
Abdou and Khamsi Fixed Point Theory and Applications 2014, 2014:249
http://www.fixedpointtheoryandapplications.com/content/2014/1/249

RESEARCH Open Access

Fixed points of multivalued contraction
mappings in modular metric spaces
Afrah AN Abdou1* and Mohamed A Khamsi2,3

*Correspondence:
aabdou@kau.edu.sa
1Department of Mathematics, King
Abdulaziz University, P.O. Box 80203,
Jeddah, 21589, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
The purpose of this paper is to study the existence of fixed points for contractive-type
multivalued maps in the setting of modular metric spaces. The notion of a modular
metric on an arbitrary set and the corresponding modular spaces, generalizing
classical modulars over linear spaces like Orlicz spaces, were recently introduced. In
this paper we investigate the existence of fixed points of multivalued modular
contractive mappings in modular metric spaces. Consequently, our results either
generalize or improve fixed point results of Nadler (Pac. J. Math. 30:475-488, 1969) and
Edelstein (Proc. Am. Math. Soc. 12:7-10, 1961).
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1 Introduction
The aim of this paper is to give an outline of a fixed point theory for multivalued Lips-
chitzian mappings defined on some subsets of modular metric spaces. Modular metric
spaces were introduced in [, ]. The way we approached the concept of modular metric
spaces is different. Indeed we look at these spaces as the nonlinear version of the classi-
cal modular spaces as introduced by Nakano [] on vector spaces and modular function
spaces introduced byMusielak [] andOrlicz []. In [] the authors have defined and inves-
tigated the fixed point property in the framework of modularmetric space and introduced
the analog of the Banach contraction principle theorem in modular metric space.
As iswell known, a fixedpoint theorem formultivalued contractionmappingswas estab-

lished byNadler []. In  Edelstein [] has generalized the Banach contraction principle
tomappings satisfying a less restrictive Lipschitz inequality such as local contraction. This
result has been generalized to a multivalued version by Nadler []. On the other handMi-
zoguchi and Takahashi [] have improved Reich’s result [] and proved the existence of
fixed points formultivaluedmaps in the case when values ofmappings are closed bounded
instead of compact.
In this paper we define the Hausdorff modular metric and obtain a multivalued version

of the result [, Theorem .] in modular metric spaces. We also extend the results of
Nadler [], Mizoguchi and Takahashi [] to modular metric spaces. The linear version of
some of our results may be found in the work of Kutbi and Latif [].
For more on metric fixed point theory, the reader may consult the book [].
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2 Basic definitions and properties
Let X be a nonempty set. Throughout this paper for a function ω : (,∞) × X × X →
(,∞), we will write

ωλ(x, y) = ω(λ,x, y),

for all λ >  and x, y ∈ X.

Definition . [, ] A functionω : (,∞)×X×X → [,∞] is said to be amodularmetric
on X if it satisfies the following axioms:

(i) x = y if and only if ωλ(x, y) = , for all λ > ;
(ii) ωλ(x, y) = ωλ(y,x), for all λ > , and x, y ∈ X ;
(iii) ωλ+μ(x, y) ≤ ωλ(x, z) +ωμ(z, y), for all λ,μ >  and x, y, z ∈ X .

If instead of (i), we have only the condition

(i′) ωλ(x,x) = , for all λ > ,x ∈ X,

then ω is said to be a pseudomodular (metric) on X. A modular metric ω on X is said to
be regular if the following weaker version of (i) is satisfied:

x = y if and only if ωλ(x, y) = , for some λ > .

Finally, ω is said to be convex if for λ,μ >  and x, y, z ∈ X, it satisfies the inequality

ωλ+μ(x, y) ≤ λ

λ +μ
ωλ(x, z) +

μ

λ +μ
ωμ(z, y).

Note that for a metric pseudomodular ω on a set X, and any x, y ∈ X, the function λ →
ωλ(x, y) is nonincreasing on (,∞). Indeed, if  < μ < λ, then

ωλ(x, y)≤ ωλ–μ(x,x) +ωμ(x, y) = ωμ(x, y).

Definition . [, ] Let ω be a pseudomodular on X. Fix x ∈ X. The two sets

Xω = Xω(x) =
{
x ∈ X : ωλ(x,x) →  as λ → ∞}

and

X∗
ω = X∗

ω(x) =
{
x ∈ X : ∃λ = λ(x) >  such that ωλ(x,x) < ∞}

are said to be modular spaces (around x).

