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1. Introduction

The Hilbert parallelogram identity is the following:

‖x + y‖2
+ ‖x − y‖2

= 2‖x‖2
+ 2‖y‖2

for any x, y in a Hilbert space H , and it plays a major role in proving many basic results. This identity implies

‖λx + (1 − λ)y‖2
+ λ(1 − λ)‖x − y‖2

= λ‖x‖2
+ (1 − λ)‖y‖2

for any x, y in H and for any λ ∈ [0, 1]. In [1], Xu gave a nice extension of these identities to uniformly convex Banach
spaces. His work has been used as an important tool in proving many interesting results. In order to extend Xu’s ideas to
metric spaces, Beg [2] had to change the definition of uniform convexity in metric spaces. One of the difficulties in carrying
out such extensions lies in the heavy use of the linear structure of the Banach spaces.

In this paper, we use the classical definition of uniform convexity in metric spaces and obtain an analogue of the
parallelogram inequality and the (CN) inequality of Bruhat and Tits [3] in these spaces. Then we give several applications of
our paper as in [1]. To the best of our knowledge this is the first attempt that successfully carries out such an extension on
a nonlinear domain.
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2. Uniform convexity in metric spaces

Throughout this paper, (M, d)will stand for ametric space. Suppose that there exists a familyF of metric segments such
that any two points x, y in M are endpoints of a unique metric segment [x, y] ∈ F ([x, y] is an isometric image of the real
line interval [0, d(x, y)]). We shall denote by (1 − β)x ⊕ βy the unique point z of [x, y] which satisfies

d(x, z) = βd(x, y), and d(z, y) = (1 − β)d(x, y).

Such metric spaces are usually called convex metric spaces [4]. Moreover, if we have

d

1
2
p ⊕

1
2
x,

1
2
p ⊕

1
2
y


≤
1
2
d(x, y),

for all p, x, y in M , then M is said to be a hyperbolic metric space (see [5]).
Obviously, normed linear spaces are hyperbolic spaces. One can consider, as nonlinear examples, the Hadamard

manifolds [6], the Hilbert open unit ball equipped with the hyperbolic metric [7], and the CAT(0) spaces [8–10] (see
Example 2.1). We will say that a subset C of a hyperbolic metric space M is convex if [x, y] ⊂ C whenever x, y are
in C .

Let τ be another topology onM that is weaker than themetric topology.Wewill assume that τ is lower semi-continuous,
that is,

d(x, y) ≤ lim inf
n→∞

d(xn, yn)

for every {xn} and {yn} inM which are τ -convergent to x and y, respectively.

Definition 2.1. Let (M, d) be a hyperbolic metric space. We say thatM is uniformly convex (for short, UC) if for any a ∈ M ,
for every r > 0, and for each ϵ > 0,

δ(r, ε) = inf


1 −

1
r
d


1
2
x ⊕

1
2
y, a


; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε


> 0.

The definition of uniform convexity finds its origin in Banach spaces [11]. To the best of our knowledge, the first attempt
to generalize this concept to metric spaces was made in [12]. The reader may also consult [7,5].

Fromnowonweassume thatM is a hyperbolicmetric space and if (M, d) is uniformly convex, then for every s ≥ 0, ϵ > 0,
there exists η(s, ϵ) > 0 depending on s and ϵ such that

δ(r, ε) > η(s, ϵ) > 0 for any r > s.

Remark 2.1. (i) Let us observe that δ(r, 0) = 0, and δ(r, ε) is an increasing function of ε for every fixed r .
(ii) For r1 ≤ r2 it holds that

1 −
r2
r1


1 − δ


r2, ε

r1
r2


≤ δ(r1, ε).

(iii) If (M, d) is uniformly convex, then (M, d) is strictly convex, i.e., whenever

d


1
2
x ⊕

1
2
y, a


= d(x, a) = d(y, a)

for any x, y, a ∈ M , then we must have x = y.

