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1. Introduction

The purpose of this paper is to give an outline of a fixed point theory for asymptotic pointwise nonexpansive mappings
defined on some subsets of modular function spaces which are natural generalizations of both function and sequence vari-
ants of many important, from applications perspective, spaces like Lebesgue, Orlicz, Musielak–Orlicz, Lorentz, Orlicz–Lorentz,
Calderon–Lozanovskii spaces and many others. Recently, the authors presented a series of fixed point results for pointwise
contractions and asymptotic pointwise contractions acting in modular functions spaces [15]. The current paper operates
within the same framework of convex function modulars. Methods used in the current paper are based on notions of mod-
ular uniform convexity and hence differ from the methods in [15] which exploited the ideas of a modular version of the
Opial property and of a uniform continuity of function modulars and their use for proving fixed point theorems.

The importance for applications of nonexpansive mappings in modular function spaces consists in the richness of struc-
ture of modular function spaces, that – besides being Banach spaces (or F-spaces in a more general settings) – are equipped
with modular equivalents of norm or metric notions, and also are equipped with almost everywhere convergence and con-
vergence in submeasure. In many cases, particularly in applications to integral operators, approximation and fixed point
results, modular type conditions are much more natural as modular type assumptions can be more easily verified than
their metric or norm counterparts. There are also important results that can be proved only using the apparatus of mod-
ular function spaces. From this perspective, the fixed point theory in modular function spaces should be considered as
complementary to the fixed point theory in normed spaces and in metric spaces.

The theory of contractions and nonexpansive mappings defined on convex subsets of Banach spaces has been well
developed since the 1960s (see e.g. [4,8,20,6,5]), and generalized to other metric spaces (see e.g. [7,2,14]), and modular
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function spaces (see e.g. [16,17,12]). The corresponding fixed point results were then extended to larger classes of mappings
like asymptotic mappings [21,13], pointwise contractions [19] and asymptotic pointwise contractions and nonexpansive
mappings [22,23,10,15].

As noted in [15], questions are sometimes asked whether the theory of modular function spaces provides general meth-
ods for the consideration of fixed point properties, similarly as this is the case in the Banach space setting. We believe
that this paper, building upon [15], provides further evidence for the existence of such a general theory. Indeed, the most
common approach in the Banach space fixed point theory for generalized nonexpansive mappings is to assume the uniform
convexity of the norm which implies the reflexivity, and – via the Milman Theorem – guarantees the weak compactness of
the closed bounded sets. In this paper we introduce and investigate a notion of a uniform convexity of function modulars,
which in conjunction with the property (R) being the modular equivalent of the Banach space reflexivity [17,15], equips
us with the powerful tools for proving the fixed point property for asymptotic pointwise nonexpansive (in the modular
sense) mappings. Let us recall that the property (R) represents the most important, from the fixed point theory view-
point, geometric characterization of reflexive spaces: every nonincreasing sequence of nonempty, convex, bounded sets has
a nonempty intersection. The property (R) also aligns well to the metric equivalents of reflexivity defined by the notions of
compact convexity structures [10]. The other building blocks of our theory are: (a) The unique best approximant property
for nonempty, convex and closed (in the modular sense) sets; (b) The parallelogram property being a generalization of the
norm parallelogram property in uniformly convex Banach spaces; (c) The minimizing sequence property which states that
any minimizing sequence for any type function defined in a closed and bounded (in the modular sense) set, is conver-
gent and that its modular limit is independent of the choice of a minimizing sequence. The working of our theory can be
summarised as follows:

(1) The uniform convexity property implies the unique best approximant property (Theorem 3.1).
(2) The uniform convexity property via the unique best approximant property implies the property (R) (Theorem 3.3).
(3) The uniform convexity property implies the parallelogram property (Lemma 4.2).
(4) The parallelogram property implies the minimizing sequence property for type functions when the minimum is strictly

positive (Lemma 4.3, Case 1).
(5) The property (R) implies the minimizing sequence property for type functions when the minimum is equal to zero

(Lemma 4.3, Case 2).
(6) The minimizing sequence property for type functions implies the fixed point property for asymptotic pointwise nonex-

pansive mappings (Theorem 4.1); the modular limit of a minimizing sequence for a type function defined by an orbit is
an obvious candidate for a fixed point. We prove that this is indeed the case.

The paper is organized as follows:

(a) Section 2 provides necessary preliminary material and establishes the terminology and key notation conventions.
(b) Section 3 gives a brief exposition of the theory of the uniform convexity of a function modular.
(c) Section 4 presents the fixed point theory for asymptotic pointwise nonexpansive mappings acting in modular function

spaces.