We obviously have Xω ⊂ X∗
ω . In general this inclusion may be proper. It follows from

[, ] that if ω is a modular on X, then the modular space Xω can be equipped with a
(nontrivial) metric, generated by ω and given by

dω(x, y) = inf
{
λ >  : ωλ(x, y) ≤ λ

}
,
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for any x, y ∈ Xω . If ω is a convexmodular on X, according to [, ] the twomodular spaces
coincide, i.e. X∗

ω = Xω , and this common set can be endowed with the metric d∗
ω given by

d∗
ω(x, y) = inf

{
λ >  : ωλ(x, y) ≤ 

}
,

for any x, y ∈ Xω . These distances will be called Luxemburg distances.
First attempts to generalize the classical function spaces of the Lebesgue type Lp were

made in the early s by Orlicz and Birnbaum in connection with orthogonal expan-
sions. Their approach consisted in considering spaces of functions with some growth
properties different from the power type growth control provided by the Lp-norms.
Namely, they considered the function spaces defined as follows:

Lϕ =
{
f :R →R;∃λ >  : ρ(λf ) =

∫
R

ϕ
(
λ
∣∣f (x)∣∣)dx < ∞

}
,

where ϕ : [,∞] → [,∞] was assumed to be a convex function increasing to infinity, i.e.
the function which to some extent behaves similarly to power functions ϕ(t) = tp. Modu-
lar function spaces Lϕ furnishes a wonderful example of a modular metric space. Indeed
define the function ω by

ωλ(f , g) = ρ

(
f – g

λ

)
=

∫
R

ϕ

( |f (x) – g(x)|
λ

)
dx,

for all λ > , and f , g ∈ Lϕ . Then ω is a modular metric on Lϕ . Moreover, the distance d∗
ω is

exactly the distance generated by the Luxemburg norm on Lϕ .
For more examples on modular function spaces, the reader may consult the book of

Kozlowski [] and for modular metric spaces [, ].

Definition . Let Xω be a modular metric space.
() The sequence {xn}n∈N in Xω is said to be ω-convergent to x ∈ Xω if and only if

ω(xn,x) → , as n→ ∞. x will be called the ω-limit of {xn}.
() The sequence {xn}n∈N in Xω is said to be ω-Cauchy if ω(xm,xn) → , as m,n→ ∞.
() A subsetM of Xω is said to be ω-closed if the ω-limit of a ω-convergent sequence of

M always belongs toM.
() A subsetM of Xω is said to be ω-complete if any ω-Cauchy sequence in M is a

ω-convergent sequence and its ω-limit is inM.
() A subsetM of Xω is said to be ω-bounded if we have

δω(M) = sup
{
ω(x, y);x, y ∈M

}
<∞.

() A subsetM of Xω is said to be ω-compact if for any {xn} inM there exists a subset
sequence {xnk } and x ∈M such that ω(xnk ,x) → .

() ω is said to satisfy the Fatou property if and only if for any sequence {xn}n∈N in Xω

ω-convergent to x, we have

ω(x, y) ≤ lim inf
n→∞ ω(xn, y),

for any y ∈ Xω .
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In general if limn→∞ ωλ(xn,x) = , for some λ > , then we may not have limn→∞ ωλ(xn,
x) = , for all λ > . Therefore, as is done in modular function spaces, we will say that
ω satisfies the �-condition if this is the case, i.e. limn→∞ ωλ(xn,x) = , for some λ > 
implies limn→∞ ωλ(xn,x) = , for all λ > . In [] and [], one will find a discussion as re-
gards the connection between ω-convergence andmetric convergence with respect to the
Luxemburg distances. In particular, we have

lim
n→∞dω(xn,x) =  if and only if lim

n→∞ωλ(xn,x) = , for all λ > ,

for any {xn} ∈ Xω and x ∈ Xω . In particular we see thatω-convergence and dω-convergence
are equivalent if and only if the modular ω satisfies the �-condition. Moreover, if the
modular ω is convex, then we know that d∗

ω and dω are equivalent, which implies

lim
n→∞d∗

ω(xn,x) =  if and only if lim
n→∞ωλ(xn,x) = , for all λ > ,

for any {xn} ∈ Xω and x ∈ Xω [, ].

Definition . Let (X,ω) be a modular metric space. We will say that ω satisfies the �-
type condition if, for any α > , there exists C >  such that

ωλ/α(x, y) ≤ Cωλ(x, y),

for any λ > , x, y ∈ Xω , with x 
= y.