Lemma 2.1. Assume that (M, d) is uniformly convex. Let {Cn} ⊂ M be a sequence of nonempty, nonincreasing, convex, bounded
and closed sets. Let x ∈ M be such that

0 < d = lim
n→∞

d(x, Cn) < ∞.

Let xn ∈ Cn be such that d(x, xn) → d. Then {xn} is a Cauchy sequence.

Proof. Assume to the contrary that this is not the case. Passing to a subsequence if necessary, we can assume that there
exists ε0 > 0 such that

ε0 ≤ d(xk, xp), k ≠ p.

Set dk = d(x, xk), for any k ≥ 1. By (UC), we have

d


x,

1
2
xk ⊕

1
2
xp


≤


1 − δ


d(k, p),

ε0

d(k, p)


d(k, p),
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where d(k, p) = max{dk, dp}. Without loss of generality, we may assume that d(k, p) ≤ 2d for each k, p ≥ N , where N is
fixed. Hence

d


x,

1
2
xk ⊕

1
2
xp


≤


1 − δ


d(k, p),

ε0

2d


d(k, p).

By (UC), there exists η = η
 d
3 ,

ε0
2d


> 0 such that

δ


d(k, p),

ε0

2d


> η


d
3
,

ε0

2d


> 0,

which implies, in view of the fact that the sets Cn, n ≥ 1, are convex and nonincreasing, that

min{d(x, Ck), d(x, Cp)} ≤ d


x,

1
2
xk ⊕

1
2
xp


≤ (1 − η)d(k, p).

Hence

min{d(x, Ck), d(x, Cp)} ≤ (1 − η)d(k, p).

Letting k and p go to infinity, we get that 0 < d ≤ (1 − η)d, where η > 0. This is contradiction. �

Recall that a hyperbolic metric space (M, d) is said to have the property (R) if any nonincreasing sequence of nonempty,
convex, bounded and closed sets has a nonempty intersection.

Our next result deals with the existence and the uniqueness of the best approximants of convex, closed and bounded sets
in a uniformly convex metric space. This result is of interest in itself, as uniform convexity implies the property (R), which
reduces to reflexivity in the linear case.

Theorem 2.1. Assume that (M, d) is complete and uniformly convex. Let C ⊂ M be nonempty, convex and closed. Let x ∈ M be
such that d(x, C) < ∞. Then there exists a unique best approximant of x in C, i.e., there exists a unique x0 ∈ C such that

d(x, x0) = d(x, C).

Proof. Set d0 = d(x, C). Let {xn} ⊂ C be such that

d0 = d(x, C) = lim
n→∞

d(xn, x).

If d0 = 0, then x ∈ C since C is closed. Then we must have x0 = x. So we can assume then that d0 > 0. Hence, from
Lemma 2.1 (applied to Cn = C), the sequence {xn} is Cauchy. Since M is complete and C is closed, there exists then x0 ∈ C
such that

lim
n→∞

d(xn, x0) = 0.

We claim that x0 is the best approximant that we are seeking. Indeed, we have

d(x, C) ≤ d(x, x0) = lim
n→∞

d(x, xn) = d(x, C).

Hence d(x, x0) = d(x, C), i.e. x0 is an approximant. Assume that there exists another approximant y ∈ C , i.e. d(x, y) =

d(x, C). Since C is convex, we get

d(x, C) ≤ d


x,

1
2
x0 ⊕

1
2
y


≤

d(x, x0) + d(x, y)
2

= d(x, C).

Hence

d


x,

1
2
x0 ⊕

1
2
y


= d(x, x0) = d(x, y),

which implies that x0 = y since (M, d) is strictly convex. �

The following result is the analogue of the well-known theorem that states that any uniformly convex Banach space is
reflexive. For a reference, we refer to Theorem 2.1 in [7].

