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Abstract
We establish strong convergence and �-convergence theorems of an iteration
scheme associated to a pair of nonexpansive mappings on a nonlinear domain. In
particular we prove that such a scheme converges to a common fixed point of both
mappings. Our results are a generalization of well-known similar results in the linear
setting. In particular, we avoid assumptions such as smoothness of the norm,
necessary in the linear case.
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1 Introduction
Let C be a nonempty subset of a metric space (X,d) and T : C → C be a mapping. Denote
the set of fixed points of T by F(T). Then T is (i) nonexpansive if d(Tx,Ty) ≤ d(x, y) for
x, y ∈ C (ii) quasi-nonexpansive if F(T) �= ∅ and d(Tx, y) ≤ d(x, y) for x ∈ C and y ∈ F(T).
For an initial value x ∈ C, Das and Debata [] studied the strong convergence of Ishikawa
iterates {xn} defined by

xn+ = αnS
(
βnTxn + ( – βn)xn

)
+ ( – αn)xn (.)

for two quasi-nonexpansive mappings S, T on a nonempty closed and convex subset of
a strictly convex Banach space. Takahashi and Tamura [] proved weak convergence of
(.) to a common fixed point of two nonexpansive mappings in a uniformly convex Ba-
nach space which satisfies Opial’s condition or whose norm is Fréchet differentiable and
strong convergence in a strictly convex Banach space (see also [, ]). Mann and Ishikawa
iterative procedures are well-defined in a vector space through its built-in convexity. In
the literature, several mathematicians have introduced the notion of convexity in metric
spaces; for example [–]. In this work, we follow the original metric convexity introduced
byMenger [] and used bymany authors like Kirk [, ] andTakahashi []. Note thatMann
iterative procedures were also investigated in hyperbolic metric spaces [, ].
In this paper we investigate the results published in [] and generalize them to uni-

formly convex hyperbolic spaces. A particular example of such metric spaces is the class
of CAT()-spaces (in the sense of Gromov) and R-trees (in the sense of Tits). Heavy use
of the linear structure of Banach spaces in [] presents some difficulties when extending
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these results to metric spaces. For example, a key assumption in many of their results is
the smoothness of the norm which is hard to extend to metric spaces.

2 Menger convexity in metric spaces
Let (X,d) be a metric space. Assume that for any x and y in X, there exists a unique metric
segment [x, y], which is an isometric copy of the real line interval [,d(x, y)]. Note byF the
family of the metric segments in X. For any β ∈ [, ], there exists a unique point z ∈ [x, y]
such that

d(x, z) = ( – β)d(x, y) and d(z, y) = βd(x, y).

Throughout this paper we will denote such point by βx⊕ ( – β)y. Such metric spaces are
usually called convex metric spaces []. Moreover, if we have

d
(
αp⊕ ( – α)x,αq⊕ ( – α)y

) ≤ αd(p,q) + ( – α)d(x, y)

for all p, q, x, y in X and α ∈ [, ], then X is said to be a hyperbolic metric space (see [–
]). For q = y, the hyperbolic inequality reduces to the convex structure inequality [].
Throughout this paper, we will assume

αx⊕ ( – α)y = ( – α)y⊕ αx

for any α ∈ [, ] and any x, y ∈ X.
An example of hyperbolic spaces is the family of Banach vector spaces or any normed

vector spaces. Hadamard manifolds [], the Hilbert open unit ball equipped with the
hyperbolic metric [], and the CAT() spaces [, –] (see Example .) are examples
of nonlinear structures which play a major role in recent research in metric fixed point
theory. A subset C of a hyperbolic space X is said to be convex if [x, y] ⊂ C, whenever
x, y ∈ C (see also []).

Definition . [, ] Let (X,d) be a hyperbolic metric space. For any r >  and ε > ,
set

δ(r, ε) = inf

{
 –


r
d
(


x⊕ 


y,a

)
;d(x,a) ≤ r,d(y,a)≤ r,d(x, y) ≥ rε

}

for any a ∈ X. X is said to be uniformly convex whenever δ(r, ε) > , for any r >  and ε > .

Throughout this paper we assume that if X is a uniformly convex hyperbolic space, then
for every s≥  and ε > , there exists η(s, ε) >  such that

δ(r, ε) > η(s, ε) >  for any r > s.