2. Preliminaries

Let Ω be a nonempty set and Σ be a nontrivial σ -algebra of subsets of Ω . Let P be a δ-ring of subsets of Ω , such
that E ∩ A ∈ P for any E ∈ P and A ∈ Σ . Let us assume that there exists an increasing sequence of sets Kn ∈ P such that
Ω = ⋃

Kn . By E we denote the linear space of all simple functions with supports from P . By M∞ we will denote the
space of all extended measurable functions, i.e. all functions f : Ω → [−∞,∞] such that there exists a sequence {gn} ⊂ E ,
|gn| � | f | and gn(ω) → f (ω) for all ω ∈ Ω . By 1A we denote the characteristic function of the set A.

Definition 2.1. Let ρ : M∞ → [0,∞] be a nontrivial, convex and even function. We say that ρ is a regular convex function
pseudomodular if:

(i) ρ(0) = 0;
(ii) ρ is monotone, i.e. | f (ω)| � |g(ω)| for all ω ∈ Ω implies ρ( f ) � ρ(g), where f , g ∈ M∞;
(iii) ρ is orthogonally subadditive, i.e. ρ( f 1A∪B) � ρ( f 1A) + ρ( f 1B) for any A, B ∈ Σ such that A ∩ B 	= ∅, f ∈ M;
(iv) ρ has the Fatou property, i.e. | fn(ω)|↑| f (ω)| for all ω ∈ Ω implies ρ( fn)↑ρ( f ), where f ∈ M∞;
(v) ρ is order continuous in E , i.e. gn ∈ E and |gn(ω)|↓0 implies ρ(gn)↓0.

Similarly as in the case of measure spaces, we say that a set A ∈ Σ is ρ-null if ρ(g1A) = 0 for every g ∈ E . We say
that a property holds ρ-almost everywhere if the exceptional set is ρ-null. As usual we identify any pair of measurable sets
whose symmetric difference is ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind we define
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M(Ω,Σ, P,ρ) = {
f ∈ M∞; ∣∣ f (ω)

∣∣ < ∞ ρ-a.e.
}
, (2.1)

where each f ∈ M(Ω,Σ, P ,ρ) is actually an equivalence class of functions equal ρ-a.e. rather than an individual function.
Where no confusion exists we will write M instead of M(Ω,Σ, P ,ρ).

Definition 2.2. Let ρ be a regular function pseudomodular.

(1) We say that ρ is a regular convex function semimodular if ρ(α f ) = 0 for every α > 0 implies f = 0 ρ-a.e.;
(2) We say that ρ is a regular convex function modular if ρ( f ) = 0 implies f = 0 ρ-a.e.

The class of all nonzero regular convex function modulars defined on Ω will be denoted by 
.

Let us denote ρ( f , E) = ρ( f 1E ) for f ∈ M, E ∈ Σ . It is easy to prove that ρ( f , E) is a function pseudomodular in the
sense of Definition 2.1.1 in [26] (more precisely, it is a function pseudomodular with the Fatou property). Therefore, we can
use all results of the standard theory of modular function spaces as per the framework defined by Kozlowski in [24–26],
see also Musielak [30] for the basics of the general modular theory.

Remark 2.1. We limit ourselves to convex function modulars in this paper. However, omitting convexity in Definition 2.1
or replacing it by s-convexity would lead to the definition of nonconvex or s-convex regular function pseudomodulars,
semimodulars and modulars as in [26].

Definition 2.3. (See [24–26].) Let ρ be a convex function modular.

(a) A modular function space is the vector space Lρ(Ω,Σ), or briefly Lρ , defined by

Lρ = {
f ∈ M; ρ(λ f ) → 0 as λ → 0

}
.

(b) The following formula defines a norm in Lρ (frequently called the Luxemburg norm):

‖ f ‖ρ = inf
{
α > 0; ρ( f /α) � 1

}
.

In the following theorem we recall some of the properties of modular spaces that will be used later on in this paper.

Theorem 2.1. (See [24–26].) Let ρ ∈ 
.

(1) (Lρ, ‖ f ‖ρ) is complete and the norm ‖ · ‖ρ is monotone w.r.t. the natural order in M.
(2) ‖ fn‖ρ → 0 if and only if ρ(α fn) → 0 for every α > 0.
(3) If ρ(α fn) → 0 for an α > 0 then there exists a subsequence {gn} of { fn} such that gn → 0 ρ-a.e.
(4) If { fn} converges uniformly to f on a set E ∈ P then ρ(α( fn − f ), E) → 0 for every α > 0.
(5) Let fn → f ρ-a.e. There exists a nondecreasing sequence of sets Hk ∈ P such that Hk↑Ω and { fn} converges uniformly to f on

every Hk (Egoroff Theorem).
(6) ρ( f ) � lim infρ( fn) whenever fn → f ρ-a.e. (Note: this property is equivalent to the Fatou property.)
(7) Defining L0

ρ = { f ∈ Lρ; ρ( f , ·) is order continuous} and Eρ = { f ∈ Lρ; λ f ∈ L0
ρ for every λ > 0} we have:

(a) Lρ ⊃ L0
ρ ⊃ Eρ ,

(b) Eρ has the Lebesgue property, i.e. ρ(α f , Dk) → 0 for α > 0, f ∈ Eρ and Dk↓∅,
(c) Eρ is the closure of E (in the sense of ‖ · ‖ρ ).

