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Chapter 1

Introduction to Metric
Fixed Point Theory

The fixed point problem (at the basis of the Fixed Point Theory) may be stated
as:

Let X be a set, A and B two nonempty subsets of X such that AN B # 0, and
f:A— B be amap. When does a point x € A such that f(x) = z, also called
a fixed point of f ¢

A multivalued fixed point problem may be stated but in these lectures we
will mainly focus on the single valued functions.

Fixed Point Theory is divided into three major areas:
1. Topological Fixed Point Theory
2. Metric Fixed Point Theory

3. Discrete Fixed Point Theory

Historically the boundary lines between the three areas was defined by the
discovery of three major theorems:

1. Brouwer’s Fixed Point Theorem
2. Banach’s Fixed Point Theorem

3. Tarski’s Fixed Point Theorem
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In these lectures, we will focus mainly on the second area though from time to
time we may say a word on the other areas.

1.1 Metric Fixed Point Theory

In 1922 Banach published his fixed point theorem also known as Banach’s
Contraction Principle uses the concept of Lipschitz mappings.

Definition. Let (M,d) be a metric space. The map T : M — M is said to
be lipschitzian if there exists a constant k& > 0 (called lipschitz constant) such
that

d(T(x),T(y)) <k d(z,y)

for all x,y € M.

A lipschitzian mapping with a lipschitz constant k less than 1, i.e. k <1, is
called contraction.

Theorem. (Banach’s Contraction Principle) Let (M,d) be a complete
metric space and let T': M — M be a contraction mapping. Then T has a
unique fixed point xg, and for each z € M, we have

lim T"(x) = zg

n—oo

Moreover,for each x € M, we have

n

d(T"(z),xo) < 1k_k d(T(x),x) .

Remark. Another proof, due to Caristi, is not very popular though very pow-
erful and uses the function ¢ : M — R defined by

1
Note that we have

d(m,T(gc)) < p(z) — p(T(x)), xzeM.

Theorem. Suppose (M, d) is a complete metric space and suppose T : M — M
is a mapping for which TV is a contraction mapping for some positive integer
N. Then T has a unique fixed point.
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1.1.1 Caristi-Ekeland Principle
This is one of the most interesting extensions of Banach’s Contraction Principle.

Let ¢ : M — R and assume that ¢ is lower semicontinuous (l.s.c.), i.e. for
any sequence {x,} C M, if lim z, =z and lim ¢(z,) =1, then ¢(z) <r.
n—oo n—oo

Theorem. (Ekeland, 1974) Let (M,d) be a complete metric space and ¢ :
M — R* Ls.c. Define:

r<y&dzy) <o) —ely), 2,y € M.

Then (M, <) has a maximal element.
Theorem. (Caristi, 1975) Let M and ¢ be as above. Suppose g : M — M
satisfies:

d(z,g(z)) < p(x) — ¢(g(2)), € M.

Then g has a fixed point.

The proof of is based on discrete technique: Zorn’s lemma and Axiom of
Choice applied to Bronsted partial order. There are some trials of finding a
pure metric proof of Carisit’s theorem (without success so far).

1.1.2 The Converse Problem

In other words, what kind of set M will have the conclusion of Banach Contrac-
tion Principle? The most elegant result in this direction is due to Bessaga.

Theorem. Suppose that M is an arbitrary nonempty set and suppose that
T : M — M has the property that T" and each of its iterates T™ has a unique
fixed point. Then for each A € (0, 1) there exists a metric dy on M such that
(M, dy) is complete and for which

dx (T(m),T(y)) < Adx(z,y) foreach z,y € M.

1.1.3 Ultrametric Spaces

Though the definition of ultrametric spaces is too strong, it is a very natural
concept used in logic programming for example. Recall that a metric space
(M, d) is ultrametric if and only if for each z,y,z € M, we have

d(z,y) < max{d(z, z),d(y,2)}
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It is immediate from the above definition that if d(x,y) # d(y, z), then we
have d(x,z) = max{d(z,y),d(y,z)}, i.e. each three points are vertices of an
isoscele triangle. This leads to:

If B(a,r1) and B(b,ro) are two closed balls in an ultrametric space,
with 71 < ry, then either B(a,r1) N B(b,r2) =0 or B(a,r1) C B(b,r2).

