
Annals of Mathematics and Artificial Intelligence 21 (1997) 231–243 231

Fixed point theorems in logic programming

Mohamed A. Khamsi a and Driss Misane b

a Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
E-mail: mohamed@math.utep.edu

b Departement de Mathematiques, Universite Mohamed V, Faculte des Sciences, Rabat, Morocco

We discuss two major fixed point theorems which are based on a notion of completeness.
Although the spaces involved are of different nature, there is a similarity between the two
theorems.

1. Introduction

Very often scientific branches which were thought to be completely disparate
are suddenly seen to be related. This is the case for example with mathematics of
which the level of sophistication applied to various sciences has changed drastically
in recent years. Fixed point theory furnishes good example of a central concept with
multitudes of different uses. It has always been a major theoretical tool in fields as
widely apart as differential equations, topology, economics, game theory, dynamical
systems (and chaos), optimal control, functional analysis, logic programming and ar-
tificial intelligence. Moreover, more or less recently, the usefulness of the concept
for applications increased enormously by the development of accurate and efficient
techniques for computing fixed points, making fixed point methods a major weapon in
the arsenal of the applied mathematician.

2. Elementary fixed point theorems

The theory of fixed points is concerned with the conditions which guarantee that
a map F :X → X of a set X into itself admits one or more fixed points, that is, points
x ∈ X for which F (x) = x. The set of fixed points of F will be denoted Fix(F).
In the sequel, we will discuss two major fixed point theorems which are based on a
notion of completeness. Although the spaces involved are of different nature, there is
a similarity between the two theorems.

2.1. Knaster–Tarski theorem [8]

Let (P , 6) be a partially ordered set and M ⊂ P a non-empty subset. Recall
that an upper (lower) bound for M is an element p ∈ P with m 6 p (p 6 m) for
each m ∈ M ; the least-upper (greatest-lower) bound of M will be denoted supM

 J.C. Baltzer AG, Science Publishers

232 M.A. Khamsi, D. Misane / Fixed point theorems in logic programming

(resp. inf M). Of course there is, in general, no reason for infM and supM to exist.
(P , 6) will be called complete if for every subset M ⊂ P , inf M and supM do exist.
Recall that M ⊂ P is said to be linearly ordered if for every m1,m2 ∈ M we have
m1 6 m2 or m2 6 m1. A linearly ordered subset of P is called a chain. A map
F :P → P is monotone (also called isotone or increasing) if F (x) 6 F (y) whenever
x 6 y.

Theorem of Knaster–Tarski. Let (P , 6) be a complete ordered set and F :P →
P monotone. Then Fix(F) is not empty, that is F has a fixed point. Moreover,
Fix(F) is a complete ordered subset of P . In particular, it has the least and greatest
elements.

Note that one classical proof is based on a transfinite iteration of F . Indeed,
denote m to be the least element of P . Clearly, we have m 6 F (m). Since F is
monotone, we will get Fn(m) 6 Fn+1(m) for every n = 1, 2, Set xn = Fn(m).
Since P is complete then xω = supn xn does exist. There is no reason for xω to
be a fixed point. Therefore, we should continue the process, that is if (xα)α<β are
constructed, then xβ = supα<β xα if β is a limit ordinal otherwise xβ = F (xβ−1).
The (xα) defines a chain which will eventually stop, that is there exists an ordinal α0

such that xα0 = xα0+1 = F (xα0). It is very easy to see that xα0 is the least fixed point
of F . By iterating F over the greatest element of P , one will generate the greatest
fixed point of F . A natural question arises about what do we know of the ordinal α0.
One easy answer has to do with the size of the set P . Not very much encouraging
since P can be very big. Another partial answer is given by what we call continuity.
Indeed, the map F :P → P is called continuous if for every subset M ⊂ P , we have
supF (M) = F (supM). Note that if F is monotone, then supF (M) 6 F (supM) but
not the equality. It is well known that if F :P → P is continuous and monotone,
then α0 = ω regardless of the given point x ∈ P which initiates the iteration process,
where ω is the first countable ordinal. Indeed, fix x ∈ P and consider the iteration
sequence (Fn(x)). Then we have