Theorem 2.2. If (M, d) is complete and uniformly convex, then (M, d) has the property (R).
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Proof. Let {Cn} ⊂ M be a sequence of nonempty, nonincreasing, convex, bounded and closed sets. We need to prove that
this sequence of sets has nonempty intersection. Let x ∈ M . Since sets in {Cn} are bounded and nonincreasing, the sequence
{d(x, Cn)} is increasing and bounded. Hence limn→∞ d(x, Cn) = d1 exists. Let xn ∈ Cn be an approximant of x, i.e. d(x, xn) =

d(x, Cn), for any n ≥ 1. Lemma 2.1 implies that {xn} is Cauchy. Hence there exists y ∈ M such that limn→∞ xn = y. Since
sets in {Cn} are nonincreasing and closed, therefore y ∈ Cn, for any n ≥ 1. Hence


n≥1 Cn is not empty. �

Remark 2.2. Note that any hyperbolic metric space M which satisfies the property (R) is complete. Indeed, let {xn} be a
Cauchy sequence inM . Set

εn = sup{d(xm, xs); m, s ≥ n}, n = 1, . . . .

Our assumption implies that limn→∞ εn = 0. In hyperbolic metric spaces, closed balls are convex. Therefore the property
(R) implies that


n≥1 B(xn, εn) ≠ ∅. It is easy to check that this intersection is reduced to one point which is the limit

of {xn}.

The following lemma is needed to establish a metric version of the main results of [1] proved in the setting of the Banach
space.

Lemma 2.2. Let (M, d) be uniformly convex. Assume that there exists R ∈ [0, +∞) such that

lim sup
n→∞

d(xn, a) ≤ R, lim sup
n→∞

d(yn, a) ≤ R, and lim
n→∞

d


a,

1
2
xn ⊕

1
2
yn


= R.

Then

lim
n→∞

d(xn, yn) = 0.

Proof. Without loss of generality,wemay assume that R > 0. Assume that the conclusion is not true. Let γ > 0 be arbitrarily
chosen. For n sufficiently large, passing to subsequences if necessary, we may assume that there exists ε > 0 such that
d(xn, a) ≤ R + γ , d(yn, a) ≤ R + γ and d(xn, yn) ≥ Rε, n ≥ 1. Since (M, d) is uniformly convex, we have

0 < η(R, ε) < δ(R + γ , ε) ≤ 1 −
1

R + γ
d


a,

1
2
xn ⊕

1
2
yn


→

γ

R + γ
.

Letting γ → 0, we get a contradiction. �

A metric version of the parallelogram identity goes as follows (see [5,1]).

Theorem 2.3. Let (M, d) be uniformly convex. Fix a ∈ M. For each 0 < r and for each ε > 0 set

Ψ (r, ε) = inf


1
2
d2(a, x) +

1
2
d2(a, y) − d2


a,

1
2
x ⊕

1
2
y


,

where the infimum is taken over all x, y ∈ M such that d(a, x) ≤ r, d(a, y) ≤ r, and d(x, y) ≥ rε. Then Ψ (r, ε) > 0 for any
0 < r and for each ε > 0. Moreover, for a fixed r > 0, we have:
(i) Ψ (r, 0) = 0;
(ii) Ψ (r, ε) is a nondecreasing function of ε;
(iii) if limn→∞ Ψ (r, tn) = 0, then limn→∞ tn = 0.

Proof. Assume on the contrary that there exist 0 < r < ∞ and ε > 0 such that Ψ (r, ε) = 0. Then there exist {xn} and {yn}
such that

lim
n→∞


1
2
d2(a, xn) +

1
2
d2(a, yn) − d2


a,

1
2
xn ⊕

1
2
yn


= 0

where d(a, xn) ≤ r, d(a, yn) ≤ r , and d(xn, yn) ≥ rε. Using the inequality 2ab ≤ a2 + b2, for any a, b ∈ R, we get

d2

a,

1
2
xn ⊕

1
2
yn


≤


d(a, xn) + d(a, yn)

2

2

≤
d2(a, xn) + d2(a, yn)

2
.