The following definition plays an important role in the theory of modular function spaces.

Definition 2.4. Let ρ ∈ 
. We say that ρ has the 
2-property if supn ρ(2 fn, Dk)→ 0 whenever Dk↓∅ and supn ρ( fn, Dk)→ 0.

Theorem 2.2. Let ρ ∈ 
. The following conditions are equivalent:

(a) ρ has 
2 ,
(b) L0

ρ is a linear subspace of Lρ ,

(c) Lρ = L0
ρ = Eρ ,

(d) if ρ( fn) → 0 then ρ(2 fn) → 0,
(e) if ρ(α fn) → 0 for an α > 0 then ‖ fn‖ρ → 0, i.e. the modular convergence is equivalent to the norm convergence.

The following definition is crucial throughout this paper.
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Definition 2.5. Let ρ ∈ 
.

(a) We say that { fn} is ρ-convergent to f and write fn → 0(ρ) if and only if ρ( fn − f ) → 0.
(b) A sequence { fn} where fn ∈ Lρ is called ρ-Cauchy if ρ( fn − fm) → 0 as n,m → ∞.
(c) A set B ⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B , the convergence fn → f (ρ) implies that f belongs to B .
(d) A set B ⊂ Lρ is called ρ-bounded if sup{ρ( f − g); f ∈ B, g ∈ B} < ∞.
(e) Let f ∈ Lρ and C ⊂ Lρ . The ρ-distance between f and C is defined as

dρ( f , C) = inf
{
ρ( f − g); g ∈ C

}
.

Let us note that ρ-convergence does not necessarily imply ρ-Cauchy condition. Also, fn → f does not imply in general
λ fn → λ f , λ > 1. Using Theorem 2.1 it is not difficult to prove the following

Proposition 2.1. Let ρ ∈ 
.

(i) Lρ is ρ-complete,
(ii) ρ-balls Bρ(x, r) = {y ∈ Lρ; ρ(x − y) � r} are ρ-closed.

The following property plays in the theory of modular function spaces a role similar to the reflexivity in Banach spaces
(see e.g. [17]).

Definition 2.6. We say that Lρ has the property (R) if and only if every nonincreasing sequence {Cn} of nonempty,
ρ-bounded, ρ-closed, convex subsets of Lρ has nonempty intersection.

Let us introduce a notion of a ρ-type, a powerful technical tool which will be used in the proofs of our fixed point
results.

Definition 2.7. Let K ⊂ Lρ be convex and ρ-bounded.

(1) A function τ : K → [0,∞] is called a (ρ)-type (or shortly a type) if there exists a sequence {ym} of elements of K such
that for any z ∈ K there holds

τ (z) = lim sup
m→∞

ρ(ym − z).

(2) Let τ be a type. A sequence {gn} is called a minimizing sequence of τ if

lim
n→∞τ (gn) = inf

{
τ ( f ); f ∈ K

}
.

Note that τ is convex provided ρ is convex.
Let us finish this section with the modular definitions of asymptotic pointwise nonexpansive mappings. The definitions

are straightforward generalizations of their norm and metric equivalents [21–23,10].

Definition 2.8. Let ρ ∈ 
 and let C ⊂ Lρ be nonempty and ρ-closed. A mapping T : C → C is called an asymptotic pointwise
mapping if there exists a sequence of mappings αn : C → [0,∞) such that

ρ
(
T n( f ) − T n(g)

)
� αn( f )ρ( f − g) for any f , g ∈ Lρ.

(i) If {αn} converges pointwise to α : C → [0,1), then T is called an asymptotic pointwise contraction.
(ii) If lim supn→∞ αn( f ) � 1 for any f ∈ Lρ , then T is called an asymptotic pointwise nonexpansive mapping.

(iii) If lim supn→∞ αn( f ) � k for any f ∈ Lρ with 0 < k < 1, then T is called a strongly asymptotic pointwise contraction.

3. Uniform convexity in modular function spaces

This section is devoted to the discussion of the modular equivalents of uniform convexity of ρ . As demonstrated below,
one concept of uniform convexity in normed spaces generates several different types of uniform convexity in modular
function spaces.
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Definition 3.1. Let ρ ∈ 
. We define the following uniform convexity type properties of the function modular ρ:

(i) Let r > 0, ε > 0. Define

D1(r, ε) = {
( f , g); f , g ∈ Lρ, ρ( f ) � r, ρ(g) � r, ρ( f − g) � εr

}
.

Let

δ1(r, ε) = inf

{
1 − 1

r
ρ

(
f + g

2

)
; ( f , g) ∈ D1(r, ε)

}
, if D1(r, ε) 	= ∅,

and δ1(r, ε) = 1 if D1(r, ε) = ∅. We say that ρ satisfies (UC1) if for every r > 0, ε > 0, δ1(r, ε) > 0. Note, that for every
r > 0, D1(r, ε) 	= ∅, for ε > 0 small enough.

