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Abstract
In this work, we discuss the existence of fixed points of monotone nonexpansive
mappings defined on partially ordered Banach spaces. This work is a continuity of the
previous works of Ran and Reurings, Nieto et al., and Jachimsky done for contraction
mappings. As an application, we discuss the existence of solutions to an integral
equations.
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1 Introduction
Banach’s contraction principle [] is remarkable in its simplicity, yet it is perhaps the most
widely applied fixed point theorem in all of analysis. This is because the contractive condi-
tion on the mapping is simple and easy to test, because it requires only a complete metric
space for its setting, and because it finds almost canonical applications in the theory of dif-
ferential and integral equations. Over the years, many mathematicians tried successfully
to extend this fundamental theorem. Recently a version of this theorem has been given in
partially ordered metric spaces [, ] (see also [, ]) and in metric spaces with a graph [].

In this work, we discuss the case of nonexpansive mappings defined in partially ordered
Banach spaces. Nonexpansive mappings are those which have Lipschitz constant equal
to . The fixed point theory for such mappings is rich and varied. It finds many applications
in nonlinear functional analysis []. It is worth mentioning that such investigation is new
and has never been carried.

2 Monotone nonexpansive mappings
Let (X,‖ · ‖) be a Banach vector space. Assume that we have a partial order � defined on X
such that order intervals are convex and τ -closed, where τ is a Hausdorff topology on X.
Recall that an order interval is any of the subsets [a, b] = {x ∈ X; a � x � b}, [a,→) = {x ∈
X; a � x}, (←, a] = {x ∈ X; x � a} for any a, b ∈ X.

Definition . Let C be a nonempty subset of X. Let T : C → C be a map.
() T is said to be monotone if T(x) � T(y) whenever x � y for any x, y ∈ C.
() T is said to be monotone nonexpansive if and only if T is monotone and

∥
∥T(x) – T(y)

∥
∥ ≤ ‖x – y‖, whenever x � y.
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The point x ∈ C is called a fixed point of T if T(x) = x. The set of fixed points of T will be
denoted by Fix(T).

Throughout the paper we assume that C is convex and bounded not reduced to one
point. Let T : C → C be a monotone nonexpansive mapping. Fix λ ∈ (, ) and x ∈ C.
The Krasnoselskii [, ] iteration sequence {xn} ⊂ C is defined by

xn+ = λxn + ( – λ)T(xn), n ≥ . (KIS)

The following lemma holds.

Lemma . Under the above assumptions, if we assume that x � T(x), then we have

xn � xn+ � T(xn) � T(xn+) (KI)

for any n ≥ . Moreover, if {xn} has two subsequences which τ -converge to z and w respec-
tively, then we must have z = w.

Proof First note that if x � y holds, then we have x � λx + ( – λ)y � y for any x, y ∈ X
since order intervals are convex. Therefore it is enough to only prove xn � T(xn) for any
n ≥ . By assumption, we have x � T(x). Assume that xn � T(xn) for n ≥ . Then we
have xn � λxn + ( – λ)T(xn) � T(xn), i.e., xn � xn+ � T(xn). Since T is monotone, we get
T(xn) � T(xn+). By induction, we conclude that the inequalities (KI) hold for any n ≥ .
Next let {xφ(n)} be a subsequence of {xn} which τ -converges to z. Clearly, {[xn,→); n ∈
N} is a decreasing family of sets. Consequently, if Uz ∈ τ is a neighborhood of z, then
Uz ∩ [xn,→) �= ∅ for any n ∈ N. Therefore, z belongs to all sets [xn,→) as they are closed.
Let w be the τ -limit of another subsequence of {xn}. If Uw ∈ τ is a neighborhood of w,
then Uw contains many points from the sequence {xn} since w is a τ -limit of one of its
subsequences. Hence Uw ∩ (←, z] �= ∅. Therefore, w belongs to (←, z] as it is closed, i.e.,
w � z. By reversing the roles of z and w, we get z � w. The properties of the partial order
will force z = w as claimed. �

Remark . Note that under the assumptions of Lemma ., if we assume T(x) � x,
then we will have

T(xn+) � T(xn) � xn+ � xn

for any n ≥ . The conclusion on the τ -convergence limits of {xn} will also hold.

The following result is found in [, ].

Proposition . Under the above assumptions, we have

(

 + n( – λ)
)∥
∥T(xi) – xi

∥
∥

≤ ∥
∥T(xi+n) – xi

∥
∥ + λ–n(∥∥T(xi) – xi

∥
∥ –

∥
∥T(xi+n) – xi+n

∥
∥
)

(GK)
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for any i, n ∈N. This inequality implies

lim
n→+∞

∥
∥xn – T(xn)

∥
∥ = .