Remark .
(i) We have δ(r, ) = . Moreover, δ(r, ε) is an increasing function of ε.
(ii) For r ≤ r, we have

 –
r
r

(
 – δ

(
r, ε

r
r

))
≤ δ(r, ε).
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Next we give a very important example of uniformly convex hyperbolic metric space.

Example . [] Let (X,d) be a metric space. A geodesic from x to y in X is a mapping c
from a closed interval [, l] ⊂ R to X such that c() = x, c(l) = y, and d(c(t), c(t′)) = |t – t′|
for all t, t′ ∈ [, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is called a
geodesic (or metric) segment joining x and y. The space (X,d) is said to be a geodesic space
if every two points of X are joined by a geodesic and X is said to be uniquely geodesic if
there is exactly one geodesic joining x and y for each x, y ∈ X, which will be denoted by
[x, y], and called the segment joining x to y.
A geodesic triangle �(x,x,x) in a geodesic metric space X consists of three points x,

x, x in X (the vertices of �) and a geodesic segment between each pair of vertices (the
edges of �). A comparison triangle for geodesic triangle �(x,x,x) in (X,d) is a triangle
�(x,x,x) := �(x̄, x̄, x̄) in R

 such that dR (x̄i, x̄j) = d(xi,xj) for i, j ∈ {, , }. Such a
triangle always exists (see []).
A geodesic metric space is said to be a CAT() space if all geodesic triangles of appro-

priate size satisfy the following CAT() comparison axiom.
Let� be a geodesic triangle in X and let� ⊂R

 be a comparison triangle for�. Then�

is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points x̄, ȳ ∈ �,

d(x, y) ≤ d(x̄, ȳ).

CompleteCAT() spaces are often calledHadamard spaces (see []). If x, y, y are points
of a CAT() space, then the CAT() inequality implies

d
(
x,



y ⊕ 


y

)
≤ 


d(x, y) +



d(x, y) –



d(y, y).

The above inequality is known as the (CN) inequality of Bruhat and Tits []. The (CN)
inequality implies that CAT() spaces are uniformly convex with

δ(r, ε) =  –
√
 –

ε


.

In a hyperbolic space X, (.) is written as

xn+ = αnS
(
βnTxn ⊕ ( – βn)xn

) ⊕ ( – αn)xn, (.)

where αn,βn ∈ [, ]. If S = T in (.), it reduces to the following Ishikawa iteration process
of one mapping:

xn+ = αnT
(
βnTxn ⊕ ( – βn)xn,n≥ ,

) ⊕ ( – αn)xn, (.)

where αn,βn ∈ [, ]. Let {xn} be a bounded sequence in a metric space X and C be a
nonempty subset. Define r(·, {xn}) : C → [,∞), by

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).
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The asymptotic radius ρC of {xn} with respect to C is given by

ρC = inf
{
r
(
x, {xn}

)
: x ∈ C

}
.

ρ will denote the asymptotic radius of {xn}with respect to X. A point ξ ∈ C is said to be an
asymptotic center of {xn}with respect toC if r(ξ , {xn}) = r(C, {xn}) =min{r(x, {xn}) : x ∈ C}.
We denote with A(C, {xn}), the set of asymptotic centers of {xn} with respect to C. When
C = X, we call ξ an asymptotic center of {xn} and we use the notation A({xn}) instead of
A(X, {xn}). In general, the set A(C, {xn}) of asymptotic centers of a bounded sequence {xn}
may be empty or may even contain infinitely many points. Note that in the study of the
geometry of Banach spaces, the function r(·, {xn}) is also known as a type. For more on
types in metric spaces, we refer to [].
The�-convergence, introduced independently several years ago byKuczumow [] and

Lim [], is shown inCAT() spaces to behave similarly as theweak convergence in Banach
spaces.

Definition . A bounded sequence {xn} in X is said to �-converge to x ∈ X if x is
the unique asymptotic center of every subsequence {un} of {xn}. We write xn

�→ x ({xn}
�-converges to x).

In this paper, we study the iteration schemes (.)-(.) for nonexpansive mappings. We
study strong convergence of these iterates in strictly convex hyperbolic spaces and prove
�-convergence results in uniformly convex hyperbolic spaces without requiring any con-
dition similar to norm Fréchet differentiability.
In the sequel, the following results will be needed.

