
KKM and Ky Fan Theorems in Hyperconvex
Metric Spaces

Mohamed A. Khamsi

Dedicated to Ky Fan

Abstract

In hyperconvex metric spaces, we introduce Knaster-Kuratowski-
Mazurkiewicz mappings (in short KKM-maps). Then we prove an
analogue to Ky Fan fixed point theorem in hyperconvex metric spaces.
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1 Introduction

The notion of hyperconvexity is due to Aronszajn and Panitchpakdi [1] who
proved that a hyperconvex space is an absolute retract, i.e. it is a nonexpan-
sive retract of any metric space in which it is isometrically embedded. The
corresponding linear theory is well developed and associated with the names
of Gleason, Goodner, Kelley and Nachbin. For this linear theory the reader
can refer to Lacey [8]. The nonlinear theory is still developing. Isbell [4] con-
structed for any metric space a natural hyperconvex hull. The recent interest
into these spaces goes back to the results of Sine [11] and Soardi [12] who
proved independently that fixed point property for nonexpansive mappings
holds in bounded hyperconvex spaces. Since then many interesting results
[2,6,7,9,10] have been shown to hold in hyperconvex spaces.
Recall also that Jawhari, Misane and Pouzet [5] were able to show that Sine
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and Soardi’s fixed point theorem is equivalent to the classical Tarski’s fixed
point theorem in complete ordered sets. This happens via the notion of gen-
eralized metric spaces. Therefore, the notion of hyperconvexity should be
understood and appreciated in a more abstract formulation.
In this work, we will recall and investigate some basic properties of hyper-
convexity. We will also discuss Knaster-Kuratowski-Mazurkiewicz mappings
(in short KKM-maps) in this setting and prove an analogue to Ky Fan’s fixed
point theorem which can be seen as an extension to Brouwer and Schauder’s
fixed point theorems. It is to our knowledge the first time that such theorems
were attempted to be proved in metric space setting.

2 Basic definitions and properties

The term hyperconvex does have some unfortunate aspects. For example, a
hyperconvex subset of R2 need not be convex. Also convex sets can fail to
be hyperconvex. Spaces as nice as the Hilbert space fails to be hypercon-
vex. Still one has some properties similar to convexity and others similar
to compactness. More convincing analogies hold for hyperconvex sets which
are ball intersections. We will start our development with the definition of
hyperconvexity.

Definition 1. A metric space (M, d) is called hyperconvex if for any collection
of points {xα} of M and {rα} a collection of non-negative reals such that

d(xα, xβ) ≤ rα + rβ

then ⋂
α

B(xα, rα) 6= ∅ .

Here we use B(x, r) for the closed ball about x ∈ M and of radius r ≥ 0.
This definition can be seen as a binary intersection property plus a metric
convexity, that is for any x, y ∈ M and α ∈ [0, 1] there exists z ∈ M such that
d(x, z) = αd(x, y) and d(y, z) = (1 − α)d(x, y). Since in linear spaces, the
metric convexity holds, then this definition reduces to the binary-intersection
property on balls, that is any collection of closed balls which intersects pair-
wise, does have a nonempty intersection. Nachbin-Kelley [8] proved that a
normed linear space X satisfies this property if and only if there exists a
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Stonian compact set K such that X = C(K). For example, the spaces l∞

and L∞ are hyperconvex.

Definition 2. Let (M, d) be a metric space and A ⊂ M a nonempty bounded
subset. Set:

rx(A) = sup{d(x, y); y ∈ A} for x ∈ M ,

r(A) = inf{rx(A); x ∈ M},

R(A) = inf{rx(A); x ∈ A},

δ(A) = sup{d(x, y); x, y ∈ A} = sup{rx(A); x ∈ A},

C(A) = {x ∈ A; rx(A) = R(A)},

co(A) =
⋂{B; B is a closed ball such that A ⊂ B}.

A(M) = {A ⊂ M ; A = co(A)}, i.e A ∈ A(M) iff A is an intersection of balls.
In this case we will say A is an admissible subset of M .