F (xω) = F
(

sup
n
Fn(x)

)
= sup

n
Fn+1(x) = xω ,

which shows that the fixed point will always be reached after ω-iteration.
Since whenever negation is involved in logic programs, it is to be expected that

the mappings involved will no longer be monotone. As a matter of fact, we may have
an anti-monotonic behavior. Recall that a map F :P → P , where (P , 6) is a partially
ordered set, is said to be anti-monotonic or decreasing if for every m1,m2 ∈ P we
have F (m2) 6 F (m1) whenever m1 6 m2. Clearly, F 2 = FoF will be monotone.
Therefore, F 2 will have fixed point (called periodic point of F of period 2). Let m be
the lowest fixed point of F 2 and M be the greatest fixed point of F 2. Then we have
F (m) = M and F (M) = m.

M.A. Khamsi, D. Misane / Fixed point theorems in logic programming 233

2.2. Banach contraction principle

The theorem of Banach is the simplest and one of the most versatile results in
fixed point theory. Being based on an iteration process, it can be implemented on a
computer to find the fixed point of a contractive map producing approximations of any
required accuracy and, moreover, even the number of iterations needed to get specified
accuracy can be determined. First, recall that a pair (M , d) is called a metric space
[5] if the map d :M ×M → [0, +∞) satisfies

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y,x),

(iii) (triangle inequality) d(x, y) 6 d(x, z) + d(z, y),

for every x, y, z ∈M . d is called a distance.
Using the distance, we can give a meaning to the notion of closeness. Indeed

we will say x is close to y if and only if d(x, y) is small. We will say that a metric
is complete if whenever a sequence (xn) of points from M is such that xn and xm
are close for n and m big enough (such sequence is called a Cauchy sequence), then
there exists a point x ∈ M such that xn gets close to x when n is big. In a more
correct fashion, we will say that M is complete if for every sequence (xn) such
that lim d(xn,xm) = 0 when n,m go to infinity, then there exists x ∈ M such that
lim d(xn,x) = 0 when n goes to infinity. Note that not all metric spaces are complete.
A mapping F :M → M is called Lipschitzian if there exists a constant L such that
d(F (x),F (y)) 6 Ld(x, y) for every x, y ∈ M ; the smallest such constant L is called
the Lipschitz constant Lip(F) of F . If Lip(F) < 1, the map F is called contractive.

Theorem (Banach contraction principle [5]). Let (M , d) be a complete metric space
and F :M → M a contractive mapping. Then F has a unique fixed point w, that is
Fix(F) = {w}. Moreover, for any x ∈M , we have

d
(
Fn(x),w

)
6 Ln

1− Ld
(
x,F (x)

)
, for n = 1, 2, . . . ,

where L = Lip(F) < 1. Therefore we have limFn(x) = w when n→∞.

It is clear from the theorem that the error of approximating w by the nth iteration
when starting from a given x ∈M is completely determined by the contraction constant
Lip(F) and the initial displacement d(x,F (x)).

It is worth to mention here that the theorem of Banach contains two important
conclusions. The first one deals with the uniqueness of the fixed point. The other one
deals with the way we reach this fixed point since the iteration reaches the fixed point
after ω-iteration, where ω is the first countable ordinal.

