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spaces. This is the nonlinear version of some known results proved in Banach spaces. We
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1. Introduction

The notion of asymptotic pointwise mappings was introduced in [1–3]. The use of ultrapower technique was useful
in proving some related fixed point results. In a recent paper [3], the authors gave simple and elementary proofs for the
existence of fixed point theorems for asymptotic pointwise mappings without the use of ultrapowers. In this paper, we
extend most of their results to metric spaces. In particular, we consider the case of CAT(0) as an example of uniform convex
metric spaces. In this work, we show how weak-compactness in Banach spaces is extended to metric spaces.
For more on metric fixed point theory, the reader may consult the book [4].

2. Basic definitions and results

First let us start by making some basic definitions.

Definition 1. Let (M, d) be ametric space. Amapping T : M → M is called a pointwise contraction if there exists amapping
α : M → [0, 1) such that

d(T (x), T (y)) ≤ α(x)d(x, y) for any y ∈ M.

∗ Corresponding author. Tel.: +1 915 747 6763; fax: +1 915 747 6502.
E-mail addresses: nhusain@kau.edu.sa (N. Hussain), mohamed@math.utep.edu (M.A. Khamsi).

0362-546X/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2009.02.126

Please cite this article in press as: N. Hussain, M.A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Analysis (2009),
doi:10.1016/j.na.2009.02.126

http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:nhusain@kau.edu.sa
mailto:mohamed@math.utep.edu
http://dx.doi.org/10.1016/j.na.2009.02.126


ARTICLE  IN  PRESS
2 N. Hussain, M.A. Khamsi / Nonlinear Analysis ( ) –

It is clear that pointwise contractive behavior was introduced to extend the contractive behavior in Banach contraction
principle. The central fixed point result for such mappings is the following theorem.

Theorem 2.1 ([1,2]). Let K be a weakly compact convex subset of a Banach space and suppose T : K → K is a pointwise
contraction. Then T has a unique fixed point, x0. Moreover the orbit {T n(x)} converges to x0, for each x ∈ M.

Note that if T is a pointwise contraction, then it is continuous. Moreover if α(x) = 0 for some x ∈ M , then T is a constant
map. Since the main focus of this paper is about the fixed point problem, it is easy to prove that a pointwise contraction
T : M → M has at most one fixed point, and if a is its fixed point, then the orbit {T n(x)} converges to a, for each x ∈ M .
Indeed, we have

d(a, T n(x)) ≤ α(a)nd(a, x)

for any x ∈ M . The above conclusion follows because α(a) < 1. It is not clear how to prove the existence of the fixed point
from the convergence of the orbits, which is the case in the classical proof given to the Banach contraction principle.

Definition 2. Let (M, d) be ametric space. Amapping T : M → M is called an asymptotic pointwise mapping if there exists
a sequence of mappings αn : M → [0,∞) such that

d(T n(x), T n(y)) ≤ αn(x)d(x, y) for any y ∈ M.

(i) If {αn} converges pointwise to α : M → [0, 1), then T is called an asymptotic pointwise contraction.
(ii) If lim supn→∞ αn(x) ≤ 1, then T is called asymptotic pointwise nonexpansive.
(ii) If lim supn→∞ αn(x) ≤ k, with 0 < k < 1, then T is called strongly asymptotic pointwise contraction.

3. Pointwise contractions in metric spaces

LetM be ametric space andF a family of subsets ofM . Thenwe say thatF defines a convexity structure onM if it contains
the closed balls and is stable by intersection. For instanceA(M), the class of the admissible subsets ofM , defines a convexity
structure on any metric spaceM . Recall that a subset ofM is admissible if it is a nonempty intersection of closed balls.
At this point we introduce some notation which will be used throughout the remainder of this work. For a subset A of a

metric spaceM , set:

rx(A) = sup{d(x, y) : y ∈ A}, x ∈ M;
R(A) = inf{rx(A) : x ∈ A};
diam(A) = sup{d(x, y) : x, y ∈ A};
CA(A) = {x ∈ A : rx(A) = R(A)};
cov(A) =

⋂
{B : B is a ball and B ⊇ A}

diam(A) is called the diameter of A, R(A) is called the Chebyshev radius of A, CA(A) is called the Chebyshev center of A, and
cov(A) is called the cover of A.