Lemma . [, ] Let X be a hyperbolic metric spaces. Assume that X is uniformly con-
vex. Let C be a nonempty, closed and convex subset of X. Then every bounded sequence
{xn} ∈ X has a unique asymptotic center with respect to C.

Lemma . [, ] Let X be a hyperbolic metric spaces. Assume that X is uniformly
convex. Let C be a nonempty, closed and convex subset of X. Let C be a nonempty closed
and convex subset of X, and {xn} be a bounded sequence in C such that A({xn}) = {y} and
r({xn}) = ρ . If {ym} is a sequence in C such that limm→∞ r(ym, {xn}) = ρ , then limm→∞ ym = y.

The following lemma [] will be useful in studying the sequence generated by (.) in
uniformly convexmetric spaces. Herewe give a proof based on the ideas developed in [].

Lemma. Let X be auniformly convex hyperbolic space.Then for arbitrary positive num-
bers ε >  and r > , and α ∈ [, ], we have

d
(
a,αx⊕ ( – α)y

) ≤ r
(
 – δ

(
r, min{α,  – α}ε))

for all a,x, y ∈ X, such that d(z,x) ≤ r, d(z, y) ≤ r, and d(x, y)≥ rε.

Proof Without loss of generality, we may assume α < 
 . In this case, we have min{α,  –

α} = α. Let a ∈ X be fixed and x, y ∈ X. Set x̄ = αx⊕ ( – α)y. Since

d
(


x̄⊕ 


y,x

)
≤ ( – α)d(x, y) and d

(


x̄⊕ 


y, y

)
= αd(x, y),
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the uniform convexity ofX will imply 
 x̄⊕ 

y = αx⊕ (–α)y. Using the uniform convexity
of X, we get

d
(
a,



x̄⊕ 


y
)

≤ r
(
 – δ(r, αε)

)
.

Hence

d
(
a,αx⊕ ( – α)y

) ≤ r
(
 – δ

(
r, min{α,  – α}ε)). �

Remark . If (X,d) is uniformly convex, then (X,d) is strictly convex, i.e., whenever

d
(
αx⊕ ( – α)y,a

)
= d(x,a) = d(y,a)

for α ∈ (, ) and any x, y,a ∈ X, then we must have x = y.

The following result is very useful.

Lemma. [] Let (X,d) be a uniformly convex hyperbolic space. Let R ∈ [, +∞) be such
that

lim sup
n→∞

d(xn,a)≤ R, lim sup
n→∞

d(yn,a)≤ R and lim
n→∞d

(
a,



xn ⊕ 


yn

)
= R.

Then we have

lim
n→∞d(xn, yn) = .

But since we use convex combinations other than the middle point, we will need the
following generalization obtained by using Lemma ..

Lemma. Let (X,d) be a uniformly convex hyperbolic space. Let R ∈ [, +∞) be such that
lim supn→∞ d(xn,a)≤ R, lim supn→∞ d(yn,a)≤ R, and

lim
n→∞d

(
a,αnxn ⊕ ( – αn)yn

)
= R,

where αn ∈ [a,b], with  < a ≤ b < . Then we have

lim
n→∞d(xn, yn) = .

A subset C of a metric space X is Chebyshev if for every x ∈ X, there exists c ∈ C such
that d(c,x) < d(c,x) for all c ∈ C, c �= c. In other words, for each point of the space, there
is a well-defined nearest point of C. We can then define the nearest point projection P :
X → C by sending x to c. We have the following result.

Lemma . [] Let (X,d) be a complete uniformly convex hyperbolic space. Let C be
nonempty, convex and closed subset of X. Let x ∈ X be such that d(x,C) < ∞. Then there
exists a unique best approximant of x in C, i.e., there exists a unique c ∈ C such that

d(x, c) = d(x,C) = inf
{
d(x, c); c ∈ C

}
,

i.e., C is Chebyshev.
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Fukhar-ud-din and Khamsi Fixed Point Theory and Applications 2014, 2014:113 Page 6 of 15
http://www.fixedpointtheoryandapplications.com/content/2014/1/113

3 Convergence in strictly convex hyperbolic space
Let (X,d) be a hyperbolic metric space. Let C be a nonempty closed convex subset of X.
Let S,T : C → C be two nonexpansive mappings. Throughout the paper, assume that F =
F(S)∩ F(T). Let x ∈ C and p ∈ F (assuming F is not empty). Set r = d(x,p). Then