Remark. Before, we get to the study of multivalued mappings, we would like to make
an elementary introduction to generalized metric spaces. The main idea behind this

234 M.A. Khamsi, D. Misane / Fixed point theorems in logic programming

new structure is to replace the set of positive numbers as the set value for the distance
by something more general. The reason behind is that many structures are not of
continuous nature. More precisely sets which are of discrete nature will have hard time
to fit into the class of classical metric spaces. Therefore people working in this area
were the pioneers in developing the appropriate extension. Let us describe what they
did. Let V be a set with a binary operation which will be denoted ⊕. We will assume
that ⊕ enjoys most of the properties that the classical addition does. In particular, we
assume that there exists a zero element 0 ∈ V which satisfies u⊕ 0 = 0 ⊕ u = u for
every u ∈ V . We will also assume (as for the set of positive numbers) that we have
an order 6 such that 0 6 u and u⊕ v 6 u′⊕ v′ provided u 6 u′ and v 6 v′ for every
u, v,u′, v′ ∈ V . Note that the set V is not behaving totally like the set of positive
numbers since we do not have a priori a multiplication operation defined on V .

Definition. Let V be a set as described above and M be an arbitrary set. The mapping
d :M ×M → V is called a generalized distance if

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y,x),

(iii) (triangle inequality) d(x, y) 6 d(x, z)⊕ d(z, y),

for every x, y, z ∈M . A pair (M , d) is called a generalized metric space. We should
mention that in the original definition of generalized distance, the condition (ii) is
replaced by

d(y,x) = τ
(
d(x, y)

)
,

where τ is an involution, that is τ (τ (x)) = x.

Example of V . Because of applications to disjunctive logic programming, one inter-
esting example of the abstract set V is given by the expressions 2−α, where α is a
countable ordinal, augmented with the element 0. An order on V is defined as follows:
0 6 v, ∀v ∈ V , and 2−α 6 2−β whenever β 6 α. The operation ⊕ is defined by
u ⊕ v = max(u, v). Note that V enjoys a natural multiplication property defined as:
2−α.2−β = 2−(α+β).

2.3. The multivalued case

Multivalued mappings play a major role in studying disjunctive logic programs.
First, recall that a map F :X → 2X is called a multivalued map. A singlevalued map
is a multivalued map F such that F (x) is a singleton. A point x ∈ X is a called a
fixed point of a multivalued map F if x ∈ F (x) holds. Although the fixed point theory
for singlevalued maps is very rich and well developed, the multivalued case is not.
Few theorems are known in topological spaces but nothing major with direct impact
on the study of disjunctive logic programs. For example, it is unknown to us whether

M.A. Khamsi, D. Misane / Fixed point theorems in logic programming 235

a multivalued version of Knaster–Tarski theorem is known. In what follows we will
discuss this case.

Let (P , 6) be a partially ordered set. Define the relation ≺r (r for restriction) in
2P by

A ≺r B ⇐⇒ ∀y ∈ B ∃x ∈ A x 6 y,

it is clear that ≺r is a preorder but not an order (≺r is not antisymetric). We can also
define the extension preorder ≺e in 2P by

A ≺e B ⇐⇒ ∀x ∈ A ∃y ∈ B x 6 y.

We say that a multivalued mapping T :P → 2P is ≺r-monotone if

x 6 y =⇒ T (x) ≺r T (y).

Remark. Recall that a subset M ⊂ P is called antichain if for every m1,m2 ∈M , we
do not have m1 6 m2 neither m2 6 m1. Denote

M =
{
A ∈ 2P ; A is an antichain

}
then (M ,≺r) and (M ,≺e) are ordered sets because ≺r and ≺e are orders in M .
Since the study of stable model semantics for disjunctive logic programs involves the
preorder ≺r, we will not discuss the preorder ≺e.

Definition. Let P be a partially ordered set and T : P → 2P a multivalued mapping.
We say that the family (xβ), where β runs through the ordinals, is a decreasing T -orbit
if {

xβ+1 ∈ T (xβ),
xβ+1 6 xβ.

Theorem (Knaster–Tarski). Let P be a complete ordered set and T be an≺r-increasing
multivalued mapping from P into 2P such that for every x ∈ P :

1. T (x) is not empty (i.e., T (x) 6= ∅).

2. For every decreasing T-orbit (xβ), there exists x ∈ P such that x ∈ T (inf xβ) and
x 6 xβ for all β.

Then T has a fixed point, i.e., there exists x ∈ P such that x ∈ T (x).