Definition 3. Let F be a convexity structure onM .
(i) Wewill say thatF is compact if any family (Aα)α∈Γ of elements ofF , has a nonempty intersection provided

⋂
α∈F Aα 6=

∅ for any finite subset F ⊂ Γ .
(ii) We will say that F is normal if for any A ∈ F , not reduced to one point, we have R(A) < diam(A).
(iii) We will say that F is uniformly normal if there exists c ∈ (0, 1) such that for any A ∈ F , not reduced to one point, we

have R(A) ≤ c diam(A). It is easy to check that c ≥ 1/2.

Example 1. A metric space M is said to be hyperconvex [5] if given any family {xα} of points of M and any family {rα} of
nonnegative real numbers satisfying

d(xα, xβ) ≤ rα + rβ

it is the case that ∩α B(xα; rα) 6= ∅. It is well known [6,7] that if M is hyperconvex, then A(M) is compact and uniformly
normal with

R(A) =
1
2
diam(A)

for any A ∈ A(M).

The main result of [1,2] may be stated in metric spaces as follows

Theorem 3.1. Let M be a bounded metric space. Assume that the convexity structure A(M) is compact. Let T : M → M be a
pointwise contraction. Then T has a unique fixed point, x0. Moreover the orbit {T n(x)} converges to x0, for each x ∈ M.
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Proof. Since A(M) is compact, there exists a minimal nonempty K ∈ A(M) such that T (K) ⊂ K . It is easy to check
that cov(T (K)) = K . Let a ∈ K , then we have K ⊂ B(a, ra(K)). Since T is pointwise contraction, there exists a mapping
α : M → [0, 1) such that

d(T (x), T (y)) ≤ α(x)d(x, y) for any y ∈ M.

In particular, we have then T (K) ⊂ B(T (a), α(a)ra(K)), which implies cov(T (K)) ⊂ B(T (a), α(a)ra(K)). So rT (a)(K) ≤
α(a)ra(K). This will force diam(K) = 0. Indeed let a ∈ K and define

Ka = {x ∈ K ; rx(K) ≤ ra(K)}.

Clearly Ka is not empty. Moreover we have

Ka =
⋂
x∈K

B(x, ra(K)) ∩ K ∈ A(M).

And since rT (a)(K) ≤ α(a)ra(K), we get T (Ka) ⊂ Ka. The minimality behavior of K implies Ka = K . In particular we
have rx(K) = ra(K) for any x ∈ K . Hence diam(K) = ra(K), for any a ∈ K , i.e. a is a diametral point of K . Hence
diam(K) ≤ α(a)diam(K). And since α(a) < 1, we get diam(K) = 0, i.e. K is reduced to one point which is fixed by T .
Hence the fixed point set of T is not empty. The remaining conclusion of the theorem follows from the general properties of
pointwise contractions. �

It is well known [6,7] that ifM is hyperconvex, thenA(M) is compact, hence we obtain:

Corollary 1. Let M be a bounded hyperconvex metric space. Let T : M → M be a pointwise contraction. Then T has a unique
fixed point, x0. Moreover the orbit {T n(x)} converges to x0, for each x ∈ M.

4. Asymptotically pointwise contractions

Let M be a metric space and F a convexity structure. We will say that a function Φ : M → [0,∞) is F -convex if
{x;Φ(x) ≤ r} ∈ F for any r ≥ 0. Also we define a type to be a functionΦ : M → [0,∞) defined as

Φ(u) = lim sup
n→∞

d(xn, u)

where (xn) is a bounded sequence inM . Types are very useful in the study of the geometry of Banach spaces and the existence
of fixed point of mappings. We will say that a convexity structure F on M is T -stable if types are F -convex. We have the
following lemma.

Lemma 4.1. Let M be a metric space and F a compact convexity structure on M which is T -stable. Then for any type Φ , there
exists x0 ∈ M such that

Φ(x0) = inf{Φ(x); x ∈ M}.

The proof is easy and will be omitted.

Theorem 4.1. Let M be a bounded metric space. Assume that the convexity structure A(M) is compact. Let T : M → M be a
strongly asymptotic pointwise contraction. Then T has a unique fixed point, x0. Moreover the orbit {T n(x)} converges to x0, for
each x ∈ M.

