in Xb. Set

X∗
β =

⋂
a∈A,b∈B

[a, b]
⋂

Xβ = [mβ ,Mβ] ∩ Xβ .

Then, X∗
β is a nonempty complete sublattice of Xb. It is easy to see that the family

(X∗
β) is decreasing. Hence, ∩β∈�X∗

β is not empty Obviously, we have

Abu-Sbeih and Khamsi Fixed Point Theory and Applications 2011, 2011:97
http://www.fixedpointtheoryandapplications.com/content/2011/1/97

Page 6 of 8



⋂
β∈�

X∗
β = {supA}

in ⋂bÎΓ Xb. The proof of Theorem 3.1 is therefore complete.

As a consequence of this theorem, we obtain the following common fixed point

result.

Theorem 3.2. Let X be a complete lattice. Then, any commuting family of order pre-

serving mappings (Ti)iÎI, Ti: X ® X, has a common fixed point. Moreover, if we denote

by Fix((Ti)) the set of the common fixed points, then Fix((Ti)) is a complete sublattice of

X.

Proof. First note that Tarski fixed point theorem [3] implies that any finite commut-

ing family of order preserving mappings T1, T2, .., Tn, Ti : X ® X, has a common fixed

point. Moreover, if we denote by Fix((Ti)) the set of the common fixed points, i.e. Fix

((Ti)) = {x Î M; Ti(x) = x i = 1,..,n}, is a complete sublattice of X. Let Γ = {b; b is a

finite nonempty subset of I}. Clearly, Γ is downward directed (where the order on Γ is

the set inclusion). For any b Î Γ, the set Fb of common fixed point set of the map-

pings Ti, i Î b, is a nonempty complete sublattice of X. Clearly, the family (Fb)bÎΓ is

decreasing. Theorem 3.1 implies that ⋂bÎΓFb is nonempty and is a complete sublattice

of X. The proof of Theorem 3.2 is therefore complete.

The commutativity assumption maybe relaxed using a new concept discovered in

[11] (see also [12-15]. Of course, this new concept was initially defined in the metric

setting, therefore we need first to extend it to the case of partially ordered sets.

Definition 3.1. Let X be a partially ordered set. The ordered pair (S, T) of two self-

maps of the set X is called a Banach operator pair, if the set Fix(T) is S-invariant,

namely S(Fix(T)) ⊆ Fix(T).

We have the following result whose proof is easy.

Theorem 3.3. Let X be a complete lattice. Let T: X ® X be an order preserving map-

ping. Let S: X ® X be an order preserving mapping such that (S, T) is a Banach opera-

tor pair. Then, Fix(S, T) = Fix(T) ⋂ Fix(S) is a nonempty complete lattice.

In order to extend this conclusion to a family of mappings, we will need the follow-

ing definition.

Definition 3.2. Let T and S be two self-maps of a partially ordered set X. The pair

(S, T) is called symmetric Banach operator pair if both (S, T) and (T, S) are Banach

operator pairs, i.e., T(Fix(S)) ⊆ Fix(S) and S(Fix(T)) ⊆ Fix(T).

We have the following result which can be seen as an analogue to De Marr’s result

[16] without compactness assumption of the domain.

Theorem 3.4. Let X be a partially ordered set. Let T be a family of order preserving

mappings defined on X. Assume any two mappings from T form a symmetric Banach

operator pair. Then, the family T has a common fixed point provided one map from

T has a fixed point set which is a complete lattice. Moreover, the common fixed point

set Fix(T )is a complete lattice.

Proof. Let T0 ∈ T be the map for which Fix(T0) = X0 is a nonempty complete lattice.

Since any two mappings from T form a symmetric Banach operator pair, then for any

T ∈ T , we have T(X0) ⊂ X0. Since X0 is a complete lattice, T has a fixed point in X0.

The fixed point set of T in X0 is Fix(T) ⋂ Fix(T0) and is a complete sublattice of X0.

Let S ∈ T . Then, S (Fix(T) ⋂ Fix(T0)) ⊂ Fix(T) ⋂ Fix(T0). Since Fix(T) ⋂ Fix(T0) is a
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complete lattice, then S has a fixed point in Fix(T) ⋂ Fix(T0). The fixed point set of S

in Fix(T) ⋂ Fix(T0) is Fix(S) ⋂ Fix(T) ⋂ Fix(T0) which is a complete sublattice of X0. By

induction, one will prove that any finite subfamily T1, ..., Tn of T has a nonempty

common fixed point set Fix(T1) ⋂ ··· ⋂ Fix(Tn) ⋂ X0 which is a complete sublattice of

X0. Theorem 3.1 will then imply that
⋂

T∈T Fix(T) ∩ X0 is not empty and is a complete

lattice. Since

Fix(T ) ∩ X0 = Fix(T ),

we conclude that Fix(T ) is a nonempty complete lattice.
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