Hence
d(a, xn) − d(a, yn)

2

2

≤
1
2
d2(a, xn) +

1
2
d2(a, yn) − d2


a,

1
2
xn ⊕

1
2
yn


,
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which implies that limn→∞ |d(a, xn) − d(a, yn)| = 0. Since the sequence (d(a, xn)) is bounded, passing to a subsequence if
necessary, we can assume that limn→∞ d(a, xn) = R ≤ r exists. Our assumptions will then imply

lim
n→∞

d(a, yn) = lim
n→∞

d


a,

1
2
xn ⊕

1
2
yn


= R.

Now from Lemma 2.2, we get that limn→∞ d(xn, yn) = 0 which contradicts the fact that d(xn, yn) ≥ rε > 0. The proofs of
(i)–(iii) are immediate. �

The concept of p-uniform convexity was used extensively by Xu [1] (see also [13, p. 310]); its nonlinear version for p = 2
is given below.

Definition 2.2. We will say that (M, d) is 2-uniformly convex if

cM = inf


Ψ (r, ε)
r2ε2

; r > 0, ε > 0


> 0.

Note that (M, d) is 2-uniformly convex if and only if

inf


δ(r, ε)
ε2

; r > 0, ε > 0


> 0.

Example 2.1. Let (X, d) be a metric space. A geodesic from x to y in X is a mapping c from a closed interval [0, l] ⊂ R to X
such that c(0) = x, c(l) = y, and d


c(t), c


t ′


=
t − t ′

 for all t, t ′ ∈ [0, l]. In particular, c is an isometry and d (x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic joining x
and y for each x, y ∈ X , which will be denoted by [x, y], and called the segment joining x to y.

A geodesic triangle 1 (x1, x2, x3) in a geodesic metric space (X, d) consists of three points x1, x2, x3 in X (the vertices
of 1) and a geodesic segment between each pair of vertices (the edges of 1). A comparison triangle for geodesic triangle
1 (x1, x2, x3) in (X, d) is a triangle 1 (x1, x2, x3) := 1 (x̄1, x̄2, x̄3) in R2 such that dR2


x̄i, x̄j


= d


xi, xj


for i, j ∈ {1, 2, 3}.

Such a triangle always exists (see [14]).
A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following

CAT(0) comparison axiom:
Let 1 be a geodesic triangle in X and let 1 ⊂ R2 be a comparison triangle for 1. Then 1 is said to satisfy the CAT(0)

inequality if for all x, y ∈ 1 and all comparison points x̄, ȳ ∈ 1,

d (x, y) ≤ d (x̄, ȳ) .

Complete CAT(0) spaces are often called Hadamard spaces (see [9]). If x, y1, y2 are points of a CAT(0) space and y0 is the
midpoint of the segment [y1, y2], which will be denoted by y1⊕y2

2 , then the CAT(0) inequality implies

d2

x,

y1 ⊕ y2
2


≤

1
2
d2 (x, y1) +

1
2
d2 (x, y2) −

1
4
d2 (y1, y2) .

This inequality is the (CN) inequality of Bruhat and Tits [3]. As for the Hilbert space, the (CN) inequality implies that CAT(0)
spaces are uniformly convex with

δ(r, ε) = 1 −


1 −

ε2

4
.

One may also find the modulus of uniform convexity via similar triangles. The (CN) inequality also implies that

Ψ (r, ε) =
r2ε2

4
.

This clearly implies that any CAT(0) space is 2-uniformly convex with cM =
1
4 .

Recall that τ : M → R+ is called a type if there exists {xn} in M such that

τ(x) = lim sup
n→∞

d(x, xn).