Remark. The second hypothesis of the theorem holds if T (x) is finite for all x ∈ P .

Let us turn our attention to Banach contraction principle for multivalued map-
pings. First we should mention that after the following theorem was proved, we
discovered that many multivalued versions of the theorem of Banach do exist.

236 M.A. Khamsi, D. Misane / Fixed point theorems in logic programming

Theorem (Banach contraction principle). Let (M , d) be a complete metric space. Let
F : M → 2M be a multivalued map satisfying for every x, y ∈M

∀x1 ∈ T (x); ∃y1 ∈ T (y) such that d(x1, y1) 6 Ld(x, y),

where L < 1. Then F has a fixed point provided that F (x) is closed and nonempty
for every x ∈M .

A similar result for multivalued mappings defined on a generalized metric space
holds. Indeed, Let (M , d) be a generalized metric space with set-values for d to be
the set V described in the example above. Then a multivalued map F :M → 2M

will be called 1/2-contraction if for every x, y ∈ M , and for every z ∈ F (x), there
exists w ∈ F (y) such that d(z,w) 6 1/2d(x, y). In order to state an analogue to
Banach contraction principle for generalized metric spaces, one would need to define
the notion of completeness. We will not give the definition here but assure the reader
that this definition is similar to the one described above.

Theorem. Assume that (M , d) is a complete generalized metric space and F a mul-
tivalued mapping defined on M which is 1/2-contraction. Then F has a fixed point
provided that F (x) is nonempty and complete for every x ∈M .

3. Application to logic programming

A precise meaning or semantics must be associated with any logic program or a
deductive database in order to provide its declarative specification, in a manner, which
is independent of procedural considerations, context-free, and easy to manipulate, ex-
change and reason about. The problem of finding a suitable declarative or intended
semantics is one of the most important and difficult problems in the theory of logic
programming and deductive database. In this work, we will not discuss the merit of
any of the semantics. Our goal is to discuss how fixed point theorems old or new can
be used to answer some open questions regardless of the semantics used. For the sake
of illustrating our point, we will consider the answer set semantics [4].

Let Lit be the set of ground literals in a first-order language L. A rule r is an
expression of the following form:

l0|l1| · · · |ln ← ln+1, . . . , lm,not lm+1, . . . ,not lk,

where li ∈ Lit. Set

Head(r) = {l0, l1, . . . , ln}, Pos(r) = {ln+1, . . . , lm} and

Neg(r) = {lm+1, . . . , lk}.

The rule r is said to be disjunctive if n > 1, i.e., Head(r) has more than one element
and nondisjunctive otherwise. An extended (disjunctive) logic program Π is a set of
(disjunctive) rules. Instead of extended logic program, we will shorten it to program.

M.A. Khamsi, D. Misane / Fixed point theorems in logic programming 237

In order to define the answer set semantics of extended logic programs, let us first
consider programs without not.

Definition. Let Π be a program (disjunctive or not) for which Neg(r) is empty for
every r ∈ Π. A subset S of Lit, i.e., S ∈ 2Lit, is said to be closed with respect to Π if

for every r ∈ Π such that Pos(r) ⊂ S, we have Head(r) ∩ S is not empty.

The set S ∈ 2Lit is an answer set of Π:

1. If S contains complementary literals, then S = Lit.

2. S does not contain strictly a closed subset, i.e., if A ⊂ S and A is closed with
respect to Π then A = S.

The set of answer sets of Π is denoted by α(Π). If Π is not disjunctive, then α(Π) is
a singleton, i.e., Π has one answer set and if it is disjunctive then α(Π) may contain
more than one element.