Note that if ω satisfies �-type condition, then ω satisfies the �-condition. The above
definition will allow us to introduce the growth function in the modular metric spaces as
was done in the linear case.

Definition . Let (X,ω) be a modular metric space. Define the growth function 	 by

	(α) = sup

{
ωλ/α(x, y)
ωλ(x, y)

;λ > ,x, y ∈ Xω,x 
= y
}
,

for any α > .

The following properties were proved in the linear case in [].

Lemma . Let (X,ω) be a modular metric space.Assume that ω is a convex regular mod-
ular which satisfies the �-type condition. Then
() 	(α) <∞, for any α > ,
() 	 is a strictly increasing function, and 	() = ,
() 	(αβ)≤ 	(α)	(β), for any α,β ∈ (,∞),
() 	–(α)	–(β)≤ 	–(αβ), where 	– is the function inverse of 	,
() for any x, y ∈ Xω , x 
= y, we have

d∗
ω(x, y)≤


	–(/ω(x, y))

.
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Proof It is clear that the �-type condition implies () and from the definition of 	 we
have 	() = . Next we prove that 	 is strictly increasing. Let α < β . Since ω is convex, we
get

ωα+β–α(x, y) ≤ β – α

α + β – α
ωβ–α(x,x) +

α

α + β – α
ωα(x, y),

which implies

ωβ (x, y)≤ α

β
ωα(x, y),

for any x, y ∈ Xω . From this inequality, we can easily deduce the following relation:

	(α)≤ α

β
	(β),

for any α < β . The properties () and () follow the same line as the proofs developed
in []. As for the property (), note that

ω 
	–(/ω(x,y))

(x, y) ≤ 	
(
	–(/ω(x, y)

))
ω(x, y) =


ω(x, y)

ω(x, y) = .

The inequality in () follows from the definition of the distance d∗
ω . �

The following technical lemma will be useful later on in this work.

Lemma . Let (X,ω) be amodular metric space.Assume that ω is a convex regular mod-
ular which satisfies the �-type condition. Let {xn} be a sequence in Xω such that

ω(xn+,xn) ≤ Kαn, n = , . . . ,

where K is an arbitrary nonzero constant and α ∈ (, ). Then {xn} is Cauchy for both ω

and d∗
ω .

Proof Under the above assumptions, we have


Kαn ≤ 

ω(xn+,xn)
,

where we assumed that xn 
= xn+. Hence

	–
(


ω(xn+,xn)

)
≥ 	–

(


Kαn

)
≥ 	–

(

K

)(
	–

(

α

))n

,

for n≥ , which implies

d∗
ω(xn+,xn) ≤


	–(/ω(xn+,xn))

≤ 
	–( 

K )


(	–( 
α
))n

,
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for any n ≥ . Note that this inequality is still valid when xn+ = xn. Since α < , and 	– is
strictly increasing, we get

 = 	–() < 	–
(

α

)
,

which implies 
	–( α )

< . Classical analysis onmetric spaces implies that
∑

n≥ d∗
ω(xn+,xn)

is convergent which implies that {xn} is Cauchy for d∗
ω . Since ω satisfies the �-type con-

dition, {xn} is Cauchy for ω. �

Note that this lemma is crucial since the main assumption on {xn} will not be enough to
imply that {xn} is ω-Cauchy since ω fails the triangle inequality.

3 Multivaluedmappings in modular metric spaces
At this point we introduce some notation which will be used throughout the remainder of
this work. For a subsetM of modular metric space Xω . Set

(i) CB(M) = {C : C is nonempty ω-closed and ω-bounded subset ofM};
(ii) K (M) = {C : C is nonempty ω-compact subset ofM};
(iii) the Hausdorff modular metric is defined on CB(M) by

Hω(A,B) =max
{
sup
x∈A

ω(x,B), sup
y∈B

ω(y,A)
}
,

where ω(x,B) = infy∈A ω(x, y).

Definition . Let (X,ω) be a modular metric space andM be a nonempty subset of Xω .
A mapping T :M → CB(M) is called a multivalued Lipschitzian mapping if there exists a
constant k ≥  such that

Hω

(
T(x),T(y)

) ≤ kω(x, y), for any x, y ∈M.

A point x ∈ M is called a fixed point of T whenever x ∈ T(x). The set of fixed points of T
will be denoted by Fix(T).