A mapping T : M → M is called nonexpansive if d(Tx, Ty) ≤ d(x, y) for
all x, y ∈ M . A point x ∈ M is called a fixed point of T if T (x) = x. The
fixed point set of T will be denoted Fix(T ).

Proposition 1. Let (M, d) be a metric space.

1. There exists an index set I and a natural isometric embedding from M
into l∞(I).

2. If M is hyperconvex then it is complete.

3. Assume that M is hyperconvex and let A ⊂ M be a nonempty bounded
subset. Then

3.1 co(A) =
⋂{B(x, rx(A)); x ∈ M},

3.2 rx(co(A)) = rx(A) for any x ∈ M ,

3.3 r(A) = 1
2
δ(A),

3.4 r(co(A)) = r(A),
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3.5 δ(co(A)) = δ(A),

3.6 If A ∈ A(M), then we have r(A) = R(A) = 1
2
δ(A).

4. M is hyperconvex iff for any metric space N which contains isomet-
rically M , there exists a nonexpansive retract r : N → M , i.e. r is
nonexpansive and r(x) = x for any x ∈ M .

5. M is hyperconvex iff for any metric space N and D which contains
N metrically and any nonexpansive map T : N → M , there exists an
extension T ? : D → M which is nonexpansive, i.e. T (x) = T ?(x) for
any x ∈ N .

Let us show how the natural isometric embedding of M into l∞(I) holds.
First set I = M (we may take I to be any dense subset of M). Define

i : M → l∞(I) by i(x) =
(
d(x, y)− d(x0, y)

)
y∈M

, where x0 ∈ M . It is easy

to see that

||i(x)− i(y)|| = sup
z∈M

∣∣∣d(x, z)− d(y, z)
∣∣∣ = d(x, y) , for every x, y ∈ M

which implies the conclusion of statement 1. Throughout this work, we will
identify M with i(M). If we assume that M is hyperconvex (and since
hyperconvexity is preserved by isometry) then, by statement 4, there exists
a nonexpansive retract r : l∞(I) → M . Let x1, .., xn ∈ M and α1, .., αn

non-negative numbers such that
∑

αi = 1, then

r
( ∑

1≤i≤n

αixi

)
=

⊕
1≤i≤n

αixi ∈ M

behaves like a convex combination of the (xi). For example, we have

d
( ⊕

1≤i≤n

αixi,
⊕

1≤i≤n

αiyi

)
≤

∑
1≤i≤n

αid(xi, yi)

for any (xi) and (yi) in M . One may argue that the choice of our convex
combination in M depends on the retract r and the choice of the isometric
embedding, the answer is yes. Therefore depending on the problem, one may
have to be careful about this choice.
Let us introduce a notation which will be valide throughout this work: let
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M be a metric space and consider the natural embedding into l∞(I) given
by statement 1, set

M∞ = co(M) ∈ A
(
l∞(I)

)
.

Clearly M∞ is a hyperconvex subset of l∞(I) and convex. The reason why we
consider such set is because it is convex and bounded when M is bounded.
We can also restrict the retract r to M∞ into M .

3 Fixed point property in hyperconvex spaces

Sine and Soardi were the first to prove the following (although their proofs
were given in different context)

Theorem 1. Let H be a bounded hyperconvex metric space and T : H → H
a nonexpansive map. Then Fix(T ) is not empty and is a hyperconvex.

Note that the assumption bounded is essential. Indeed, it was unknown
for a while whether bounded orbit will be enough to insure the existence of
a fixed point.

Example. (Prus [6]) Let λ denote a Banach limit and define for each
(xn) ∈ l∞

T (x1, x2, ..) = (1 + λ((xn)), x1, x2, ..) .

Then the orbit of 0 is bounded and T is fixed point free. Note that T is an
isometry.

Remark. Since the assumption of boundedness seems essential, one may ask
what happened if we only assume bounded orbit. Then using the natural em-
bedding described above, one can prove [6] that the ε-fixed point set defined
as

Fixε(T ) = {x ∈ H; d(x, Tx) ≤ ε}

is not empty and is hyperconvex.

