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Abstract

We prove that a uniformly smooth Banach space X has super-
normal structure property. More precisely we prove that if the mod-

ulus of smoothness of X satisfies lim
τ→0

ρX(τ)
τ

<
1
2
, then X and X∗ are

superreflexives and have super-normal structure property.
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1 Introduction and Preliminaries.

The results of the present paper are a part of the research done by the author
during his Ph.D. at the University of Paris 6, 1987.

The condition on the modulus of smoothness that we consider in this

work originated in Baillon’s work [3] where he proved that if lim
τ→0

ρX(τ)

τ
<

1

2
,

then the Banach space X has the fixed point property. This result was
strengthened by Turett [14] showing that this condition on the modulus of
smoothness implies normal structure property and therefore, via Kirk’s the-
orem [9], implies the fixed point theorem.
In this work we give an easy proof of Turett’s result and show that under the
cited condition the Banach space and its dual enjoy super-normal structure
property. We also notice that super-normal structure property implies uni-
form normal structure property.

To our knowledge this is the only proof of this fact that uses nonstandard
methods.

Throughout this work (X, ||.||) will be a Banach space. We will denote by
SX its unit sphere, i.e. SX = {x ∈ X; ||x|| = 1}, and by X∗ its dual space.
We begin with some standard definitions.

Definition 1. Let X be a Banach space.

(a) Define for every x, y ∈ SX and every τ ∈ [0, 1]

ρX(x, y, τ) =
1

2
(||x + τy||+ ||x− τy||)− 1,

(b) and
ρX(y, τ) = sup

x∈SX

ρX(x, y, τ).

(c) Define the modulus of smoothness of X by

ρX(τ) = sup
y∈SX

ρX(y, τ).
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(d) We will say that X is uniformly smooth if and only if

lim
τ→0

ρX(τ)

τ
= 0.

Definition 2. Let X be a Banach space.

(a) Define for every z ∈ SX and every ε ∈ [0, 2]

δX(ε, z) = inf{1−||x + y

2
||; (x, y) ∈ SX such that x−y = αz with |α| ≥ ε}.

(b) Define the modulus of uniform convexity of X by

δX(ε) = inf{δX(ε, z); z ∈ SX}.

(c) Define the characteristic of uniform convexity of X in the direction
z ∈ SX to be

ε0(X, z) = sup{ε; δX(ε, z) = 0},

and the characteristic of uniform convexity to be

ε0(X) = sup{ε; δX(ε) = 0}.

(d) We will say that X is uniformly convex if and only if δX(ε) > 0 for
every ε ∈ [0, 2] (i.e. ε0(X) = 0).

Recall that these two notions are dual to each other. Indeed in [14] one
can find the proof of the following technical result.

Lemma 1. For every Banach space X we have

(i) ρX∗(τ) = sup{ τε
2
− δX(ε); ε ∈ [0, 2]}, for τ > 0.

(ii) ρX(τ) = sup{ τε
2
− δX∗(ε); ε ∈ [0, 2]}, for τ > 0.

(iii) X is uniformly convex if and only if X∗ is uniformly smooth.

5



The characteristic of convexity is used to scale Banach spaces. For exam-
ple James [7] proved that if X is uniformly nonsquare (i.e. ε0(X) < 2) then
X is superreflexive (see [13] for more details). Also it is well known that the
condition ε0(X) < 1 implies uniform normal structure (see for example [6]).
In the following technical result we compare the characteristic of convexity
to lim

τ→0

ρX(τ)
τ

= ρ′X(0). This limit will therefore be used to scale Banach spaces

from smoothness point of view.

Theorem 1. For every Banach space X we have

(1) lim
τ→0

ρX(τ)

τ
<

α

2
iff (2) ε0(X

∗) < α,

for every α ≤ 2.
Therefore, we have

lim
τ→0

ρX(τ)

τ
=

1

2
ε0(X

∗).

Proof. Let us first show that (1) implies (2). Let α ∈ [0, 2] and assume
that ε0(X

∗) ≥ α. Then there exist (fn) and (gn) in SX∗ such that

||fn − gn||X∗ ≥ α and lim
n→∞

||fn + gn||X∗ = 2.

On the other hand using the definition of ρX we get

ρX(τ) ≥ ||x + τy

2
||+ ||x− τy

2
|| − 1,

for every τ > 0 and x, y ∈ SX . Therefore

ρX(τ) ≥ |f(x) + g(x)

2
|+ τ |f(y)− g(y)

2
| − 1,

for every f, g ∈ SX∗ . Since x and y were arbitrary we get

ρX(τ) ≥ ||f + g

2
||+ τ ||f − g

2
|| − 1.