C(x) = C ∩ B(p, r) =
{
x ∈ C;d(p,x) ≤ r

}

is nonempty and invariant by both S and T . Therefore one may always assume that C
is bounded provided that S and T have a common fixed point. Moreover, if {xn} is the
sequence generated by (.), then we have

d(xn+,p) = d
(
αnSyn ⊕ ( – αn)xn,p

)
≤ αnd(Syn,p) + ( – αn)d(xn,p)

≤ αnd(yn,p) + ( – αn)d(xn,p)

= αnd
(
βnTxn ⊕ ( – βn)xn,p

)
+ ( – αn)d(xn,p)

≤ αn
[
βnd(Txn,p) + ( – βn)d(xn,p)

]
+ ( – αn)d(xn,p)

≤ d(xn,p),

where yn = βnTxn ⊕ ( –βn)xn. This proves that {d(xn,p)} is decreasing, which implies that
limn→∞ d(xn,p) exists. Using the above inequalities, we get

lim
n→∞d(xn,p) = lim

n→∞d
(
αnSyn ⊕ ( – αn)xn,p

)
= lim

n→∞αnd(Syn,p) + ( – αn)d(xn,p)

= lim
n→∞αnd(yn,p) + ( – αn)d(xn,p)

= lim
n→∞αnd

(
βnTxn ⊕ ( – βn)xn,p

)
+ ( – αn)d(xn,p)

= lim
n→∞αn

[
βnd(Txn,p) + ( – βn)d(xn,p)

]
+ ( – αn)d(xn,p).

The first result of this work discusses the convergence behavior of the sequence gener-
ated by (.).

Theorem . Let X be a strictly convex hyperbolic space. Let C be a nonempty bounded,
closed and convex subset of X. Let S,T : C → C be two nonexpansive mappings. Assume
that F �= ∅. Let x ∈ C and {xn} be given by (.). Then the following hold:

(i) if αn ∈ [a,b] and βn ∈ [,b], with  < a ≤ b < , then xni → y implies y ∈ F(S);
(ii) if αn ∈ [a, ] and βn ∈ [a,b], with  < a ≤ b < , then xni → y implies y ∈ F(T);
(iii) if αn,βn ∈ [a,b], with  < a ≤ b < , then xni → y implies y ∈ F . In this case, we have

xn → y.

Proof Assume that xni → y. Let p ∈ F . Without loss of generality, we may assume
limn→∞ αni = α and limn→∞ βni = β . Since {d(xn,p)} is decreasing, we get

lim
ni→∞d(xn,p) = lim

ni→∞d(xni ,p) = d(y,p).

http://www.fixedpointtheoryandapplications.com/content/2014/1/113
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The above inequalities imply

d(y,p) = d
(
αS

(
βTy⊕ ( – β)y

) ⊕ ( – α)y,p
)

= αd
(
S
(
βTy⊕ ( – β)y

)
,p

)
+ ( – α)d(y,p)

= αd
(
βTy⊕ ( – β)y,p

)
+ ( – α)d(y,p)

= α
[
βd(Ty,p) + ( – β)d(y,p)

]
+ ( – α)d(y,p).

Set r = d(y,p). Without loss of generality we may assume r >  otherwise most of the con-
clusions in the theorem are trivial. Assume that lim infn→∞ αn > . Then α �= . Hence

d
(
S
(
βTy⊕ ( – β)y

)
,p

)
= d

(
βTy⊕ ( – β)y,p

)
= βd(Ty,p) + ( – β)r = r,

which implies βd(Ty,p) = βr. If we assume that lim infn→∞ βn > , then β �= , which im-
plies d(Ty,p) = r.
() If α ∈ (, ) and β > , then

d
(
p,S

(
βTy⊕ ( – β)y

))
= d

(
αS

(
βTy⊕ ( – β)y

) ⊕ ( – α)y,p
)
= r.

The strict convexity of X will imply S(βTy⊕ ( – β)y) = y.
() If α ∈ (, ) and β = , then

d(p, y) = d
(
p,S(y)

)
= d

(
αS(y)⊕ ( – α)y,p

)
.

The strict convexity of X will imply S(y) = y.
() If β ∈ (, ) and α > , then

d(p, y) = d
(
p,T(y)

)
= d

(
p,βTy⊕ ( – β)y

)
.

The strict convexity of X will imply T(y) = y.
() If α,β ∈ (, ), then T(y) = y and S(βTy⊕ ( – β)y) = y. Hence S(y) = y.