(ii) We say that ρ satisfies (UUC1) if for every s � 0, ε > 0 there exists

η1(s, ε) > 0

depending on s and ε such that

δ1(r, ε) > η1(s, ε) > 0 for r > s.

(iii) Let r > 0, ε > 0. Define

D2(r, ε) =
{
( f , g); f , g ∈ Lρ, ρ( f ) � r, ρ(g) � r, ρ

(
f − g

2

)
� εr

}
.

Let

δ2(r, ε) = inf

{
1 − 1

r
ρ

(
f + g

2

)
; ( f , g) ∈ D2(r, ε)

}
, if D2(r, ε) 	= ∅,

and δ2(r, ε) = 1 if D2(r, ε) = ∅. We say that ρ satisfies (UC2) if for every r > 0, ε > 0, δ2(r, ε) > 0. Note, that for every
r > 0, D2(r, ε) 	= ∅, for ε > 0 small enough.

(iv) We say that ρ satisfies (UUC2) if for every s � 0, ε > 0 there exists

η2(s, ε) > 0

depending on s and ε such that

δ2(r, ε) > η2(s, ε) > 0 for r > s.

(v) We say that ρ is Strictly Convex (SC), if for every f , g ∈ Lρ such that ρ( f ) = ρ(g) and

ρ

(
f + g

2

)
= ρ( f ) + ρ(g)

2

there holds f = g .

Remark 3.1.

(i) Let us observe that for i = 1,2, δi(r,0) = 0, and δi(r, ε) is an increasing function of ε for every fixed r.
(ii) Note that

δ1(r, ε) = inf
{
δ′(r,h); h ∈ Lρ, ρ(h) � rε

}
, (3.1)

δ2(r, ε) = inf

{
δ′(r,h); h ∈ Lρ, ρ

(
h

2

)
� rε

}
, (3.2)

where

δ′(r,h) = inf

{
1 − 1

r
ρ

(
f + h

2

)
; f ∈ Lρ, ρ( f ) � r, ρ( f + h) � r

}
. (3.3)

Proposition 3.1. It is easy to prove the following conditions characterizing relationship between the above defined notions:

(1) (UUCi) ⇒ (UCi) for i = 1,2.
(2) δ1(r, ε) � δ2(r, ε).
(3) (UC1) ⇒ (UC2).
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(4) (UUC1) ⇒ (UUC2).
(5) If ρ is homogenous (e.g. is a norm) then all conditions (UC1), (UC2), (UUC1), (UUC2) are equivalent and δ1(r,2ε) = δ1(1,2ε) =

δ2(1, ε) = δ2(r, ε).

Remark 3.2. Observe that, denoting ρα(u) = αρ(u), and the corresponding moduli of convexity by δρα,i , where i = 1,2, we
have

δρα,i(r, ε) = δρ,i

(
r

α
,ε

)
, (3.4)

or

δρ,i(r, ε) = δρα,i(rα,ε). (3.5)

Hence, ρ is (UCx), where (UCx) is any of the conditions from Definition 3.1, if and only if there exists α > 0 such that ρα

is (UCx). In particular, taking α = 1
r , it is enough to prove any of the conditions defining (UCx) with r = 1.

It turns out that within the class of convex function modulars with the 
2 property both notions of uniform convexity
coincide.

Proposition 3.2. Let ρ ∈ 
 satisfy 
2 . Then ρ is (UUC1) if and only if ρ is (UUC2).

Proof. In view of Proposition 3.1, it is enough to prove that (UUC2) implies (UUC1). We claim that to every M1 > 0 there
exists M2 > 0 such that

ρ(2x) � M1 ⇒ ρ(x) � M2, where x ∈ Lρ. (3.6)

Indeed, assume this is not the case. Hence there exists M1 > 0 and a sequence {xn} ⊂ Lρ such that ρ(2xn) � M1 while
ρ(xn) � 1

n which contradicts 
2. Let r1 > 0 and ε1 > 0 be chosen arbitrarily and let h ∈ Lρ be such that ρ(h) � M1 = r1ε1.

Applying (3.6) with 2x = h we get an M2 > 0 such that ρ( h
2 ) � M2. Let r2 > 0, ε2 > 0 be such that M2 = r2ε2. Substituting

these to (3.1) and (3.2) we get

δ1(r1, ε1) � δ2(r2, ε2),

hence ρ is (UUC1) as claimed. �
Remark 3.3. Note that the uniform convexity of ρ defined in [17] coincides with our (UC2). In the same paper, the authors
proved that in Orlicz spaces over a finite, atomless measure space, both conditions (UC2) and (UUC2) are equivalent.

Proposition 3.3. (UC2) ⇒ (SC).