So in particular we have for every n ≥ 1

ρX(τ) ≥ ||fn + gn

2
||+ τ ||fn − gn

2
|| − 1.
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Let n goes to infinity, we obtain

ρX(τ) ≥ τα

2
.

This clearly means that (1) implies (2). Let us complete the proof by showing
that (2) implies (1). So assume that ε0(X

∗) < α and let α′ ∈ (ε0(X
∗), α).

Set τ ′ = δX∗(α′) and consider ε ∈ [0, 2]. Two cases occur.
First assume ε < α′ then τε

2
< τα′

2
. So τε

2
− δX∗(ε) < τα′

2
.

On the other hand if α′ ≤ ε then δX∗(ε) ≥ δX∗(α′) = τ ′, since the modulus
of convexity is an increasing function. Therefore

τε

2
≤ τ < τ ′ < δX∗(ε)

for any τ < τ ′. But this clearly implies

τε

2
− δX∗(ε) < 0.

Therefore in any case we have for τ < τ ′

sup{τε

2
− δX∗(ε); ε ∈ [0, 2]} ≤ τα′

2
.

Using Lemma 1 we get ρX(τ) ≤ τα′

2
. Which clearly implies that

lim
τ→0

ρX(τ)

τ
≤ α′

2
.

Our choice of α′ implies that (2) is true.
Let us now complete the proof of Theorem 1. Assume first that ε0(X

∗) = 2.
Then δX∗(ε) = 0 for every ε ∈ [0, 2]. Therefore using Lemma 1 again we get
ρX(τ) = τ for every τ > 0. This will imply

lim
τ→0

ρX(τ)

τ
= 1 =

ε0(X
∗)

2
.

Now if we assume that ε0(X
∗) < 2, then clearly we can use our previous

result to get the desired conlusion.
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2 Uniform smoothness and normal structure

property.

Throughout the sequel the diameter of a subset A of X is denoted by diam(A)
(diam(A) = sup{||x − y||; x, y ∈ A}), and a point x0 ∈ A is called a nondi-
ametral point of A if

r(x0, A) = sup{||x0 − y||; y ∈ A} < diam(A).

A Banach space X is said to have normal structure if each bounded convex
subset K of X with diam(K) > 0 contains a nondiametral point. This notion
was introduced by Brodskii and Milman in [4], where it is shown that every
weakly compact convex set which has this property contains a point which
is fixed under surjective isometry.
A Banach space is said to have uniform normal structure (U.N.S.) if each
bounded convex subset K of X with diam(K) > 0 contains a point x such
that

r(x, K) = sup{||x− y||; y ∈ K} ≤ αdiam(K),

where α is independent of x and K. Let us recall that if a Banach space
has U.N.S. then it is reflexive (see [2,8,12]). It has been generally known for
many years that if ε0(X) < 1 then X has U.N.S. and an explicit proof of this
fact is given in [6]. More on normal structure, can be found in [10,15].

Since our proof uses ultraproduct thechnique we start by making some
basic definitions.
Let X be a Banach space and let U be a free ultrafilter over N (the set of
natural integers). The ultraproduct space X of X is the quotient space of

l∞(X) = {(xn); xn ∈ X and ||(xn)|| = sup
n
||xn|| < ∞}

by; N = {(xn) ∈ l∞(X); lim
n→U

||xn|| = 0}.

We shall not distinguish between (xn) ∈ l∞(X) and its class (xn) +N ∈ X .
Clearly

||(xn)||X = lim
n→U

||xn||.

It is also clear that X is isometric to a subspace of X by the mapping
x → (x, x, x, ....). Hence, we may assume that X is a subspace of X . We will
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write x, y and z for the general elements of X . When P is an hereditary
property, we will say that X has super-P if and only if any ultraproduct X
has P . For more details on ultraproduct thechnique we defer to [1,13]. Our
first result compare super-normal structure and uniform normal structure.

Theorem 2. Let X be a Banach space. If X has super-normal structure
then X has uniform normal structure.

Proof. Indeed assume that X fails to have U.N.S. Then there exists a
sequence (Kn) of closed bounded convex subset of X with diameter equal to
1 such that lim

n→∞
r(Kn) = 1, where

r(K) = inf{r(x, K); x ∈ K}.