Now let Π be a program that may contain not (general case). For S ∈ 2Lit,
consider the program ΠS defined by the set of rules:

1. If r ∈ Π such that Neg(r) ∩ S is not empty, then r /∈ ΠS .

2. If r ∈ Π such that Neg(r) ∩ S is empty, then the rule r′ defined by Head(r′) =
Head(r), Pos(r′) = Pos(r) and Neg(r′) = ∅, belongs to ΠS .

Clearly the program ΠS does not contain not.

Definition.

1. The set S ∈ 2Lit is said to be an answer set of Π if S ∈ α(ΠS).

2. Define the GL-operator T : 2Lit → 2Lit by

T (X) = α
(
ΠX
)
.

Using the GL-operator T , the set S is an answer set of Π iff S ∈ T (S). If Π is not
disjunctive then S is an answer of Π iff S = T (S). In both cases, S is a fixed point
of T .

Main Problem. Find conditions on Π that will insure the existence of an answer set,
i.e., a fixed point of T .

In what follows, we discuss a basic property of the GL-operator.

Property. Let Π be a program. Then if X ⊂ Y , X,Y ∈ 2Lit, then

∀A ∈ α
(
ΠX
)
∃B ∈ α

(
ΠY
)

such that B ⊂ A,

i.e., α(ΠY) ≺r α(ΠX).

238 M.A. Khamsi, D. Misane / Fixed point theorems in logic programming

Remark. When the program Π is not disjunctive, then we have

X ⊂ Y =⇒ α
(
ΠY
)
⊂ α

(
ΠX
)
,

in another word the GL-operator T is anti-monotonic. Therefore, T 2 is monotonic.
Using the above discussion, we know that there exist a least fixed point lfp(T 2) and
a greatest fixed point gfp(T 2) of T 2. We also know that T (lfp(T 2)) = gfp(T 2) and
T (gfp(T 2)) = lfp(T 2). In another world, the set {lfp(T 2), gfp(T 2)} is stable under
the action of T . Using this result, Baral [1] defined the notion of stable class semantics.
It is worth to mention that there are logic programs which fail to possess stable models
while stable classes always exist. Therefore, for these programs we will not be able
to consider the stable semantics. Baral was also successful to connect stable class
semantics to well-founded semantics. Indeed, he proved that if Π is a normal logic
program, the well-founded semantics is characterized by a particular stable class C,
i.e., a ground atom is true (resp. false) in the well-founded semantics of Π iff A is
true (resp. false) in all interpretations in C. Moreover, C = {lfp(T 2), gfp(T 2)}. It is
amazing that the Gelfond–Lifschitz operator could catch the well-founded semantics
in this way. Thereofre, a natural question to be asked is whether a similar result holds
for disjunctive logic programs. The answer is still unknown. The difficulty resides in
considering T 2 since T is multivalued and getting a monotonic mapping. In another
world, we do not know whether stable classes do exist for disjunctive logic programs.

3.1. Signed disjunctive programs

The notion of a signing for a program was introduced by Kunen [6] (defined
on the predicate dependency graph), who used it as a tool in his proof that two-
valued and three valued completion semantics coincide on the class of strict normal
programs. Gelfond and Lifschitz recasted this notion and redefined it directly on the
rules of programs. Recently Turner [9] did study extensively signed programs. In
particular, he was able to give an alternative proof of Fages’ result [2] using signed
programs.

Definition. We will say that Π is signed if there exists S ∈ 2Lit, called a signing,
such that for every r ∈ Π we have:

1. If Neg(r) ∩ S is empty, then Head(r) ⊂ S and Pos(r) ⊂ S. Let Πs be the
program generated by these rules.

2. If Neg(r) ∩ S is not empty, then Head(r) ∩ S = ∅, Pos(r) ∩ S = ∅ and
Neg(r) ⊂ S. Let ΠS̄ be the program obtained from these rules, where S̄ de-
notes the complement of S, i.e., S̄ = Lit− S.