Proof. First note that T has at most one fixed point. Indeed, let a, b ∈ M be two fixed points of T . Then we have

d(a, b) = d(T n(a), T n(b)) ≤ αn(a)d(a, b).

If we let n go to infinity, we get d(a, b) ≤ kd(a, b) for some k ∈ (0, 1). This will force d(a, b) = 0. Next let x ∈ M and define
the type

Φ(u) = lim sup
n→∞

d(T n(x), u), for each u ∈ M.

SinceA(M) is compact, then

Ω(x) =
⋂
n≥1

cov
(
{T k(x); k ≥ n}

)
6= ∅.

Let ω ∈ Ω(x). Then we have

d(Tm+n+h(x), Tm+h(x)) ≤ αh(Tm(x))d(T n(x), Tm(x)).

If we let n go to infinity, we get

Φ(Tm+h(x)) ≤ αh(Tm(x))Φ(Tm(x)).
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Next we let h go to infinity to get

lim sup
n→∞

Φ(T n(x)) ≤ kΦ(T n(x))

for some k ∈ (0, 1), which easily implies that lim supn→∞Φ(T n(x)) = 0. Next we notice that

Φ(ω) ≤ lim sup
n→∞

Φ(T n(x)) = 0.

Indeed let u ∈ M , then for any ε > 0, then there exists n0 ≥ 1 such that for any n ≥ n0

d(T n(x), u) ≤ Φ(u)+ ε.

In particular we have T n(x) ∈ B(u,Φ(u)+ ε), for any n ≥ n0. So

Ω(x) ⊂ cov
(
{T n(x); n ≥ n0}

)
⊂ B(u,Φ(u)+ ε),

which implies ω ∈ B(u,Φ(u)+ ε). This is true for any ε > 0. Hence for any u ∈ M we have d(ω, u) ≤ Φ(u). Hence

Φ(ω) = lim sup
n→∞

d(T n(x), ω) ≤ lim sup
n→∞

Φ(T n(x)).

Therefore we haveΦ(ω) = 0 which implies that {T n(x)} converges to ω. This will force ω to be a fixed point of T . Since we
already noticed that T has at most one fixed point, then T has a fixed point x0 and any orbit converges to x0. �

IfM is hyperconvex, thenA(M) is compact, hence we obtain:

Corollary 2. Let M be a bounded hyperconvex metric space. Let T : M → M be a strongly asymptotic pointwise contraction.
Then T has a unique fixed point, x0. Moreover the orbit {T n(x)} converges to x0, for each x ∈ M.

Next we relax the strong behavior of T but assume that types are convex to obtain the following result

Theorem 4.2. Let M be a bounded metric space. Assume that there exists a convexity structureF which is compact and T-stable.
Let T : M → M be an asymptotic pointwise contraction. Then T has a unique fixed point, x0. Moreover the orbit {T n(x)} converges
to x0, for each x ∈ M.

Proof. Similarly one can easily show that T has at most one fixed point. As we did in the proof of the previous result, let
x ∈ M and define the type

Φ(u) = lim sup
n→∞

d(T n(x), u), for each u ∈ M.

Since F is compact and T -stable, then there exists x0 ∈ M such that

Φ(x0) = inf{Φ(u); u ∈ M}.

Let us show thatΦ(x0) = 0. Indeed we have

d(T n+m(x), Tm(x0)) ≤ αm(x0)d(T n(x), x0),

for any n,m ≥ 1. If we let n go to infinity, we get

Φ(Tm(x0)) ≤ αm(x0)Φ(x0)

which implies

Φ(x0) = inf{Φ(u); u ∈ M} ≤ Φ(Tm(x0)) ≤ αm(x0)Φ(x0).

If we let m go to infinity, we get Φ(x0) ≤ α(x0)Φ(x0). Since α(x0) < 1, we get Φ(x0) = 0, which implies that {T n(x)}
converges to x0. This will force x0 to be a fixed point of T . Since we already noticed that T has at most one fixed point, then
T has a fixed point x0 and any orbit converges to x0. �

5. Asymptotic pointwise nonexpansive mappings

We should note that any result on asymptotic pointwise nonexpansive mappings in metric spaces should extend what is
known on asymptotic nonexpansive mappings in metric spaces. Unfortunately only a partial result in hyperconvex metric
spaces is known (see [8]). Here we extend the result found in [3] in uniformly Banach spaces to CAT(0) metric spaces. Indeed
these metric spaces offer a nice example of uniformly convex metric spaces. It is not clear that the main inequality used in
[3] satisfied in uniformly convex Banach spaces has a similar one in uniformly convex metric spaces.
A metric space (X, d) is said to be a length space if each two points of X are joined by a rectifiable path (that is, a path

of finite length) and the distance between any two points of X is taken to be the infimum of the lengths of all rectifiable
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paths joining them. In this case, d is said to be a length metric (otherwise known an inner metric or intrinsic metric). In case
no rectifiable path joins two points of the space the distance between them is said to be∞.
A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R

to X such that c (0) = x, c (l) = y, and d
(
c (t) , c

(
t ′
))
=
∣∣t − t ′∣∣ for all t, t ′ ∈ [0, l]. In particular, c is an isometry and

d (x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic. X is said to be uniquely geodesic if there is exactly one geodesic joining x and
y for each x, y ∈ X , which we will denote by [x, y] called the segment joining x to y.
A geodesic triangle ∆ (x1, x2, x3) in a geodesic metric space (X, d) consists of three points in X (the vertices of ∆) and a

geodesic segment between each pair of vertices (the edges of ∆). A comparison triangle for geodesic triangle ∆ (x1, x2, x3)
in (X, d) is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in M2κ such that dR2

(
x̄i, x̄j

)
= d

(
xi, xj

)
for i, j ∈ {1, 2, 3} . If κ > 0 it is

further assumed that the perimeter of∆ (x1, x2, x3) is less than 2Dκ , where Dκ denotes the diameter ofM2κ . Such a triangle
always exists.
A geodesic metric space is said to be a CAT(κ) space if all geodesic triangles of appropriate size satisfy the following

CAT(κ) comparison axiom.
CAT(κ): Let ∆ be a geodesic triangle in X and let ∆ ⊂ M2κ be a comparison triangle for ∆. Then ∆ is said to satisfy the

CAT (κ) inequality if for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆,

d (x, y) ≤ d (x̄, ȳ) .

Complete CAT (0) spaces are often called Hadamard spaces. These spaces are of particular relevance to this study.
Finally we observe that if x, y1, y2 are points of a CAT (0) space and if y0 is the midpoint of the segment [y1, y2], which

we will denote by y1⊕y22 , then the CAT (0) inequality implies

d
(
x,
y1 ⊕ y2
2

)2
≤
1
2
d (x, y1)2 +

1
2
d (x, y2)2 −

1
4
d (y1, y2)2 (1)

because equality holds in the Euclidean metric. In fact (see [9], p. 163), a geodesic metric space is a CAT (0) space if and only
if it satisfies inequality (1) (which is known as the CN inequality of Bruhat and Tits [10]). Moreover if M is a CAT(0) metric
space and x, y ∈ M , then for any α ∈ [0, 1] there exists a unique point αx⊕ (1− α)y ∈ [x, y] such that

d
(
z, αx⊕ (1− α)y

)
≤ αd(z, x)+ (1− α)d(z, y), for any z ∈ M, (2)

and [x, y] = {αx⊕ (1− α)y, α ∈ [0, 1]}.
Let M be a complete CAT(0) space. A subset C ⊂ M is convex if for any x, y ∈ C we have [x, y] ⊂ C . Denote by C(M)

the family of all closed convex subsets of M . Then C(M) defines a convexity structure which is compact and uniformly
normal [11]. Note that any type function is convex, i.e. C(M) is T-convex. This follows easily from the inequality (2). A direct
implication of these properties is that any type function achieves its infinimum, i.e. for any bounded sequence {xn} in a
CAT(0) spaceM , there exists ω ∈ M such thatΦ(ω) = inf{Φ(x); x ∈ M}, where

Φ(x) = lim sup
n→∞

d(xn, x).

Theorem 5.1. Let M be a complete CAT(0) metric space. Let C be a bounded closed nonempty convex subset of M. Then
any T : C → C pointwise asymptotically nonexpansive has a fixed point. The fixed point set Fix(T ) is closed and convex,
i.e. Fix(T ) ∈ C(M).

Proof. As before, let x ∈ C and define the type

Φ(u) = lim sup
n→∞

d(T n(x), u), for any u ∈ C .