Let X be an ultraproduct of X and consider

K = {x ∈ X ;x = (xn) with xn ∈ Kn for every n ≥ 1}.

Let us show that for every x ∈ K we have r(x,K) = diam(K) = 1. Indeed let
(εn) be a sequence of positive numbers such that lim

n→∞
εn = 0. Set x = (xn).

Then one can find (yn) with yn ∈ Kn for every n ≥ 1 such that ||xn − yn|| ≥
r(Kn)− εn. Then, if U is the ultrafilter defining X , we have

lim
n→U

||xn − yn|| ≥ lim
n→U

r(Kn) = 1.

Then if we put y = (yn) we get ||x − y||X = 1 = diam(K). This clearly
means that x is diametral point. Therefore X fails to have normal structure.
The proof of Theorem 2 is therefore complete.

Remark. Recall that it is still unknown whether U.N.S. is equivalent
to super-normal structure. Let us remark that if the Banach space is su-
perreflexive then indeed these properties are equivalent. Then one can ask
whether uniform normal structure implies superreflexivity. This problem is
still open.

Let us now state our main result.
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Theorem 3. Let X be a Banach space. Assume that its modulus of
smoothness satisfies

(∗) ρ′X(0) = lim
τ→0

ρX(τ)

τ
<

1

2
.

Then X and X∗ have super-normal structure.

Proof. Using Theorem 1, we know that the condition (∗) implies ε0(X
∗) <

1 which therefore implies, by James’result that X∗ is superreflexive. Hence
X is also superreflexive. It is evidently true that for any ultraproduct X of X
we have δX = δX and ρX = ρX . Moreover it is known that X is superreflexive
if and only if the dual of the ultraproduct space of X is the ultraproduct of
the dual space of X (for more details see for example [13]). Therefore it is
enough to show that X and X∗ have normal structure.
Since ε0(X

∗) < 1, then X∗ has normal structure. Let us complete the proof
by showing that X has normal structure. Assume to the contrary that there
exists a diametral closed bounded convex subset not reduced to one point,
say C. Then

r(x, C) = sup{||x− y||; y ∈ C} = diam(C)

holds for every x ∈ C. Using Brodskii and Milman’s characterization of
normal structure property [4], we deduce that there exists a sequence {xn}
in C, called diametral, such that

(∗∗) lim
n→∞

dist(xn+1, conv{xi; i ≤ n}) = diam(C) = c.

Hence for every x in the closed convex hull of {xn; n ≥ 1}, we have

(∗ ∗ ∗) lim
n→∞

||xn − x|| = c.

Since any subsequence of {xn} satisfies also (∗∗) and (∗ ∗ ∗), so using the
reflexivity of X we can assume that {xn} is weakly convergent, say to ω. Let
τ ∈ (0, 1), then

1

2
||xn−xm+τ(ω−xm)||+1

2
||xn−xm−τ(ω−xm)|| ≤ ||xn−xm||(1+ρX(

τ ||ω − xm||
||xn − xm||

)).
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Let n goes to infinity and using (∗∗) and (∗ ∗ ∗), we obtain

1

2
lim sup

n→∞
||xn − xm + τ(ω − xm)|| ≤ c

2
(1 + 2ρX(

τ ||ω − xm||
c

)),

and since {xn} converges weakly to ω, we get

1

2
(1 + τ)||ω − xm|| ≤

c

2
(1 + 2ρX(

τ ||ω − xm||
c

)).

Let m goes to infinity, we obtain

1

2
(1 + τ)c ≤ c

2
(1 + 2ρX(τ)).

Hence τ
2
≤ ρX(τ) since c > 0. This clearly implies that lim

τ→0

ρX(τ)

τ
≥ 1

2
which

contradicts our assumption. The proof is therefore complete.

As a consequence of Theorem 3, we deduce Baillon’s result [3].

Theorem 4. Let X be a Banach space. Assume that its modulus of
smoothness satisfyies

(∗) ρ′X(0) = lim
τ→0

ρX(τ)

τ
<

1

2
.

Then X has the fixed point property, i.e. for any weakly compact convex
subset K of X and any map T : K → K has a fixed point provided that T
is nonexpansive (i.e. ||Tx− Ty|| ≤ ||x− y|| for every x, y ∈ K).

Proof. Since the condition on the modulus of smoothness implies normal
structure, we use Kirk’s result [9] to get the desired conclusion.
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