Clearly the two subprograms ΠS and ΠS̄ are disjoint and Π = ΠS ∪ΠS̄ .

For nondisjunctive signed programs with positive head, Gelfond and Lifschitz [4]
proved the existence of a consistent answer set. It is still unknown if disjunctive

M.A. Khamsi, D. Misane / Fixed point theorems in logic programming 239

signed programs have answer sets. For a more restrictive class of programs called
semi-disjunctive, we have a positive answer.

Definition. A signed program Π is said to be semi-disjunctive if there exists a signing
S such that ΠS is nondisjunctive.

Note that what Turner defines as signed disjunctive programs is what we call
semi-disjunctive. One of the reason why Turner was interested into such programs is
to prove the existence of answer sets for the two guns domain example which is a
variant of the Yale Shooting domain:

Example: Two guns domain. The story is about a pilgrim and a turkey. The pilgrim
has two guns. Initially, the turkey is alive, but if the pilgrim fires a loaded gun,
the turkey dies. Furthermore, at least one of the two guns is loaded initially. This
clearly implies that the turkey will be dead if the pilgrim performs any of the following
sequences of actions:

1. wait, shoot gun one, shoot gun two.

2. wait, shoot gun two, shoot gun one.

The following program Π formalizes the two-gun domain.

1. Holds(Alive,S0)←
2. Holds(Loaded1,S0) | Holds(Loaded1,S0)←
3. ¬Holds(Alive,Result(Shoot1, s))← Holds(Loaded1, s)

4. Noinertial(Alive,Shoot1, s)← not¬Holds(Loaded1, s)

5. ¬Holds(Alive,Result(Shoot2, s))← Holds(Loaded2, s)

6. Noinertial(Alive,Shoot2, s)← not¬Holds(Loaded2, s)

7. Holds(f ,Result(a, s))← Holds(f , s), notNoinertial(f , a, s)

8. ¬Holds(f ,Result(a, s)← ¬Holds(f , s), notNoinertial(f , a, s)

9. Holds(f ,S0) | ¬Holds(f ,S0)←
This program is signed semi-disjunctive with S = {Noinertial(f , a, s)} as a

signing. It is not hard to generalize this program to more than two guns and still have
a signed semi-disjunctive program.

Note that the main result of [9] states that signed semi-disjunctive programs have
a consistent answer set provided they have at least one head-consistent cover. One of
the condition ensuring the existence of a head-consistent cover is to assume that the
head of the program is consistent. For example, the above program is head-consistent.
We weakened this assumption into the notion of safe programs.

240 M.A. Khamsi, D. Misane / Fixed point theorems in logic programming

Definition. A disjunctive program Π is said to be safe with respect to a partition
(Π1, Π2) if for every Y ∈ 2Lit and X ∈ α(ΠY

1), X does not activate two contrary
rules.

Recall that the pair (Π1, Π2) defines a partition for the program Π if Π1 and Π2

are two disjoint subprograms of Π such that Π = Π1 ∪Π2, and that two rules r1 and
r2 are said to be contrary if there exists a literal l ∈ Lit such that l ∈ Head(r1) and
¬l ∈ Head(r2).

An example of a safe program (which is not head-consistent) is the program
formalizing the classical flying birds story:

Example. Suppose that we are told that penguins are birds that do not fly, that birds
normally fly, and that Tweety is a bird and not a penguin and Sam is a penguin. Let us
also assume that this information is complete. Therefore, we can represent knowledge
from the exemple by the logic program Π consisting of the rules:

1. f (X)← b(X), not ab(f , b,X)

2. b(X)← p(X)

3. ab(f , b,X)← p(X)

4. ¬f (X)← p(X)

5. ¬f (X)← ¬b(X)

6. b(t)←
7. p(s)←
8. ¬p(t)←

Note that t (for Tweety) and s (for Sam) are the only constants allowed by the program.
Consider the two subprograms:

Π1

{
ab(f , b,X)← p(X)
p(s)←

Π2



f (X)← b(X), not ab(f , b,X)
b(X)← p(X)
¬f (X)← p(X)
¬f (X)← ¬b(X)
b(t)←
¬p(t)←

It is clear that (Π1, Π2) forms a partition for Π for which it is safe.