Since Fix(T ) is hyperconvex, we know that there will be a nonexpansive
retract from H into Fix(T ). But we do not have any precise information
about such retract. Lin and Sine [9] did investigate this problem closely. In
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particular, they proved that there exists a retract which commutes with T .
A natural question to be asked is whether the conclusion of Theorem 1 still
holds for any commutative family of nonexpansive mappings. This was an-
swered by Baillon [2]. Indeed, Baillon proved that any decreasing family of
nonempty bounded hyperconvex spaces has a nonempty intersection. The
proof is very highly technical. From this, one can deduce the following

Theorem 2. Let H be a bounded hyperconvex metric space and F a family
of commutative nonexpansive self-maps of H. Then the common fixed point
set Fix(F) is not empty and is hyperconvex.

4 KKM-maps and Ky Fan theorem

Among the results equivalent to the Brouwer’s fixed point theorem, the theo-
rem of Knaster-Kuratowski-Mazurkiewicz [3] occupies a special place. Let H
be a metric space. The set of all subsets of H is denoted 2H and in the linear
case, the notation conv(A) describe the convex hull of A. A subset A ⊂ H
is called finitely closed if for every x1, x2, .., xn ∈ H, the set co({xi}) ∩ A is
closed. Note that co(X) is always defined and belongs to A(H). If A is closed
then obviously it is also finitely closed. Recall that a family {Aα; Aα ∈ 2H}
is said to have the finite intersection property if the intersection of each finite
subfamily is not empty.

Definition 3. Let H be a metric space and X ⊂ H. A multivalued mapping
G : X → 2H is called a Knaster-Kuratowski-Mazurkiewicz map (in short
KKM-map) if

co({x1, .., xn}) ⊂
⋃

1≤i≤n

G(xi)

for any x1, .., xn ∈ X.

Theorem 3.(KKM-maps principle) Let H be hyperconvex metric space,

X an arbitrary subset of H, and G : X → 2H a KKM-map such that each
G(x) is finitely closed. Then the family {G(x); x ∈ X} has the finite inter-
section property.
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Proof. Assume not, i.e. there exist x1, ..xn ∈ X such that
⋂

G(xi) = ∅. Set
L = co({xi}) in H. Consider the hyperconvex set H∞ and C = conv(xi)
in H∞. Let r be the nonexpansive retract r : H∞ → H defined above.
Note that r(C) ⊂ L. Our assumptions imply that L ∩ G(xi) is closed for
every i = 1, 2, ..n. Therefore, for every c ∈ C, there exists i0 such that
r(c) does not belong to L ∩G(xi0) since L

⋂∩G(xi) = ∅. Hence d
(
r(c), L ∩

G(xi0)
)

> 0 because L ∩ G(xi0) is closed. Therefore, the function α(c) =∑
i d
(
r(c), L

⋂
G(xi)

)
is not zero for any c ∈ C. Define the map F : C → C

by

F (c) =
1

α(c)

∑
1≤i≤n

d
(
r(c), L

⋂
G(xi)

)
xi .

Clearly, F is a continuous map. Using Brouwer’s theorem, we get a fixed
point c0 of F , i.e. F (c0) = c0. Set

I =
{
i; d
(
r(c0), L

⋂
G(xi)

)
6= 0

}
.

Clearly we have

c0 =
1

α(c0)

∑
1≤i∈I

d
(
r(c0), L

⋂
G(xi)

)
xi .

Therefore, r(c0) 6∈
⋃

i∈I G(xi) and r(c0) ∈ co({xi; i ∈ I}), contradicting the
assumption

co
(
{xi; i ∈ I}

)
⊂
⋃
i∈I

G(xi) .

The proof is therefore complete.

As an immediate consequence, we obtain

Theorem 4. Let H be a hyperconvex metric space and X ⊂ H an arbitrary
subset. Let G : X → 2H be a KKM-map such that G(x) is closed for any
x ∈ X and G(x0) is compact for some x0 ∈ X. Then we have⋂

x∈X

G(x) 6= ∅ .

Notice that the compactness assumption of G(x0) may be a stronger one.
We can still reach the conclusion if one involves an auxiliary multivalued map
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and a suitable topology on H (such as the ball topology for example).