Proof The first part of this proposition is easy to prove via an induction argument on the
index i. As for the second part, note that {‖xn – T(xn)‖} is decreasing. Indeed we have
xn+ – xn = ( – λ)(T(xn) – xn) for any n ≥ . Therefore {‖xn – T(xn)‖} is decreasing if and
only if {‖xn+ – xn‖} is decreasing, which holds since

‖xn+ – xn+‖ ≤ λ‖xn+ – xn‖ + ( – λ)
∥
∥T(xn+) – T(xn)

∥
∥ ≤ ‖xn+ – xn‖

for any n ≥ . Set limn→+∞ ‖xn – T(xn)‖ = R. Then we let i → +∞ in the inequality (GK)
to obtain

(

 + n( – λ)
)

R ≤ δ(C)

for any n ∈ N, where δ(C) = sup{‖x – y‖, x, y ∈ C} < +∞. Hence

R ≤ δ(C)
( + n( – λ))

, n = , , . . . ,

which implies R = , i.e., limn→+∞ ‖xn – T(xn)‖ = . �

Before we state the main result of this work, let us recall the definition of Opial condi-
tion [].

Definition . X is said to satisfy the τ -Opial condition if for any sequence {yn} in X
which τ -converges to y, we have

lim sup
n→+∞

‖yn – y‖ < lim sup
n→+∞

‖yn – z‖

for any z ∈ X such that z �= y.

Now we are ready to state the main result of this section.

Theorem . Let X be a Banach space. Let τ be a topology on X such that X satisfies the
τ -Opial condition. Let � be a partial order on X such that order intervals are convex and
τ -closed. Let C be a bounded convex τ -compact nonempty subset of X. Let T : C → C be a
monotone nonexpansive mapping. Assume that there exists x ∈ C such that x and T(x)
are comparable. Then T has a fixed point.

Proof Without loss of any generality, we assume that x � T(x). Consider the (KIS) se-
quence {xn} which starts at x. Since C is τ -compact, then {xn} will have a subsequence
{xkn} which τ -converges to some point w ∈ C. Lemma . implies that {xn} τ -converges to
w and xn � w for any n ∈N. Consider the type function

r(x) = lim sup
n→+∞

‖xn – x‖, x ∈ C.
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Then Proposition . implies r(x) = lim supn→+∞ ‖T(xn) – x‖ for any x ∈ C. Since T is
monotone nonexpansive, we get

r
(

T(w)
)

= lim sup
n→+∞

∥
∥T(xn) – T(w)

∥
∥ ≤ lim sup

n→+∞
‖xn – w‖ = r(w).

In fact we have r(T(x)) ≤ r(x) for any x ∈ C such that xn and x are comparable for any
n ∈N. Finally, if X satisfies the τ -Opial condition, then we must have T(w) = w, i.e., w is a
fixed point of T . �

The following results are direct consequences of Theorem ..

Corollary . Let C be a bounded closed convex nonempty subset of lp,  < p < +∞. Let
τ be the weak topology. Consider the pointwise partial ordering in lp, i.e., (αn) � (βn) iff
αn ≤ βn for all n ≥ . Then any monotone nonexpansive mapping T : C → C has a fixed
point provided there exists a point x ∈ C such that x and T(x) are comparable.

Remark . The case of p =  is not interesting for the weak topology since l is a Schur
Banach space. But if we consider the weak* topology σ (l, c) on l or the pointwise conver-
gence topology, then l satisfies the Opial condition for these topologies. Note that these
two topologies are Hausdorff. In this case we have a similar conclusion of Corollary .
for l.

Recall the definitions of lp and c spaces:
(i) lp = {(αn) ∈R

N,
∑

n |αn|p < +∞} for  ≤ p < +∞;
(ii) c = {(αn) ∈R

N, limn→+∞ αn = }.

3 Application to integral equations
Let us consider the following integral equation of the form

x(t) = g(t) +
∫ 


F
(

t, s, x(s)
)

ds, t ∈ [, ], (IE)

where
(i) g is in L([, ],R),

(ii) F : [, ] × [, ] × L([, ],R) →R is measurable and satisfies the condition

 ≤ F(t, s, x) – F(t, s, y) ≤ x – y, (.)

where t, s ∈ [, ], and x, y ∈ L([, ],R) such that y ≤ x.
Recall that for any u, v ∈ L([, ],R), we have

u ≤ v ⇐⇒ u(t) ≤ v(t) almost everywhere t ∈ [, ].