In [], we defined Lipschitzian single valued maps. Our definition is more general than
the one used by Chistyakov [, ]. Indeed, in the case of modular function spaces, it is
proved in [] that

ωλ

(
T(x),T(y)

) ≤ ωλ(x, y),

for any λ >  if and only if

dω

(
T(x),T(y)

) ≤ dω(x, y).

Moreover, an example is given to show that

ω
(
T(x),T(y)

) ≤ ω(x, y),

but T is not Lipschitzian with respect to dω with constant .

http://www.fixedpointtheoryandapplications.com/content/2014/1/249
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Definition . Let (X,ω) be a modular metric space andM be a nonempty subset of Xω .
A multivalued mapping T :M → CB(M) is called

(i) an ω-contraction if there exists a constant k ∈ [, ) such that for any x, y ∈M,

Hω

(
T(x),T(y)

) ≤ kω(x, y);

(ii) a (ε,k)-ω-uniformly locally contraction if there exists a constant k ∈ [, ) such that
for any x, y ∈M,

Hω

(
T(x),T(y)

) ≤ kω(x, y), whenever ω(x, y) < ε.

Before we state our results, wewill need the following technical lemmas [] in the setting
of modular metric spaces.

Lemma . Let (X,ω) be a modular metric space and M be a nonempty subset of Xω . Let
A,B ∈ CB(M), then for each ε >  and x ∈ A, there exists y ∈ B such that

ω(x, y) ≤Hω(A,B) + ε.

Moreover, if B is ω-compact and ω satisfies the Fatou property, then for any x ∈ A, there
exists y ∈ B such that

ω(x, y) ≤Hω(A,B).

Proof The proof of the first part is easy. As for the second part, assume B is ω-compact
and ω satisfies the Fatou property. Let x ∈ A. Then for any n ≥ , there exists yn ∈ B such
that

ω(x, yn)≤Hω(A,B) +

n
.

Since B is ω-compact, we may assume that {yn} ω-converges to y ∈ B. Since ω satisfies the
Fatou property, we get

ω(x, y) ≤ lim inf
n→∞ ω(x, yn) ≤Hω(A,B). �

Lemma . Let (X,ω) be a modular metric space. Assume that ω satisfies �-condition.
Let M be a nonempty subset of Xω . Let An be a sequence of sets in CB(M), and suppose
limn→∞ Hω(An,A) =  where A ∈ CB(M). Then if xn ∈ An and limn→∞ xn = x, it follows
that x ∈ A.

Proof Using Lemma ., for every n≥ , there exists yn ∈ A such that

ω(xn, yn)≤Hω(An,A) +

n
.

Hence

ω(yn,x) ≤ ω(xn, yn) +ω(xn,x) ≤ ω(xn,x) +Hω(An,A) +

n
,

http://www.fixedpointtheoryandapplications.com/content/2014/1/249
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which implies limn→∞ ω(yn,x) = . Since ω satisfies the �-condition, we have
limn→∞ ω(yn,x) = . Since A is ω-closed, we have x ∈ A. �

4 Themain results
The statement of Nadler’s fixed point result [] in modular metric spaces is as follows.

Theorem . Let (X,ω) be a modular metric space. Assume that ω is a convex regular
modular which satisfies the �-condition. Let M be a nonempty ω-complete subset of Xω .
Let T :M → CB(M) be an ω-contraction map. Then T has a fixed point.

Proof Since T is an ω-contraction, there exists a constant k ∈ [, ) such that for any x, y ∈
M, we have

Hω

(
T(x),T(y)

) ≤ kω(x, y).

Let x be an arbitrary but fixed element ofM and x ∈ T(x), then from Lemma ., there
exists x ∈ T(x) such that

ω(x,x)≤Hω

(
T(x),T(x)

)
+ k.

Similarly, there exists x ∈ T(x) such that

ω(x,x)≤Hω

(
T(x),T(x)

)
+ k.