Let ω ∈ C such that Φ(ω) = inf{Φ(u); u ∈ C} = Φ0. We have seen that Φ(T n(ω)) ≤ αn(ω)Φ(ω) = αn(ω)Φ0, for any
n ≥ 1. The CN inequality implies

d
(
T n(x),

Tm(ω)⊕ T h(ω)
2

)2
≤
1
2
d
(
T n(x), Tm(ω)

)2
+
1
2
d
(
T n(x), T h(ω)

)2
−
1
4
d
(
Tm(ω), T h(ω)

)2
.

If we let n go to infinity, we get

Φ20 ≤ Φ

(
Tm(ω)⊕ T h(ω)

2

)2
≤
1
2
Φ(Tm(ω))2 +

1
2
Φ(T h(ω))2 −

1
4
d
(
Tm(ω), T h(ω)

)2
,
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which implies

d
(
Tm(ω), T h(ω)

)2
≤ Φ20

(
2αm(ω)2 + 2α2h(ω)− 4

)
.

Since T is pointwise asymptotic nonexpansive, we get

lim sup
m,h→∞

(
Tm(ω), T h(ω)

)2
≤ 0,

which implies {T n(ω)} is a Cauchy sequence. Let v = limn→∞ T n(ω). Since T is continuous, then T (v) = v, i.e. v is a fixed
point of T . This proves that Fix(T ) is not empty. Again since T is continuous, Fix(T ) is closed. In order to prove that Fix(T ) is
convex, it is enough to prove that x⊕y2 ∈ Fix(T ), whenever x, y ∈ Fix(T ). Indeed set ω =

x⊕y
2 . The CN inequality implies

d
(
T n(ω), ω

)2
≤
1
2
d
(
x, T n(ω)

)2
+
1
2
d
(
y, T n(ω)

)2
−
1
4
d(x, y)2,

for any n ≥ 1. Since

d
(
x, T n(ω)

)2
= d

(
T n(x), T n(ω)

)2
≤ α2n(ω)d(ω, x)

2
=
α2n(ω)d(x, y)

2

4
,

and

d
(
y, T n(ω)

)2
= d

(
T n(y), T n(ω)

)2
≤ α2n(ω)d(ω, y)

2
=
α2n(ω)d(x, y)

2

4
,

we get

d
(
T n(ω), ω

)2
≤

(
α2n(ω)− 1

)
d(x, y)2

4
,

for any n ≥ 1. Since T is pointwise asymptotic nonexpansive, we get limn→∞ T n(ω) = ω, which implies T (ω) = ω,
i.e. ω ∈ Fix(T ). �

If U ,V are bounded subsets of a metric space X , let H denote the Hausdorff metric, defined as usual by

H(U, V ) = inf{ε > 0 : U ⊂ Nε(V ) and V ⊂ Nε(U)},

whereNε(V ) = {y ∈ X : d(y, V ) < ε}. Let E be a subset of ametric space X . Amapping T : E → 2X with nonempty bounded
values is nonexpansive provided H(T (x), T (y)) ≤ d(x, y) for all x, y ∈ E. Let t : E → E and T : E → 2X with T (x) ∩ E 6= ∅
for x ∈ E. Then t and T are said to be commuting mappings if t(y) ∈ T (t(x))∩ E for all y ∈ T (x)∩ E and for all x ∈ E. A point
z ∈ X is called a center [12] for a mapping t : E → X if for each x ∈ E, d(z, t(x)) ≤ d(z, x). The set Z(t) denotes the set of
all centers of the mapping t .
As an application of our Theorem 5.1 we obtain:

Theorem 5.2. Let M be a complete CAT(0) space and C be a bounded closed convex subset of M. Assume t : C → C is pointwise
asymptotically nonexpansive and T : C → 2C is nonexpansive mappings with T (x) a compact convex subset of C for each x ∈ C.
If the mappings t and T commute and satisfy the condition

T (x) ∩ Fix(t) ⊂ Z(t), for all x ∈ Fix(t)

then there is z ∈ C such that z = t(z) ∈ T (z).