Condition (.) represents the monotonicity of the flow of the integral equation. A com-
prehensive study of the monotonicity of the flow can be found in the book of Smith [].
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Assume that there exists a non-negative function h(·, ·) ∈ L([, ] × [, ]) and M < 
 such

that

∣
∣F(t, s, x)

∣
∣ ≤ h(t, s) + M|x|, (.)

where t, s ∈ [, ] and x ∈ L([, ],R).
Let

B =
{

y ∈ L([, ],R
)

, such that ‖x‖L([,],R) ≤ ρ
}

,

where ρ is sufficiently large, i.e., B is the closed ball of L([, ],R) centered at  with ra-
dius ρ . Consider the operator defined by

F̃(t)(y)(s) = F
(

t, s, y(s)
)

, (.)

and define the operator J : L([, ],R) → L([, ],R) by

(Jy)(t) = g(t) +
∫ 


F̃(t)(y)(s) ds. (.)

We have J(B) ⊂ B. Indeed let x ∈ B, then by using the Cauchy-Schwarz inequality, condi-
tion (.) and the quadratic inequality (a + b) ≤ a + b for any a, b ∈R, we have

‖Jx‖
L([,],R) =

∫ 



∣
∣Jx(t)

∣
∣
 dt

=
∫ 



∣
∣
∣
∣
g(t) +

∫ 


F̃(t)(x)(s) ds

∣
∣
∣
∣



dt

≤ 
∫ 



∣
∣g(t)

∣
∣
 dt + 

∫ 



∫ 



∣
∣̃F(t)(x)(s)

∣
∣
 ds dt

≤ 
∫ 



∣
∣g(t)

∣
∣
 dt + 

∫ 



∫ 



∣
∣h(t, s) + M

∣
∣x(s)

∣
∣
∣
∣
 ds dt

≤ 
∫ 



∣
∣g(t)

∣
∣
 dt + 

∫ 



∫ 



∣
∣h(t, s)

∣
∣
 ds dt + M

∫ 



∫ 



∣
∣x(s)

∣
∣
 ds dt

= 
∫ 



∣
∣g(t)

∣
∣
 dt + 

∫ 



∫ 



∣
∣h(t, s)

∣
∣
 ds dt + M

∫ 



∣
∣x(s)

∣
∣
 ds

= 
∫ 



∣
∣g(t)

∣
∣
 dt + 

∫ 



∫ 



∣
∣h(t, s)

∣
∣
 ds dt + M‖x‖

L([,],R)

≤ 
∫ 



∣
∣g(t)

∣
∣
 dt + 

∫ 



∫ 


h(t, s) ds dt + Mρ.

Since M < /, choose ρ such that


( – M)

∫ 



∣
∣g(t)

∣
∣
 dt +


( – M)

∫ 



∫ 


h(t, s) ds dt ≤ ρ,

we will get J(x) ∈ B as claimed. Next we prove that J is monotone nonexpansive. First from
condition (.), J is obviously monotone. Let x, y ∈ L([, ],R) such that y ≤ x. Using the
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Cauchy-Schwarz inequality, we have

‖Jx – Jy‖
L([,],R) =

∫ 



(

Jx(t) – Jy(t)
) dt

=
∫ 



(∫ 



(

F̃(t)(x)(s) – F̃(t)(y)(s)
)

ds
)

dt

≤
∫ 



(∫ 



(

x(s) – y(s)
)

ds
)

dt

≤
∫ 



(

x(s) – y(s)
) ds = ‖x – y‖

L([,],R),

which implies that J is a monotone nonexpansive operator as claimed. In order to use
Theorem ., we need to check its assumptions. First note that X = L([, ],R) is a Hilbert
space. If we choose τ to be the weak topology, then X satisfies the weak Opial condition.
It is easy to check that order intervals are convex. In order to show that order intervals
are closed, we will show that if {un} is a non-negative sequence of elements in X which
converges weakly to u, then u is positive. Let a < , then the set A = {t ∈ [, ]; u(t) ≤ a}
has measure . Indeed, we have

∫

A
u(t) dt = lim

n→+∞

∫

A
un(t) dt

because of weak convergence. So

 ≤ lim
n→+∞

∫

A
un(t) dt =

∫

A
u(t) dt ≤ am(A) ≤ .

Hence m(A) = . Set

D =
⋃

n≥

{

t ∈ [, ]; u(t) ≤ –

n

}

.

Then D has measure , which implies that u(t) ≥  for almost every t ∈ [, ]. Using The-
orem ., we get the following result.

Theorem . Under the above assumptions, we conclude that
(i) the integral equation (IE) has a non-negative solution provided we assume that

g(t) +
∫ 

 F(t, s, ) ds ≥  for almost every t ∈ [, ] (which implies J() ≥ );
(ii) the integral equation (IE) has a non-positive solution provided we assume that

g(t) +
∫ 

 F(t, s, ) ds ≤  for almost every t ∈ [, ] (which implies J() ≤ ).
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