Proof. Let f , g ∈ Lρ , f 	= g , ρ( f ) = ρ(g) = r > 0. Let h = f − g . By (UC2) then

ρ

(
f + g

2

)
= ρ

(
g + h

2

)
�

(
1 − δ2(r, ε)

)
r,

where ε = 1
r ρ(h/2) > 0. Since δ2(r, ε) > 0, it follows then that

ρ

(
f + g

2

)
= ρ

(
g + h

2

)
< r = ρ( f ) + ρ(g)

2
. �

Remark 3.4. It is known that for a wide class of modular function spaces with the 
2 property, the uniform convexity
of the Luxemburg norm is equivalent to (UC1). For example, in Orlicz spaces this result can be traced to early papers by
Luxemburg [28], Milnes [29], Akimovic [1], and Kaminska [11]. It is also known that, under suitable assumptions, (UC2) in
Orlicz spaces is equivalent to the very convexity of the Orlicz function [17,32] and that the uniform convexity of the Orlicz
function implies (UC1) [11]. Typical examples of the Orlicz functions that do not satisfy the 
2 condition but are uniformly
convex (and hence very convex) are: ϕ1(t) = e|t| − |t| − 1 and ϕ2(t) = et2 − 1 [29,27]. See also [9] for the discussion of some
geometrical properties of Calderon–Lozanovskii and Orlicz–Lorentz spaces.

In the next theorem, we investigate relationship between the uniform convexity of function modulars and the unique
best approximant property. This result, will be used in the proof of Theorem 3.2 to establish relationship between the
modular uniform convexity and the property (R). For other results on best approximation in modular function spaces see
e.g. [18].
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Theorem 3.1. Assume ρ ∈ 
 is (UUC2). Let C ⊂ Lρ be nonempty, convex, and ρ-closed. Let f ∈ Lρ be such that d = dρ( f , C) < ∞.
Then there exists a unique best ρ-approximant of f in C , i.e. a unique g0 ∈ C such that

ρ( f − g0) = dρ( f , C).

Proof. Uniqueness follows from the Strict Convexity (SC) of ρ (see Proposition 3.3). Let us prove the existence of the ρ-
approximant. Since C is ρ-closed, we may assume without loss of any generality that d = dρ( f , C) > 0. Clearly there exists
a sequence { fn} ∈ C such that

ρ( f − fn) � d

(
1 + 1

n

)
.

We claim that { 1
2 fn} is ρ-Cauchy. Assume to the contrary that this is not the case. There exists then an ε0 > 0 and a

subsequence { fnk } of { fn} such that

ρ

(
fnk − fnp

2

)
� ε0,

for any p,k � 1. Since ρ is (UUC2), then ρ is (UC2). Hence

ρ

(
f − fnk + fnp

2

)
�

(
1 − δ2

(
d(k, p),

ε0

d(k, p)

))
d(k, p),

where d(k, p) = (1 + 1
min(np ,nk)

)d. For p,k � 1, we have d(k, p) � 2d. Hence

δ2

(
d(k, p),

ε0

d(k, p)

)
� δ2

(
d(k, p),

ε0

2d

)
.

Since ρ is (UUC2) then there exists η > 0 such that

δ2

(
r,

ε0

2d

)
� η,

for any r > d/3. Since d(k, p) � d > d/3, we get

ρ

(
f − fnk + fnp

2

)
� (1 − η)d(k, p),

for any k, p � 1. By the convexity of C ,
fnk + fnp

2 ∈ C . Using the definition of d, we get

d � ρ

(
f − fnk + fnp

2

)
� (1 − η)d(k, p),

for any k, p � 1. If we let k, p go to infinity, we get d � (1 − η)d, which is impossible. Hence { 1
2 fn} is ρ-Cauchy. By

Proposition 2.1, { 1
2 fn} ρ-converges to a g ∈ Lρ . Fix m � 1. Since { fm+ fn

2 } ∈ C and ρ-converges to fm
2 + g and C is ρ-closed,

then we have fm
2 + g ∈ C . Letting m → ∞, we get 2g ∈ C . By Theorem 2.1 parts (2) and (6), passing to a subsequence if

necessary, we get

ρ( f − 2g) � lim inf
n→∞ ρ

(
f − g − fn

2

)
� lim inf

n→∞ lim inf
m→∞ ρ

(
f − fn + fm

2

)
.

Since ρ is convex, we get

lim inf
n→∞ lim inf

m→∞ ρ

(
f − fn + fm

2

)
� lim inf

n→∞ lim inf
m→∞

ρ( f − fn) + ρ( f − fm)

2
� d.

Hence, ρ( f − 2g) � d. Since 2g ∈ C , we get d � ρ( f − 2g). Therefore, ρ( f − 2g) = d. In other words, g0 = 2g is the
ρ-approximant of f in C . �

In our next results, we prove that the modular uniform convexity implies the property (R). As elaborated in the intro-
ductory section, this is parallel to the well-known fact that uniformly convex Banach spaces are reflexive. The property (R)

will be essential for the proof of the Fixed Point Theorem (Theorem 4.1).