Using the multivalued-Tarski fixed point theorem, we prove the following result:

Theorem. Let Π be a signed safe semi-disjunctive program. Then Π has a consistent
answer set.

M.A. Khamsi, D. Misane / Fixed point theorems in logic programming 241

The assumption semi-disjunctive is not necessary (for more on this question
see [11]).

Remark. In order to see how the ideas behind the proof of the multivalued-Tarski
theorem work, let us consider the following program:

Π


c | d← not a
a | b← not c
a← not d
b←

A signing for this program is S = {a, b} (hence S̄ = {c, d}). Consider the operator
T : 2S̄ → 22S̄ defined by

T (X) = α
(
Πα(ΠXs)
s̄

)
.

Set Z0 = {c, d}. Then we have

T
(
{c, d}

)
=
{

{c}, {d}
}
.

We have a choice for Z1.

1. If Z1 = {c}, then T (Z1) = {∅}. And since T ({∅}) = {∅}, we get X2 = {∅}.
Hence X1 = α(ΠX2

s) = {a, b}. Therefore an answer set for Π is X1∪X2 = {a, b}.

2. If Z1 = {d}, then T (Z1) = {{c}, {d}}. Therefore {d} is a fixpoint of T which
implies that X2 = {d}. Hence X1 = α(ΠX2

s) = {b}. Therefore an answer set for
Π is X1 ∪X2 = {d, b}.

As one can see the iterations gave the two only answer sets of Π. Note that whenever
the program is finite, the associated iterations of T will stop after a finite number of
steps.

3.2. Locally stratified programs

Fitting [3] was the first to use Banach contraction principle to prove the existence
of stable models. We should mention that, since one of the conclusions of the theorem
of Banach is the uniqueness of the fixed point, its possible use as a tool to prove the
existence of models will work if the appropriate class of programs do have one model.
This is the case for stratified and more generally locally stratified. Since Fitting’s
approach is based on level mappings, a more general class of programs for which such
mappings do exist can be considered. When the set of literals Lit, associated to a
given program, is countable then the classical form of the theorem of Banach works.
But we know that for example if a program is locally stratified but not countably
stratified, then the size of the program is bigger than ω, the first countable ordinal.
Therefore, one can not use the theorem of Banach in its classical form and will need to
use generalized metric spaces instead. Moreover, if the program is disjunctive, then we
should combine a mutlivalued version of Banach contraction principle in generalized

242 M.A. Khamsi, D. Misane / Fixed point theorems in logic programming

metric spaces. We see how these extensions are helpful to better understand disjunctive
programs. Although the following theorem is stated in terms of locally stratified
disjunctive programs, it is very easy to adapt it to the class of programs considered by
Fitting (using level mappings).

Let us recall the definition of a stratified logic program. Let Π be a program and
Lit the associated set of literals. The program Π is said to be locally stratified if

Lit =
⋃
α∈Γ

Litα,

where Γ is the set of countable ordinals and the Litα are disjoint sets, such that for
every rule r ∈ Π, we have:

(i) if l ∈ Head(r) and l′ ∈ Pos(r) with l ∈ Litα and l′ ∈ Litβ , then α > β;

(ii) if l ∈ Head(r) and l′ ∈ Neg(r) with l ∈ Litα and l′ ∈ Litβ , then α > β.

A decomposition {Litα} of Π satisfying the above conditions is called a stratification
of Π.

Theorem. Let Π be a stratified extended disjunctive logic program. Then Π has an
answer set.