Let us finish the proof of Theorem .. Note that (i) implies α ∈ [a,b] and β ∈ [,b]. If
β = , then the conclusion () above implies y ∈ F(S). Otherwise the conclusion () will
imply y ∈ F . This proves (i).
For (ii), notice that α ∈ [a, ] and β ∈ [a,b]. Hence the conclusion () will imply y ∈ F(T)

which proves (ii).
For (iii), notice that α,β ∈ [a,b]. Hence the conclusion () will imply y ∈ F(T). Since

lim
n→∞d(yn, y) = lim

n→∞d(yni , y) = ,

we get xn → y, which completes the proof of (iii). �

If we assume compactness, Theorem . will imply the following result.

Theorem . Let X be a strictly convex hyperbolic space. Let C be a nonempty bounded,
closed and convex subset of X. Let S,T : C → C be two nonexpansive mappings. Assume

http://www.fixedpointtheoryandapplications.com/content/2014/1/113
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that F �= ∅. Fix x ∈ C. Assume that co{{x} ∪ S(C)∪T(C)} is a compact subset of C.Define
{xn} as in (.) where αn,βn ∈ [a,b], with  < a ≤ b < , and x is the initial element of the
sequence. Then {xn} converges strongly to a common fixed point of S and T .

Proof We have xn ∈ co{{x} ∪ S(C)∪T(C)}. Since co{{x} ∪ S(C)∪T(C)} is compact, {xn}
has a convergent subsequence {xni}, i.e., xni → z. By Theorem ., we have z ∈ F and
xn → z. �

The existence of a common fixed point T and S is crucial. If one assumes that T and S
commute, i.e., S ◦ T = T ◦ S, then a common fixed point exists under the assumptions of
Theorem .. Indeed, fix x ∈ C and define

Tnx =

n
x ⊕

(
 –


n

)
Tx

for x ∈ C and n≥ . Then

d(Tnx,Tny) = d
(

n
x ⊕

(
 –


n

)
Tx,


n
x ⊕

(
 –


n

)
Ty

)

≤
(
 –


n

)
d(Tx,Ty)

≤
(
 –


n

)
d(x, y).

That is, Tn is a contraction. By the Banach contraction principle (BCP), Tn has a unique
fixed point un inC. Since the closure of T(C) is compact, there exists a subsequence {Tuni}
of {Tun} such that Tuni → u. Since T(C) is bounded and

d(un,Tun) = d
(

n
x ⊕

(
 –


n

)
Tun,Tun

)
≤ 

n
d(x,Tun),

we have d(un,Tun) → . In particular, we have uni → u. Continuity of T implies Tu = u.
Since X is strictly convex, then F(T) is a nonempty convex subset of X. Since T and S
commute, we have S(F(T)) ⊂ F(T). Moreover, since the closure of T(C) is compact, we
see that F(T) is compact. The above proof shows that S has a fixed point in F(T), i.e.,
F = F(S)∩ F(T) �= ∅.
The case S = T gives the following result.

Theorem . Let C be a nonempty closed and convex subset of a complete strictly convex
hyperbolic space X. Let T : C → C be a nonexpansive mapping such that co{{c} ∪ T(C)}
is a compact subset of C, where c ∈ C. Define {xn} by (.), where x = c, αn ∈ [a,b] and
βn ∈ [,b] or αn ∈ [a, ] and βn ∈ [a,b], with  < a ≤ b < . Then {xn} converges strongly to
a fixed point of T .

Proof We saw that in this case, we have F(T) �= ∅. Since xn ∈ co{{x} ∪ T(C)}. Then there
exists a subsequence {xni} of {xn} such that xni → z ∈ C. By Theorem ., we have Tz = z
and xn → z. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/113
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4 Convergence in uniformly convex hyperbolic spaces
The following result is similar to the well-known demi-closedness principle discovered by
Göhde in uniformly convex Banach spaces [].

Lemma . Let C be a nonempty, closed and convex subset of a complete uniformly convex
hyperbolic space X. Let T : C → C be a nonexpansive mapping. Let {xn} ∈ C be an approx-
imate fixed point sequence of T , i.e., limn→∞ d(xn,Txn) = . If x ∈ C is the asymptotic center
of {xn} with respect to C, then x is a fixed point of T , i.e., x ∈ F(T). In particular, if {xn} ∈ C
is an approximate fixed point sequence of T , such that xn

�→ x, then x ∈ F(T).