Theorem 3.2. Assume ρ ∈ 
 is (UUC2). Let {Cn} be a nonincreasing sequence of nonempty, convex, ρ-closed subsets of Lρ . Assume
that there exists f ∈ Lρ such that supn�1 dρ( f , Cn) < ∞. Then,

⋂
n�1 Cn 	= ∅.
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Proof. Using the proximinality of ρ-closed convex subsets of Lρ (Theorem 3.1), for every n � 1 there exists fn ∈ Cn such
that ρ( f − fn) = dρ( f , Cn). It is easy to show that {dρ( f , Cn)} is nondecreasing and bounded. Hence limn→∞ dρ( f , Cn) = d
exists. If d = 0, then dρ( f , Cn) = 0, for any n � 1. Since all sets Cn are ρ-closed, we get f ∈ Cn for any n � 1, which implies⋂

n�1 Cn 	= ∅. Therefore, we can assume d > 0. In this case we claim that { 1
2 fn} is ρ-Cauchy. Indeed if we assume not, then

there exists ε0 > 0 and a subsequence { fnk } of { fn} such that

ρ

(
fnk − fnp

2

)
� ε0,

for any p,k � 1. Since ρ is (UUC2), then ρ is (UC2). Hence

ρ

(
f − fnk + fnp

2

)
�

(
1 − δ2

(
d,

ε0

d

))
d,

for any p,k � 1. So

dρ( f , Cmin(np ,nk)) � ρ

(
f − fnk + fnp

2

)
�

(
1 − δ2

(
d,

ε0

d

))
d,

for any p,k � 1. If we let p,k → ∞, we will get

d �
(

1 − δ2

(
d,

ε0

d

))
d,

which is a contradiction because δ2(d,
ε0
d ) > 0 by (UC2). Hence { 1

2 fn} is ρ-Cauchy and it ρ-converges to some g ∈ Lρ . Let

us prove that 2g ∈ Cn , for any n � 1. Indeed, we have fk+ f p
2 ∈ Cn , for any p,k � n. Fix any k � n. Since { fk+ f p

2 } ρ-converges

to fk
2 + g as p → ∞, and Cn is ρ-closed, then fk

2 + g ∈ Cn , for any k � n. If we let k → ∞, we get 2g ∈ Cn , for any n � 1.
Hence,

⋂
n�1 Cn 	= ∅. �

The next result describes the relationship between the modular uniform convexity and the property (R).

Theorem 3.3. Let ρ ∈ 
 be (UUC2) then Lρ has property (R).

Proof. Let {Cn} be a nonincreasing sequence of nonempty, ρ-bounded, ρ-closed, convex subsets of Lρ . According to Defini-
tion 2.6 we need to demonstrate that {Cn} has nonempty intersection. Fix any f ∈ C1. By the ρ-boundedness of C1, there
exists a finite constant M > 0 such that for any n � 1, ρ( f − g) < M for any g ∈ Cn ⊂ C1. Hence,

sup
n�1

dρ( f , Cn) < ∞.

By Theorem 3.2 then,
⋂

n�1 Cn 	= ∅. �
4. Fixed point theorem for asymptotic pointwise nonexpansive mappings

We will start with the following lemma being a modular equivalent of a norm result from [31].

Lemma 4.1. Let ρ ∈ 
 be (UUC1). If there exists R > 0 such that

lim sup
n→∞

ρ( fn) � R, lim sup
n→∞

ρ(gn) � R,

and

lim
n→∞ρ

(
fn + gn

2

)
= R,

then

lim
n→∞ρ( fn − gn) → 0.

Proof. Assume this is not the case. Let γ > 0 be arbitrarily chosen. For n sufficiently large, passing to subsequences if
necessary we may assume that there exists ε > 0 such that ρ( fn) � R + γ , ρ(gn) � R + γ and ρ( fn − gn) � Rε, for all
n � 1. By (UUC1) then
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0 < η1(R, ε) < δ1(R + γ ,ε) � 1 − 1

R + γ
ρ

(
fn + gn

2

)
→ γ

R + γ
.

Letting γ → 0 we get the contradiction completing the proof. �
Remark 4.1. The assumption R > 0 is important. It is easy to prove that Lemma 4.1 is true for R = 0 if and only if ρ satisfies

2 property.

We will establish now a modular version of the parallelogram inequality for uniformly convex modular function spaces.
See the papers of Xu [33] and Beg [3] for the norm and metric versions respectively.