Theorem 5. Let H be a hyperconvex metric space and X ⊂ H an arbitrary
subset. Let G : X → 2H be a KKM-map. Assume there is a multivalued map
K : X → 2H such that G(x) ⊂ K(x) for every x ∈ X and⋂

x∈X

K(x) =
⋂

x∈X

G(x) .

If there is some topology on H such that each K(x) is compact, then⋂
x∈X

G(x) 6= ∅ .

The proof is obvious.

In order to prove the analogue of Ky Fan’s fixed point result [3], we need
the following lemma which is a direct application of KKM-maps [3].

Lemma. Let H be a hyperconvex metric space and X ∈ A(H) compact. Let
F : X → H be continuous. Then there exists y0 ∈ X such that

d(y0, F (y0)) = inf
x∈X

d
(
x, F (y0)

)
.

Proof. Consider the map G : X → 2H defined by

G(x) =
{
y ∈ X; d(y, F (y)) ≤ d(x, F (y))

}
.

Since F is continuous, then G(x) is closed for any x ∈ X. We claim that G
is a KKM-map. Indeed, assume not. Then there exists {x1, .., xn} ⊂ X and
y ∈ co({xi}) such that y 6∈ ⋃i G(xi). This clearly implies

d(xi, F (y)) < d(y, F (y)) , for i = 1, .., n .

Let ε > 0 such that d(xi, F (y)) ≤ d(y, F (y)) − ε , for i = 1, 2, .., n. Hence

xi ∈ B
(
F (y), d(y, F (y)) − ε

)
, for i = 1, .., n. Therefore, we have co({xi}) ⊂

B
(
F (y), d(y, F (y))− ε

)
, which implies y ∈ B

(
F (y), d(y, F (y))− ε

)
. Clearly

this gets us our contradiction which completes the proof of our claim.
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By the compactness of X, we deduce that G(x) is compact for any x ∈ X.
Therefore, there exists y0 ∈

⋂
x∈X G(x). This clearly implies d(y0, F (y0)) ≤

d(x, F (y0)) for any x ∈ X which implies

d(y0, F (y0)) = inf
x∈X

d
(
x, F (y0)

)
and the proof is complete.

We now are ready to state Ky fan’s fixed point theorem [3] in hypercon-
vex metric spaces.

Theorem 6. Let H be a hyperconvex metric space and X ∈ A(H) compact.
Let F : X → H be continuous and such that, for every c ∈ X, with c 6= F (c),
there exsits α ∈ (0, 1) such that

(∗) X ∩B

(
c, αd(c, F (c))

)
∩B

(
F (c), (1− α)d(c, F (c))

)
6= ∅ .

Then F has a fixed point, i.e. F (y) = y for some y ∈ X.

Note that the condition (∗) means that a metric convex combination of
c and F (c) belongs to X. In particular, it is satisfied if F (X) ⊂ X.

Proof. By the previous lemma, there exists y0 ∈ X such that

d(y0, F (y0)) = inf
x∈X

d
(
x, F (y0)

)
.

We claim that such element y0 is a fixed point of F . Indeed, assume not, i.e.
y0 6= F (y0). Then our assumption on X implies the existence of α ∈ (0, 1)
such that

X ∩B

(
y0, αd(y0, F (y0))

)
∩B

(
F (y0), (1− α)d(y0, F (y0))

)
6= ∅ .

Let x ∈ X ∩ B

(
y0, αd(y0, F (y0))

)
∩ B

(
F (y0), (1 − α)d(y0, F (y0))

)
. Then

d(x, F (y0) = (1−α)d(y0, F (y0)). Since d(y0, F (y0)) ≤ d(x, F (y0)), we clearly
get a contradiction. This completes our proof.
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Remark: This theorem implies that any continuous self-map of a compact
admissible subset of a hyperconvex metric space has a fixed point. This can
be easily extended to a class of subsets other than admissible ones, i.e. we
may relax this assumption by a kind of metric convexity. Note that using
the extension properties of hyperconvex metric spaces, one can easily derive
this conclusion via Schauder theorem.
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