Proof Let {xn} be an approximate fixed point sequence of T . Let x ∈ C be the unique
asymptotic center of {xn} with respect to C. Since

d(Tx,xn) ≤ d(Tx,Txn) + d(Txn,xn) ≤ d(x,xn) + d(Txn,xn),

we get

r
(
Tx, {xn}

)
= lim sup

n→∞
d(Tx,xn)

≤ lim sup
n→∞

[
d(x,xn) + d(Txn,xn)

]
= r

(
x, {xn}

)
.

By the uniqueness of the asymptotic center, we get Tx = x. �

The following theorem is necessary to discuss the behavior of the iterates in (.).

Theorem . Let C be a nonempty, closed and convex subset of a complete uniformly con-
vex hyperbolic space X. Let S,T : C → C be nonexpansive mappings such that F �= ∅. Fix
x ∈ C and generate {xn} by (.). Set

yn = βnTxn ⊕ ( – βn)xn

for any n ≥ .
(i) If αn ∈ [a,b], where  < a≤ b < , then

lim
n→∞d(xn,Syn) = .

(ii) If lim infn→∞ αn >  and βn ∈ [a,b], with  < a ≤ b < , then

lim
n→∞d(xn,Txn) = .

(iii) If αn,βn ∈ [a,b], with  < a ≤ b < , then

lim
n→∞d(xn,Sxn) =  and lim

n→∞d(xn,Txn) = .

Proof Let p ∈ F . Then the sequence {d(xn,p)} is decreasing. Set c = limn→∞ d(xn,p). If
c = , then all the conclusions are trivial. Therefore we will assume that c > . Note that
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we have

d(xn+,p) ≤ αnd(Syn,p) + ( – αn)d(xn,p) (.)

and

d(Syn,p) ≤ d(yn,p) ≤ βnd(Txn,p) + ( – βn)d(xn,p) ≤ d(xn,p) (.)

for any n ≥ . In order to prove (i), assume that αn ∈ [a,b], where  < a ≤ b < . From the
inequalities (.) and (.), we get

d(xn+,p) = d
(
αnSyn ⊕ ( – αn)xn,p

) ≤ αnd(Syn,p) + ( – αn)d(xn,p) ≤ d(xn,p),

which implies limn→∞ d(Syn,p) = c. Indeed, let U be an ultrafilter over N. Then we have
limU αn = α ∈ [a,b] and limU d(xn,p) = limU d(xn+,p) = c. Hence

c≤ α lim
U

d(Syn,p) + ( – α)c≤ c.

Since α �= , we get limU d(Syn,p) = c. Since U was an arbitrary ultrafilter, we get
limn→∞ d(Syn,p) = c as claimed. Therefore we have

lim
n→∞d(xn,p) = lim

n→∞d(Syn,p) = lim
n→∞d

(
αnSyn ⊕ ( – αn)xn,p

)
= c.

Using Lemma ., we get limn→∞ d(Syn,xn) = .
Next we prove (ii). Assume lim infn→∞ αn >  and βn ∈ [a,b], with  < a ≤ b < . First

note that from (.) and (.), we get

d(xn+,p) ≤ αnd(yn,p) + ( – αn)d(xn,p) ≤ d(xn,p),

which implies limn→∞ αnd(yn,p)+(–αn)d(xn,p) = c. Since lim infn→∞ αn > , we conclude
that limn→∞ d(yn,p) = c. Since βn ≥ a > , we get in a similar fashion limn→∞ d(Txn,p) = c.
Therefore we have

lim
n→∞d(xn,p) = lim

n→∞d(Txn,p) = lim
n→∞d

(
βnTxn ⊕ ( – βn)xn,p

)
= c.

Using Lemma ., we get limn→∞ d(Txn,xn) = .
Finally let us prove (iii). Assume that αn,βn ∈ [a,b], with  < a ≤ b < . Then from (i) and

(ii), we know that

lim
n→∞d(xn,Syn) =  and lim

n→∞d(xn,Txn) = .

Since

d(xn,Sxn) ≤ d(xn,Syn) + d(Syn,Sxn)

≤ d(xn,Syn) + d(yn,xn)
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= d(xn,Syn) + βnd(Txn,xn)

≤ d(xn,Syn) + d(Txn,xn),

we conclude that limn→∞ d(xn,Sxn) = . �

The conclusion of Theorem .(iii) is amazing because the sequence generated by (.)
gives an approximate fixed point sequence for both S and T without assuming that these
mappings commute.