Lemma 4.2. For each 0 < s < r and ε > 0 set

Ψ (r, s, ε) = inf

{
1

2
ρ2( f ) + 1

2
ρ2(g) − ρ2

(
f + g

2

)}
, (4.1)

where the infimum is taken over all f , g ∈ Lρ such that ρ( f ) � r, ρ(g) � r, max(ρ( f ),ρ(g)) � s, and ρ( f − g) � rε.
If ρ ∈ 
 is (UUC1) then Ψ (r, s, ε) > 0 for any 0 < s < r and ε > 0. Moreover, for fixed r, s > 0, we have

(i) Ψ (r, s,0) = 0;
(ii) Ψ (r, s, ε) is a nondecreasing function of ε;

(iii) if limn→∞ Ψ (r, s, tn) = 0, then limn→∞ tn = 0.

Proof. Using the inequality 2ab � a2 + b2, for any a,b ∈ R, one can easily prove

ρ2
(

f + g

2

)
� 1

2
ρ2( f ) + 1

2
ρ2(g),

since ρ is convex. Hence Ψ (r, s, ε) � 0. Assume that ρ is (UUC1) and that there exist 0 < s < r and ε > 0 such that
Ψ (r, s, ε) = 0. Then there exist { fn} and {gn} such that

lim
n→∞

1

2
ρ2( fn) + 1

2
ρ2(gn) − ρ2

(
fn + gn

2

)
= 0 (4.2)

and ρ( fn) � r, ρ(gn) � r, max(ρ( fn),ρ(gn)) � s, and ρ( fn − gn) � rε. Since

ρ2
(

fn + gn

2

)
�

(
ρ( fn) + ρ(gn)

2

)2

� ρ2( fn) + ρ2(gn)

2
,

we get

(
ρ( fn) − ρ(gn)

2

)2

� 1

2
ρ2( fn) + 1

2
ρ2(gn) − ρ2

(
fn + gn

2

)
.

This implies limn→∞(ρ( fn)−ρ(gn)) = 0. Without loss of any generality, we may assume limn→∞ ρ( fn) = R exists. This also
implies that limn→∞ ρ(gn) = R . By (4.2) we get then

lim
n→∞ρ(gn) = lim

n→∞ρ

(
fn + gn

2

)
= R.

Observe that

R = lim
n→∞ max

(
ρ( fn),ρ(gn)

)
� s > 0.

By Lemma 4.1 then ρ( fn − gn) → 0 contradicting the fact that ρ( fn − gn) � rε > 0. The proofs of (i), (ii) and (iii) are
easy. �

The following lemma plays the crucial role in the proof of the Fixed Point Theorem for pointwise asymptotically nonex-
pansive mappings in modular function spaces.

Lemma 4.3. Assume that ρ ∈ 
 is (UUC1). Let C be a ρ-closed ρ-bounded convex nonempty subset. Let τ be a type defined on C.
Then any minimizing sequence of τ is ρ-convergent. Its limit is independent of the minimizing sequence.
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Proof. Let { fn} ⊂ C be such that τ ( f ) = lim supn→∞ ρ( fn − f ). Denote τ0 = inf{τ (h); h ∈ C}. Let {gk} be a minimizing
sequence of τ . Since C is ρ-bounded, there exists R > 0 such that ρ( f − g) � R for any f , g ∈ C . The rest of the proof is
split into two cases.

Case 1: Assume that τ0 > 0. Let us choose a σ > 0 such that τ0 − σ > 0. Let us fix gm and gk and select a subsequence
{hn} of { fn} such that

0 < τ0 � τ

(
gm + gk

2

)
= lim

n→∞ρ

(
gm + gk

2
− hn

)
. (4.3)

Then for n sufficiently large we have

0 < τ0 − σ � ρ

(
gm + gk

2
− hn

)
� max

(
ρ(gm − hn),ρ(gk − hn)

)
. (4.4)

Using (4.1) from Lemma 4.2 then

ρ2
(

gm + gk

2
− hn

)
� 1

2
ρ2(gm − hn) + 1

2
ρ2(gk − hn) − Ψ

(
R, τ0 − σ ,

1

R
ρ(gm − gk)

)
,

and passing with n to infinity we get

τ 2
(

gk + gm

2

)
� 1

2
τ 2(gk) + 1

2
τ 2(gm) − Ψ

(
R, τ0 − σ ,

1

R
ρ(gk − gm)

)
.

Hence

τ 2
0 � 1

2
τ 2(gk) + 1

2
τ 2(gm) − Ψ

(
R, τ0 − σ ,

1

R
ρ(gk − gm)

)
,

for any k,m � 1. So

Ψ

(
R, τ0 − σ ,

1

R
ρ(gk − gm)

)
� 1

2
τ 2(gk) + 1

2
τ 2(gm) − τ 2

0 .