By induction we build {xn} such that

ω(xn+,xn) ≤Hω

(
T(xn),T(xn–)

)
+ kn,

and xn+ ∈ T(xn), for every n ≥ . Since T is a contraction, we get

ω(xn+,xn) ≤ kω(xn,xn–) + kn,

for every n≥ . Hence

ω(xn+,xn) ≤ kn
(

ω(x,x) +


 – k

)
,

for every n ≥ . The technical Lemma . implies that {xn} is ω-Cauchy. Since M is
ω-complete, {xn} ω-converges to some point x ∈ M. Since

Hω

(
T(xn),T(x)

) ≤ kω(xn,x),

we conclude that limn→∞ Hω(T(xn),T(x)) = . Since xn+ ∈ T(xn), Lemma . implies x ∈
T(x), i.e. x is fixed point of T . This completes the proof of Theorem .. �

Edelstein [] has extended the classical fixed point theorem for a contraction to the case
when X is a complete ε-chainable metric space and the mapping T : X → X is an (ε,k)-
uniformly locally contraction. This result was extended by Nadler [] tomultivaluedmap-
pings. Here we investigate Nadler’s result in modular metric spaces. First let us introduce

http://www.fixedpointtheoryandapplications.com/content/2014/1/249
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the ε-chainable concept inmodularmetric spaces. Our definition is slightly different from
the one used in the classical metric spaces since the modular functions fail in general the
triangle inequality.

Definition . Let (X,ω) be a modular metric space. A nonempty subset M ⊂ Xω is said
to be finitely ε-chainable (where ε >  is fixed) if and only if there existsN ≥  such that for
any a,b ∈M there is an N , ε-chain from a to b (that is, a finite set of points x,x, . . . ,xN ∈
M such that x = a, xN = b, and ω(xi,xi+) < ε, for all i = , , , . . . ,N – ).

We have the following result.

Theorem . Let (X,ω) be a modular metric space. Assume that ω is a convex regular
modularwhich satisfies the�-type condition and the Fatou property.LetM be a nonempty
ω-complete and ω-bounded subset of Xω ,which is finitely ε-chainable, for some fixed ε > .
Let T :M → K (M) be an (ε,k)-ω-uniformly locally contraction map. Then T has a fixed
point in M.

Proof Since M is finitely ε-chainable, there exists N ≥  such that for any a,b ∈ M there
is a finite set of points x,x, . . . ,xN ∈M such that x = a, xN = b, and ω(xi,xi+) < ε, for all
i = , , , . . . ,N – . For any x, y ∈M define

ω∗(x, y) = inf

{i=N–∑
i=

ω(xi,xi+)

}
,

where the infimum is taken over allN , ε-chains x,x, . . . ,xN from x to y. Our assumptions
imply that ω∗(x, y) < ∞, for any x, y ∈M. Using the basic properties of ω, we get

ωN (x, y)≤ ω∗(x, y),

for any x, y ∈M. Moreover, if ω(x, y) < ε, then we have ω∗(x, y)≤ ω(x, y), for any x, y ∈M.
Fix x ∈ M. Set z = x. Choose z ∈ T(z). Let x, . . . ,xN be an N , ε-chain from z to z.
Such an N , ε-chain exists since M is finitely ε-chainable. Using Lemma ., there exists
y ∈ T(x) such that ω(z, y) ≤ H(T(z),T(x)). Repeating this process we find y, . . . , yN
such that yi ∈ T(xi) and ω(yi, yi+)≤H(T(xi),T(xi+)). It is easy to check that z, y, . . . , yN
is an N , ε-chain from z to yN ∈ T(z). Set yN = z. Using the fact that T is an (ε,k)-ω-
uniformly locally contraction map, we get

ω∗(z, z) ≤ kω∗(z, z).

By induction, we construct a sequence {zn} ∈M such that

ω∗(zn, zn+)≤ kω∗(zn–, zn),

and zn+ ∈ T(zn), for any n≥ . Obviously we have ω∗(zn, zn+) ≤ knω∗(z, z), for any n ≥ .
Since ω satisfies the �-type condition, there exists C >  such that

ω(zn, zn+) ≤ CωN (zn, zn+)≤ Cω∗(zn, zn+) ≤ Cknω∗(z, z),

http://www.fixedpointtheoryandapplications.com/content/2014/1/249
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for any n ≥ . Lemma . implies that {zn} is ω-Cauchy. Since M is ω-complete, {zn}
ω-converges to some z ∈ M. We claim that z is a fixed point of T . Indeed using the ideas
developed above, there exists yn ∈ T(z) such that

ω∗(xn+, yn) ≤ kω∗(xn, z),

for any n≥ . Since

ωN+(yn, z) ≤ ω(xn+, z) +ωN (xn+, yn) ≤ ω(xn+, z) + kω∗(xn, z),

for any n ≥ , we conclude that {yn} ω-converges to z. Since T(z) is ω-closed, we get z ∈
T(z). �
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