Remark . If we assume that ≤ βn ≤ b <  and lim infn→∞ αn > , then

lim
n→∞βnd(xn,Txn) = .

Indeed, if we assume this not to be so, then there exists a subsequence {βn′ } and δ >  such
that

βn′d(xn′ ,Txn′ ) ≥ δ

for any n ≥ . In particular, it is clear, since {d(xn,Txn)} is bounded, that limn→∞ βn′ �= .
Without loss of generality, we may assume that βn′ ≥ a > , for n≥ . The proof of (ii) will
imply

lim
n→∞d(xn′ ,Txn′ ) = ,

which is a contradiction since {βn} is a bounded sequence. Therefore we must have

lim
n→∞βnd(xn,Txn) = .

In particular, if we assume αn ∈ [a,b], then we get

lim
n→∞d(xn,Sxn) = .

As a direct consequence to Theorem . and Remark ., we get the following result
which discusses the �-convergence of the iterative sequence defined by (.).

Theorem . Let C be a nonempty, closed and convex subset of a complete uniformly con-
vex hyperbolic space X. Let S,T : C → C be two nonexpansive mappings such that F �= ∅.
Fix x ∈ C and generate {xn} by (.). Then

(i) if αn ∈ [a,b] and βn ∈ [,b], with  < a ≤ b < , then xn
�→ y and y ∈ F(S);

(ii) if αn ∈ [a, ] and βn ∈ [a,b], with  < a ≤ b < , then xn
�→ y and y ∈ F(T);

(iii) if αn,βn ∈ [a,b], with  < a ≤ b < , then xn
�→ y and y ∈ F .

Proof Let us prove (i). Assume αn ∈ [a,b] and βn ∈ [,b], with  < a ≤ b < . Theorem .
and Remark . imply that {xn} is an approximate fixed point sequence of S, i.e.,

lim
n→∞d(xn,Sxn) = .
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Let y be the unique asymptotic center of {xn}. Then Lemma . implies that y ∈ F(S). Let
us prove that in fact {xn} �-converges to y. Let {xni} be a subsequence of {xn}. Let z be the
unique asymptotic center of {xni}. Again since {xni} is an approximate fixed point sequence
of S, we get z ∈ F(S). Hence

lim sup
ni→∞

d(xni , z) ≤ lim sup
ni→∞

d(xni , y).

Since y, z ∈ F(S), we get

lim sup
ni→∞

d(xni , z) = lim
n→∞d(xn, z) and lim sup

ni→∞
d(xni , y) = lim

n→∞d(xn, y).

Since y is the unique asymptotic center of {xn}, we get y = z. This proves that {xn} �-con-
verges to y.
Next we prove (ii). Assume αn ∈ [a, ] and βn ∈ [a,b], with  < a ≤ b < . Then Theo-

rem . implies that {xn} is an approximate fixed point sequence of T , i.e.,

lim
n→∞d(xn,Txn) = .

Following the same proof as given above for (i), we get {xn} �-converges to its unique
asymptotic center which is a fixed point of T .
The conclusion (iii) follows easily from (i) and (ii). �

As a corollary to Theorem ., we get the following result when S = T .

Corollary . Let C be a nonempty, closed and convex subset of a complete uniformly
convex hyperbolic space X. Let T : C → C be a nonexpansive mapping with a fixed point.
Suppose that {xn} is given by (.), where αn ∈ [a,b] and βn ∈ [,b] or αn ∈ [a, ] and βn ∈
[a,b], with  < a ≤ b < . Then xn

�→ p, with p ∈ F(T).

Using the concept of near point projection, we establish the following amazing conver-
gence result.

Theorem . Let C be a nonempty, closed and convex subset of a complete uniformly con-
vex hyperbolic space X. Let S,T : C → C be nonexpansive mappings such that F �= ∅. Let
P be the nearest point projection of C onto F . For an initial value x ∈ C, define {xn} as
given in (.), where αn,βn ∈ [a,b], with  < a ≤ b < . Then {Pxn} converges strongly to the
asymptotic center of {xn}.

Proof First, we claim that

d(Pxn,xn+m) ≤ d(Pxn,xn) form ≥ ,n≥ . (.)