Hence limk,m→∞ Ψ (R, τ0 − σ , 1
R ρ(gk − gm)) = 0. The properties satisfied by Ψ imply that {gk} is ρ-Cauchy. Since Lρ is

ρ-complete and C is ρ-closed, then {gk} is ρ-convergent to some point g ∈ C . Let us prove that any other minimizing se-
quence also ρ-converges to g . Indeed let {un} ∈ C be any minimizing sequence of τ . Using the same argument as previously
we have

τ 2
0 � τ 2

(
gn + un

2

)
� 1

2
τ 2(gn) + 1

2
τ 2(un) − Ψ

(
R, τ0 − σ ,

1

R
ρ(gn − un)

)
,

for some σ > 0 such that τ0 − σ > 0 and

Ψ

(
R, τ0 − σ ,

1

R
ρ(gn − un)

)
� 1

2
τ 2(gn) + 1

2
τ 2(un) − τ 2

0 ,

for any n � 1. As before, we get limn→∞ ρ(gn − un) = 0. Since ρ is convex, we get

ρ

(
(u − g)

3

)
� 1

3
ρ(u − un) + 1

3
ρ(un − gn) + 1

3
ρ(gn − g),

where u is the ρ-limit of {un}. Clearly our assumptions imply that ρ(
(u−g)

3 ) = 0 or u = g . This completes the proof of the
lemma for Case 1.

Case 2: Assume that τ0 = 0. Let

K =
⋂
n�1

convρ

({ fk; k � n}),
which is nonempty in view of the property (R); recall (UUC1) implies (R) by Theorem 3.3. Let f∞ ∈ K . Let h ∈ C , ε > 0. By
definition of τ , there exists n0 > 0 such that for every n > n0

ρ( fn − h) � τ (h) + ε.

Therefore, fn ∈ Bρ(h, τ (h) + ε) for n > n0. This fact implies

K ⊂ convρ

({ fn; n � n0}
) ⊂ Bρ

(
h, τ (h) + ε

)
.
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Hence f∞ ∈ Bρ(h, τ (h) + ε). Since this is true for every ε > 0, there holds f∞ ∈ Bρ(h, τ (h)), i.e.

ρ( f∞ − h) � τ (h). (4.5)

Let {gk} be a minimizing sequence of τ . Using (4.5) with h = gk we get

ρ( f∞ − gk) � τ (gk) → τ0 = 0 as k → ∞, (4.6)

which means that {gk} is ρ-convergent to f∞ . Since this limit is independent of the sequence {gk}, the proof of Case 2 is
complete and of the lemma. �

Using the above results, we are ready to prove the main result of this paper.

Theorem 4.1. Assume ρ ∈ 
 is (UUC1). Let C be a ρ-closed ρ-bounded convex nonempty subset. Then any T : C → C pointwise
asymptotically nonexpansive has a fixed point. Moreover, the set of all fixed points Fix(T ) is ρ-closed.

Proof. Let f ∈ C . Define the type

τ (h) = lim sup
n→∞

ρ
(
T n( f ) − h

)
, for any h ∈ C .

Let τ0 = inf{τ (h); h ∈ C}. Let {gn} ⊂ C be a minimizing sequence of τ and g ∈ C its ρ-limit which exists in view of
Lemma 4.3. Let us prove that g is a fixed point of T . First notice that τ (T m(h)) � αm(h)τ (h), for any h ∈ C and m � 1. In par-
ticular, we have τ (T m(gn)) � αm(gn)τ (gn), for any n,m � 1. By induction, we build an increasing sequence {mk} such that
αmk+m(gk) � 1+ 1

k , for k,m � 1. Indeed, since T is pointwise asymptotically nonexpansive, we have lim supm→∞ αm(g1) � 1.

So there exists m1 � 1 such that for any m � m1 we have αm(g1) � 1 + 1
1 . Since lim supm→∞ αm(g2) � 1, there exists

m2 > m1 such that for any m � m2, we have αm(g2) � 1 + 1
2 . Assume mk is built, then since lim supm→∞ αm(gk+1) � 1,

there exists mk+1 > mk such that for any m � mk+1, we have αm(gk+1) � 1 + 1
k+1 , which completes our induction claim.

This forces {T mk+p(gk)} to be a minimizing sequence of τ , for any p � 0. Lemma 4.3 implies {T mk+p(gk)} is ρ-convergent
to g , for any p � 0. In particular, we have {T mk+1(gk)} is ρ-convergent to g . Since

ρ
(
T mk+1(gk) − T (g)

)
� α1(g)ρ

(
T mk (gk) − g

)
,

we conclude that {T mk+1(gk)} is also ρ-convergent to T (g). Since the ρ-limit of any ρ-convergent sequence is by Lemma 4.3
unique, we must have T (g) = g . To prove that Fix(T ) is ρ-closed, let fn ∈ Fix(T ) and ρ( fn − f ) → 0. Observe that

ρ

(
1

3

(
T ( f ) − f

))
� ρ

(
T ( f ) − T ( fn)

) + ρ
(
T ( fn) − fn

) + ρ( fn − f )

� α1( f )ρ( fn − f ) + ρ( fn − f ) → 0.

Hence, f ∈ Fix(T ) proving Fix(T ) is ρ-closed. �
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