Theorem 2.4. Assume that (M, d) is complete and uniformly convex. Let C be any nonempty, closed, convex and bounded subset
of M. Let τ be a type defined on C. Then any minimizing sequence of τ is convergent. Its limit is independent of the minimizing
sequence.
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Proof. Let {xn} be a sequence in C such that τ(x) = lim supn→∞ d(xn, x). Set τ0 = inf{τ(x); x ∈ C}. Let {yk} be aminimizing
sequence of τ . Since C is bounded, there exists R > 0 such that d(x, y) ≤ R for any x, y ∈ C . Since (M, d) is uniformly convex,
from Theorem 2.3, we get

d2

1
2
ym ⊕

1
2
yk, xn


≤

1
2
d2(ym, xn) +

1
2
d2(yk, xn) − Ψ


R,

1
R
d(ym, yk)


.

When n goes to infinity, we get

τ 2


1
2
ym ⊕

1
2
yk


≤

1
2
τ 2(yk) +

1
2
τ 2(ym) − Ψ


R,

1
R
d(ym, yk)


.

Hence

τ 2
0 ≤

1
2
τ 2(yk) +

1
2
τ 2(ym) − Ψ


R,

1
R
d(ym, yk)


,

for any k,m ≥ 1. Therefore

Ψ


R,

1
R
d(ym, yk)


≤

1
2
τ 2(yk) +

1
2
τ 2(ym) − τ 2

0 .

Consequently, limk,m→∞ Ψ

R, 1

Rd(ym, yk)


= 0. The properties satisfied byΨ imply that {yk} is Cauchy. SinceM is complete
and C is closed, the sequence {yk} is convergent to a point z ∈ C . Now we will prove that any other minimizing sequence
also converges to z. Indeed let {un} ∈ C be any other minimizing sequence of τ . Using the above argument, we have

τ 2
0 ≤ τ 2


1
2
yn ⊕

1
2
un


≤

1
2
τ 2(yn) +

1
2
τ 2(un) − Ψ


R,

1
R
d(yn, un)


,

which implies

Ψ


R,

1
R
d(yn, un)


≤

1
2
τ 2(yn) +

1
2
τ 2(un) − τ 2

0 ,

for any n ≥ 1. As before, we get limn→∞ d(yn, un) = 0. �

Remark 2.3. Assume in the proof of Theorem 2.4 that τ0 = 0 and let

Cτ =


n≥1

conv


xk; k ≥ n


,

which is nonempty in view of property (R). Let x∞ ∈ Cτ . Let y ∈ C , and ε > 0. By the definition of τ , there exists n0 ≥ 1
such that for every n ≥ n0

d(xn, y) ≤ τ(y) + ε.

Therefore, xn belongs to the closed ball B(y, τ (y) + ε), which is convex, for any n ≥ n0. Hence

Cτ ⊂ conv({xn; n ≥ n0}) ⊂ B(y, τ (y) + ε).

Since this is true for every ε > 0, then Cτ ⊂ B(y, τ (y)) holds for any y ∈ C . In particular, we have x∞ ∈ B(y, τ (y)) and

d(x∞, y) ≤ τ(y),

for any y ∈ C . If {yn} is any minimizing sequence of τ , then we have

d(x∞, yn) ≤ τ(yn) → 0 as n → ∞,

which means that {yn} converges to x∞. In particular, Cτ is reduced to one point.

3. Applications

In this section we give several applications of our results. In particular, we discuss the existence of fixed points of
uniformly Lipschitzian mappings.

Definition 3.1. A mapping T : C → C (a subset ofM) is said to be Lipschitzian if there exists a non-negative number k such
that d(Tx, Ty) ≤ kd(x, y) for all x and y in C . The smallest such k is called a Lipschitz constant and will be denoted by Lip(T ).
The mapping T is called uniformly Lipschitzian if supn≥1 Lip(T n) < ∞.
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It is well-known that if a mapping is uniformly Lipschitzian, then one may find an equivalent distance for which the
mapping is nonexpansive (see [7, pages 34–38]). Indeed, let T : C → C be uniformly Lipschitzian. Put

ρ(x, y) = sup{d(T nx, T ny) : n = 0, 1, 2...}

for all x, y ∈ C; one can obtain a metric ρ on C which is equivalent to the metric d and relative to which T is nonexpansive.
In this context, it is natural to ask the question: if a set C has the fixed point property (fpp) for nonexpansive mappings
with respect to the metric d, then does C also have (fpp) for mappings which are nonexpansive relative to an equivalent
metric? This is known as the stability of (fpp). The first result in this direction is due to Goebel and Kirk [15]. Motivated by
such questions, we investigate the fixed point property of uniformly Lipschitzian mappings in uniformly convex hyperbolic
metric spaces.