We prove (.) by induction onm ≥ . Form = , we have

d(Pxn,xn+) = d
(
Pxn,αnSyn ⊕ ( – αn)xn

)
≤ αnd(Pxn,Syn) + ( – αn)d(Pxn,xn)
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≤ αnd(Pxn, yn) + ( – αn)d(Pxn,xn)

= αnd
(
Pxn,βnTxn ⊕ ( – βn)xn

)
+ ( – αn)d(Pxn,xn)

≤ αn
[
βnd(Pxn,Txn) + ( – βn)d(Pxn,xn)

]
+ ( – αn)d(Pxn,xn)

≤ αn
[
βnd(Pxn,xn) + ( – βn)d(Pxn,xn)

]
+ ( – αn)d(Pxn,xn)

= d(Pxn,xn).

That is,

d(Pxn,xn+) ≤ d(Pxn,xn)

for n≥ . Assume that (.) is true form = k. That is,

d(Pxn,xn+k) ≤ d(Pxn,xn)

for n≥ . Hence

d(Pxn,xn+k+) = d
(
Pxn,αn+kSyn+k ⊕ ( – αn+k)xn+k

)
≤ αn+kd(Pxn,Syn+k) + ( – αn+k)d(Pxn,xn+k)

≤ αn+kd(Pxn, yn+k) + ( – αn+k)d(Pxn,xn+k)

= αn+kd
(
Pxn,βn+kTxn+k ⊕ ( – βn+k)xn+k

)
+ ( – αn+k)d(Pxn,xn+k)

≤ αn+k
[
βn+kd(Pxn,Txn+k) + ( – βn+k)d(Pxn,xn+k)

]
+ ( – αn+k)d(Pxn,xn+k)

≤ αn+k
[
βn+kd(Pxn,xn+k) + ( – βn+k)d(Pxn,xn+k)

]
+ ( – αn+k)d(Pxn,xn+k)

= d(Pxn,xn+k)

≤ d(Pxn,xn).

This completes the proof of (.). Let us complete the proof of Theorem .. We know
from Theorem .(iii) that {xn} �-converges to its unique asymptotic center y, which is
in F . Let us prove that {Pxn} converges strongly to y. Assume not, i.e., there exist ε >  and
a subsequence {Pxni} such that d(Pxni , y) ≥ ε, for any ni ≥ . It is clear that we must have
R = d(x, y) > , otherwise {xn} is a constant sequence. Since

⎧⎪⎨
⎪⎩
d(xni , y) ≤ d(xni , y),
d(xni ,Pxni ) ≤ d(xni , y),
d(Pxni , y) ≥ ε = d(xni , y)

ε
d(xni ,y)

≥ d(xni , y)
ε
R

we get

d
(
xni ,



Pxni ⊕



y
)

≤ d(xni , y)
(
 – δ

(
d(xni , y),

ε

R

))
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for any ni ≥ . Using the properties of the modulus of uniform convexity, there exists η > 
such that

δ

(
d(xni , y),

ε

R

)
≥ η

for any ni ≥ . Hence

d
(
xni ,



Pxni ⊕



y
)

≤ d(xni , y)( – η)

for any ni ≥ . Using the definition of the nearest point projection P, we get

d(xni ,Pxni ) ≤ d(xni , y)( – η)

for any ni ≥ . Using the inequality (.) above, we get

d(xni+m,Pxni ) ≤ d(xni , y)( – η)

for any ni ≥  andm ≥ . Since Pxni ∈ F , we know that {d(xn,Pxni )} is decreasing (in n and
fixed ni). Hence

lim sup
m→∞

d(xni+m,Pxni ) = lim
n→∞d(xn,Pxni ) ≤ d(xni , y)( – η)

for any ni ≥ . Since y is the asymptotic center of {xn}, we get

lim
n→∞d(xn, y) ≤ lim

n→∞d(xn,Pxni ) ≤ d(xni , y)( – η)

for any ni ≥ . Finally since y ∈ F , if we let ni → ∞, we get

lim
n→∞d(xn, y) ≤ lim

n→∞d(xn, y)( – η).

Since ε ≤ d(xni ,Pxni ) ≤ d(xni , y), we conclude that ε ≤ limn→∞ d(xn, y), which implies  ≤
 – η which is our desired contradiction. Therefore {Pxn} converges strongly to y. �
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