Idea of the proof. Let Litα denote the stratas of Π. Define the generalized distance
D : 2Lit × 2Lit → V as follows:

(1) if A = B, then d(A,B) = 0;

(2) if A 6= B, then d(A,B) = 2−α, where α is the smallest ordinal for which A ∪
Litα 6= B ∪ Litα.

Consider the GL-operator T (X) = α(X). Then T satisfies the assumptions of Banach
contraction principle. Therefore, T has a fixed point which happens to be an answer
set to the program Π. For more on this theorem, the reader may consult [10].

Remark. Let us point out that the above ideas go beyond the class of stratified pro-
grams. For example, Fitting provides an example when metric fixed point theorems
proves the existence of a stable set for a non-stratified program. Namely, he considers
a program that describes wining positions in a positional game, in which players make
moves in turn and there are no draws. If a position is winning for one of the players,
then no further moves are possible. This program consists of the rules and the facts.
Rules are of the following type:

win(X)← move(X,Y),not win(Y),

and the facts (of the type move(X,Y)) describe possible moves. Predicate win(X)
means that X is a winning position, i.e., if a player is in a position X, then there
exists a strategy that enables him to win (no matter what the actions of the opposite
player are).

M.A. Khamsi, D. Misane / Fixed point theorems in logic programming 243

The (informal) meaning of the above rule is as follows: if a player is in a position
X, and he can move into another position Y that is not winning (i.e., losing) for the
opposite player, then he wins. If he cannot make such a move, this means that wherever
he moves to, the resulting position is winning for the second player. So, if no such
move exists, then X is a losing position for X.

Let’s modify this example into an example where a metric fixed point theorem
helps to find a stable model for a non-stratified disjunctive logic program. We will
consider the same game, but this time, we will assume that the players are still training
(it is not yet a championship). So, if a person is about to win, then instead of going
all the way to his victory, he can stop the game and teach another player (i.e., explain
how he could win). A program that describes this situations contains the same facts
move(X,Y), but slightly different rules:

canwin(X) ← move(X,Y),not canwin(Y)

win(X) ∨ teach(X)← canwin(X).

Rules of the first type describe when a player can win. Rules of the second type tell that
if a player can win, then he will either win, or teach. This program is non-stratified.
However, for this program, the mapping S → α(ΠS) is a contraction and therefore,
the fixed point theorem for multi-valued contractions proves that this mapping has a
fixed point (i.e., proves the existence of a stable model of Π).

References

[1] C.R. Baral and V.S. Subrahmanian, Stable and extension class theory for logic programs and default
logics, Journal of Automated Reasoning 8 (1992) 345–366.

[2] F. Fages, Consistency of Clark’s completion and existence of stable models, Journal of Methods of
Logic in Computer Science 1 (1994) 51–60.

[3] M. Fitting, Metric methods, three examples and a theorem, Journal of Logic Programming (1993),
to appear.

[4] M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Logic Pro-
gramming: Proceedings of the 5th Int. Conference and Symposium, eds. R. Kowalski and K. Bowen
(1988) pp. 1070–1080.

[5] J. Kelley, General Topology (Van Nostrand, Princeton, NJ, 1955).
[6] K. Kunen, Signed data dependencies in logic programs, Journal of Logic Programming 7(3) (1989)

231–245.
[7] J.W. Loyd, Foundations of Logic Programming (Springer-Verlag, New York, 1987).
[8] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Math. 5

(1955) 285–309.
[9] H. Turner, Signed logic programs, in: Logic Programming: Proc. of the 1994 Int. Symposium, ed.

M. Bruynooghe (MIT Press, 1994) pp. 61–75.
[10] M.A. Khamsi, D. Misane and V. Kreinovitch, A new method of proving the existence of answer sets

for disjunctive logic programs, in: Proc. ILPS’93 Workshop on Logic Programming with Incomplete
Information, eds. C. Baral and M. Gelfond (1993).

[11] M.A. Khamsi and D. Misane, Disjunctive signed logic programs, Preprint.