Recall that the normal structure coefficient N(M) of the hyperbolic metric spaceM is defined (see [16]) by

N(M) = inf

diam(C)

R(C)
; C bounded convex subset ofM with diam (C) > 0


,

where diam(C) = sup{d(x, y); x, y ∈ C} is the diameter of C , and

R(C) = inf{sup
y∈C

d(x, y); x ∈ C}

is the Chebyshev radius of C .
For further development, we will need the following technical lemmas.

Lemma 3.1. Let (M, d) be hyperbolic metric space and let C be a nonempty, closed and convex subset of M. Assume that M is
2-uniformly convex. Let {xn} be a bounded sequence in C. Then there exists a unique point z ∈ C such that

lim sup
n→∞

d2(xn, z) + 2cMd2(z, x) ≤ lim sup
n→∞

d2(xn, x)

for any x ∈ C.

Proof. Since {xn} is bounded, there exists R > 0 such that d(xn, xm) ≤ R, for any n,m. From Theorem 2.4, we know that
there exists a unique z ∈ C such that

lim sup
n→∞

d(xn, z) = inf

lim sup
n→∞

d(xn, x); x ∈ C

.

Let x ∈ C . SinceM is 2-uniformly convex, then we have

d2

1
2
x ⊕

1
2
z, xn


≤

1
2
d2(x, xn) +

1
2
d2(z, xn) − Ψ


R,

1
R
d(x, z)


,

for any n, which implies

lim sup
n→∞

d2

1
2
x ⊕

1
2
z, xn


≤

1
2
lim sup
n→∞

d2(x, xn) +
1
2
lim sup
n→∞

d2(z, xn) − Ψ


R,

1
R
d(x, z)


.

The definition of z implies that

lim sup
n→∞

d2(z, xn) ≤
1
2
lim sup
n→∞

d2(x, xn) +
1
2
lim sup
n→∞

d2(z, xn) − Ψ


R,

1
R
d(x, z)


,

or

1
2
lim sup
n→∞

d2(z, xn) ≤
1
2
lim sup
n→∞

d2(x, xn) − Ψ


R,

1
R
d(x, z)


.

Using the 2-uniform convexity, we get

1
2
lim sup
n→∞

d2(z, xn) ≤
1
2
lim sup
n→∞

d2(x, xn) − cMd2(x, z),

which implies the desired inequality. �

The following result is similar to Theorem 3 of [1].



M.A. Khamsi, A.R. Khan / Nonlinear Analysis 74 (2011) 4036–4045 4043

Theorem 3.1. Let (M, d) be a hyperbolic metric space which is 2-uniformly convex. Let C be a nonempty, closed, convex and
bounded subset of M. Let T : C → C be uniformly Lipschitzian with

λ(T ) = sup
n≥1

Lip(T n) <


1 +


1 + 8cMN(M)2

2

1/2

.

Then T has a fixed point in C.

Proof. Fix x0 ∈ C . Using Lemma 3.1, one can construct inductively a sequence {xm} in C such that xm+1 is the point z found
in Lemma 3.1 associated with the sequence {T n(xm)}, for anym ≥ 0. For anym ≥ 0, set

rm = lim sup
n→∞

d(xm+1, T n(xm)) and Rm = sup
n≥1

d(xm, T n(xm)).