Proof. By Theorem 5.1, a pointwise asymptotically nonexpansive self-mapping t of a bounded closed convex subset has a
nonempty fixed point set Awhich is a closed convex subset ofM . Since t and T commute, t(y) ∈ T (t(x)) = T (x) for y ∈ T (x)
and x ∈ A, and therefore, T (x) is invariant under t for each x ∈ A. Since T (x) is a closed bounded convex subset of a CAT(0)
space, t has a fixed point in T (x) and T (x) ∩ A 6= ∅ for x ∈ A. Now consider the mapping T (.) ∩ A : A → compact convex
subsets of A. We claim that this mapping is nonexpansive. Indeed, if u ∈ T (x)∩ A for some x ∈ A, let v be the unique closest
point in T (y) to u for some y ∈ A. Then d(u, v) = inf{d(u, w);w ∈ T (y)}.
However, since u ∈ Z(t), d(u, t(v)) ≤ d(u, v), which contradicts the uniqueness of v as the closest point to u. Therefore,

v = t(v) implying v ∈ T (y) ∩ A. Since this argument is symmetric in the points x and y, it follows that

H(T (x) ∩ A, T (y) ∩ A) ≤ H(T (x), T (y)) ≤ d(x, y) for x, y ∈ A.

By [13] the nonexpansive mapping T (.)∩A : A→ compact convex subsets of A has a fixed point z ∈ T (z)∩A. Therefore,
z = t(z) ∈ T (z). �

The Theorem 5.2 may be seen as an extension to Theorem 4.1 of [14].

Please cite this article in press as: N. Hussain, M.A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Analysis (2009),
doi:10.1016/j.na.2009.02.126



ARTICLE  IN  PRESS
N. Hussain, M.A. Khamsi / Nonlinear Analysis ( ) – 7

Corollary 3. Let M be a complete CAT(0) space and C be a bounded closed convex subset of M. Assume t : C → C is pointwise
asymptotically nonexpansive and T : C → 2C is nonexpansive mappings with T (x) a compact convex subset of C for each x ∈ C.
If the mappings t and T satisfy the condition

∅ 6= T (x) ∩ Fix(t) ⊂ Z(t), for all x ∈ Fix(t)

then there is z ∈ C such that z = t(z) ∈ T (z).

A close look at the above proof suggests that a pointwise asymptotic mapping in CAT(0) metric space is may be demi-
closed as it was noticed by Göhde [15] for nonexpanisve mapping in uniformly Banach spaces. Before we state the next and
final result of this work, we need the following notation

{xn}⇀ ω if and only if Φ(ω) = inf
x∈C
Φ(x),

where C is a closed convex subset which contains the bounded sequence {xn} andΦ(x) = lim supn→∞ d(xn, x).

Proposition 1. Let M be a CAT(0) metric space. Let C be a bounded closed nonempty convex subset of M. Let T : C → C be a
pointwise asymptotic nonexpansivemapping. Let {xn} ∈ C be an approximate fixed point sequence, i.e. limn→∞ d(xn, T (xn)) = 0,
and {xn}⇀ ω. Then we have T (ω) = ω.

Proof. Since {xn} is an approximate fixed point sequence, then we have

Φ(x) = lim sup
n→∞

d(Tm(xn), x)

for any m ≥ 1. Hence Φ(Tm(x)) ≤ αm(x)Φ(x), for each x ∈ C . In particular, we have limm→∞Φ(Tm(ω)) = Φ(ω). The CN
inequality implies

d
(
xn,

ω ⊕ Tm(ω)
2

)2
≤
1
2
d (xn, ω)2 +

1
2
d
(
xn, Tm(ω)

)2
−
1
4
d
(
ω, Tm(ω)

)2
,

for any n,m ≥ 1. If we let n→∞, we will get

Φ

(
ω ⊕ Tm(ω)

2

)2
≤
1
2
Φ (ω)2 +

1
2
Φ
(
Tm(ω)

)2
−
1
4
d
(
ω, Tm(ω)

)2
,

for anym ≥ 1. The definition of ω implies

Φ (ω)2 ≤
1
2
Φ (ω)2 +

1
2
Φ
(
Tm(ω)

)2
−
1
4
d
(
ω, Tm(ω)

)2
,

for anym ≥ 1, or

d
(
ω, Tm(ω)

)2
≤ 2Φ

(
Tm(ω)

)2
− 2Φ (ω)2 .

If we letm→∞, we will get limm→∞ d (ω, Tm(ω)) = 0. Hence T (ω) = ω since T is continuous. �
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