Set C∗
= conv{T n(xm); n ≥ 1}. Then the property (R) which is satisfied by M implies the existence of a point z ∈ C∗ such

that

sup
n≥n0

d(z, T n(xm)) ≤
1

N(M)
diam(C∗) =

1
N(M)

diam({T n(xm); n ≥ 1}).

Since rm ≤ lim supn→∞ d(z, T n(xm)) and

diam({T n(xm); n ≥ 1}) ≤ λ(T ) sup
n≥1

d(xm, T n(xm)),

we get

rm ≤
λ(T )

N(M)
Rm, m = 1, . . . .

This result is similar to Theorem 1 in [17]. Using Lemma 3.1, we get

r2m + cMd2(xm+1, T s(xm+1)) ≤
1
2
r2m +

1
2
lim sup
n→∞

d2(T s(xm+1), T n(xm)),

which implies that

r2m + cMd2(xm+1, T s(xm+1)) ≤
1
2
r2m +

λ(T )2

2
lim sup
n→∞

d2(xm+1, T n−s(xm)),

or

r2m + cMd2(xm+1, T s(xm+1)) ≤
1
2
r2m +

λ(T )2

2
r2m.

Hence

cMR2
m+1 = cM sup

s≥1
d2(xm+1, T s(xm+1)) ≤

λ(T )2 − 1
2

r2m ≤
(λ(T )2 − 1)

2
λ(T )2

N(M)2
R2
m,

which implies that Rm+1 ≤ ARm, m = 1, . . . , where

A =


(λ(T )2 − 1)λ(T )2

2cMN(M)2

1/2

.

Our assumption on λ(T ) leads to A < 1. Since Rm ≤ Am−1 R1, for anym ≥ 1, we conclude that
∑

m≥1 Rm is convergent. Since
d(xm, xm+1) ≤ rm + Rm ≤ 2Rm, for any m ≥ 1, the series

∑
d(xm, xm+1) is also convergent, and therefore {xm} is Cauchy.

SinceM satisfies the property (R), it is complete. Let z ∈ C be the limit of {xm}. Hence

d(z, T (z)) ≤ d(z, xm) + d(xm, T (xm)) + d(T (xm), T (z)) ≤ (1 + Lip(T ))d(z, xm) + Rm

for any m ≥ 1. If we letm → ∞, then we get d(z, T (z)) = 0 and therefore T (z) = z. �

Next we extend the above theorem to the case of multi-valued mappings. As in [18], we start by giving the definition of
uniformly Lipschitzian multi-valued mappings via the generalized orbits.

Definition 3.2. Let (M, d) be a metric space. Let T : M → N(M), where N(M) is the set of all nonempty subsets of M , be a
multi-valued mapping. For any x ∈ M , the sequence {xn} is called a generalized orbit of x if x1 = x and xn+1 ∈ T (xn), for any
n ≥ 1.

It is clear that for a given x ∈ M , the mapping T may have many different orbits generated by x.
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Definition 3.3. A multi-valued mapping T : M → N(M) is called a uniformly k-Lipschitzian mapping (with k > 0) if for
any x, y ∈ M , and for any generalized orbit {xn} of x, there exists a generalized orbit {yn} of y such that

d(xn+h, yn+s) ≤ kd(xh, y), and d(xn+h, xn+s) ≤ kd(xh, xs),

for any h, n, s = 1, 2, . . . . The smallest such kwill be denoted by λ(T ).

Note that when T is single-valued, then the above definition coincides with the traditional definition since any x will
have one orbit generated by iterating T .

Next we prove a multi-valued version of Theorem 3.1.

Theorem 3.2. Let (M, d) be hyperbolic metric space which is 2-uniformly convex. Let C be a nonempty closed, bounded and
convex subset of M. Let us have T : C → C(C), i.e. T (x) is a nonempty closed subset of C, for any x ∈ C. If T is uniformly
Lipschitzian with

λ(T ) <


1 +


1 + 8cMN(M)2

2

1/2

,

then T has a fixed point, i.e. there exists x ∈ C such that x ∈ T (x).

Proof. Let x ∈ C and let {xn} be a generalized orbit of x. Consider the type function generated by {xn}, i.e. τ(z) =

lim supn→ d(xn, z), for z ∈ C . Using Lemma 3.1, there exists a unique ω ∈ C such that τ(ω) = inf{τ(z); z ∈ C}. Set
σ(x) = ω. Note that σ 2(x) is theminimizer of the type function generated by a generalized orbit of σ(x). Since T is uniformly
Lipschitzian, there exists a generalized orbit {σ(x)n} such that

d(xn+h, σ (x)n+m) ≤ λ(T )d(xh, σ (x)m),

for any n, h,m ≥ 1. By induction, one will construct a sequence {σ n(x)} and generalized orbit {σ n(x)m}m≥1 of σ n(x) for any
n ≥ 1, such that σ n+1(x) is the unique minimum point of the type generated by the generalized orbit {σ n(x)m}m≥1. Set

rm = lim sup
n→∞

d(σm(x), σm(x)n), and Rm = sup
n≥1

d(σm(x), σm(x)n),

for anym ≥ 1. As in the proof of Theorem 3.1, one can show that

rm ≤
λ(T )

N(M)
Rm,

for anym ≥ 1. Using Lemma 3.1, we get

r2m + cMd2(σm+1(x), σm+1(x)s) ≤
1
2
r2m +

1
2
lim sup
n→∞

d2(σm+1(x)s, σm(x)n),

for any s ≥ 1, which implies

r2m + cMd2(σm+1(x), σm+1(x)s) ≤
1
2
r2m +

λ(T )2

2
lim sup
n→∞

d2(σm+1(x), σm(x)n−s),

for any s ≥ 1, or

r2m + cMd2(σm+1(x), σm+1(x)s) ≤
1
2
r2m +

λ(T )2

2
r2m,

for any s ≥ 1. Hence

d2(σm+1(x), σm+1(x)s) ≤
(λ(T )2 − 1)

2cM
r2m,

for any s ≥ 1, which implies

R2
m+1 = sup

s≥1
d2(σm+1(x), σm+1(x)s) ≤

(λ(T )2 − 1)
2cM

r2m.

Hence Rm+1 ≤ ARm, m = 1, . . . , where

A =


(λ(T )2 − 1)λ(T )2

2cMN(M)2

1/2

.

Our assumption on λ(T ) leads to A < 1. Hence the series
∑

Rm is convergent. Since

d(σm(x), σm+1(x)) ≤ rm + Rm ≤ 2Rm,
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for anym ≥ 1, the series
∑

d(σm(x), σm+1(x)) is convergent. Hence {σm(x)} is Cauchy. Let z ∈ C be its limit. Next we prove
that z is a fixed point of T , i.e. z ∈ T (z). Indeed, we have

d(σm(x), σm(x)1) ≤ d(σm(x), σm(x)n) + d(σm(x)n, σm(x)1)

which implies

d(σm(x), σm(x)1) ≤ d(σm(x), σm(x)n) + λ(T )d(σm(x)n−1, σ
m(x)),

and if we let n → ∞, in the above inequality, we get

d(σm(x), σm(x)1) ≤ (1 + λ(T ))rm,

for anym ≥ 1. Hence {σm(x)1} also converges to z. Using the uniform Lipschitzian behavior of T , for anym ≥ 1, there exists
a generalized orbit {zmn } of z such that

d(σm(x)n, zmn ) ≤ λ(T )d(σm(x), z)

for any n ≥ 1. In particular, we have d(σm(x)1, zm1 ) ≤ λ(T )d(σm(x), z). Hence {zm1 } also converges to z. But zm1 ∈ T (z) for
anym ≥ 1 and T (z) is closed. This gives that z ∈ T (z) as required. �

Remark 3.1. For some related fixed point and best approximant results in Banach spaces and metric spaces and their
applications, we refer to [19].
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