An ultrametric space M is said to be spherically complete if every descending
sequence of closed balls in M has nonempty intersection. Thus a spherically
complete ultrametric space is complete. Some nice and immediate consequences
of isoscele property are:

1. If F is a family of closed balls in a spherically complete ultrametric space
such that each two members of F intersect, then the family F has a
nonempty intersection, i.e. NF # (.

2. If B(a,r1) and B(b,r3) are two closed balls in an ultrametric space, such
that B(a,r1) C B(b,r2), and if b & B(a,r1), then d(b,a) = d(b, z) for any
z € B(a,r1).

Priess-Crampe proved an analogue to Banach’s Contraction Principle in ul-
trametric spaces.

Theorem. An ultrametric space M is spherically complete if and only if every
strictly contractive mapping T': M — M has a (unique) fixed point.

Recall that T': M — M is strictly contractive if
d(T(x),T(y)) < d(x,y), for any z,y € M.

1.1.4 Some Examples.

Many examples are known to use Banach’s Contraction Principle. Here we will
discuss two of them.

ODE and Integral Equations

Consider the integral equation

f@) = | " Ko ) f(0)dt + 6(a)

for a fixed real number \, where K (x,t) is continuous on [a, b] X [a, b]. Consider
the metric space Cla,b] of continuous real-valued functions defined on [a, b].
Consider the map T : C[a, b] — Cla, b] defined by

(1) @) = A [ Kz @)t + o).
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For fi, fo € C[a,b], we have

(b—a)"

n!

A(T" (). T (f2)) < A" M A(f1, f2)

where
M = max{|K(z,t)|; (z,t) € [a,b] x [a,b]}.

which implies that the above equation has a unique solution f(x).

Recall
d(f1, f2) = max{|f1(z) — fa(2)[; 2 € [a,b]}.

for f1, fo € Cla, b].

Note: The map T is not a contraction on [a,b]. Bielecki discovered another
way to remedy to this ”problem”. Indeed, for A > 0, set

I£llx = max {e™* @~ f ()]},

a<z<b

it is now possible to prove that for any fi, fa € C[a, ], we have

A (7). T(R)) = IT() = T < 51— all

where M = max |K(x,y)| is as before. It is then clear that for A sufficiently

a<z,y<b
large T is a contraction for the new distance d.

Cantor and Fractal sets

Let (M, d) be a complete metric space, let M denote the family of all nonempty
bounded closed subsets of M, and let C denote the subfamily of M consisting
of all compact sets. For A € M and € > 0 define the e-neighborhood of A to be
the set

N.(A)={z e M : dist(z,A) < &}
where dist(z, A) = irelg d(z,y). Now for A, B € M, set
y
H(A,B)=inf{e >0: AC N.(B) and B C N.(A)}.
Then (M, H) is a metric space, and H is called the Hausdorff metric on M.

Notice that if (M,d) is complete, then (M, H) is also complete. Let T; : M —
M, i=1,..,n, be a family of contractions. Define the map T* : C — C by
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Then T™ is a contraction and its lipschitz constant is smaller than the maximum
of all lipschitz constants of the mappings 7;, ¢ = 1,..,n. Then Banach’s Con-
traction Principle implies the existence of a unique nonempty compact subset
X of M such that

X = O Ti(X).
=1

As an application of this, consider the real line R and the two contractions

1 1 2
Ty (x) = 3% To(x) = 3% + 3
Then the compact X which satisfies X = T1(X) U T2(X) is the well-known

Cantor set.

1.1.5 Historical Note

We all have learned that the origins of the metric contraction principles and,
ergo, metric fixed point theory itself, rest in the method of successive approxima-
tions for proving existence and uniqueness of solutions of differential equations.
This method is associated with the names of such celebrated nineteenth century
mathematicians as Cauchy, Liouville, Lipschitz, Peano, and specially Picard. In
fact the iterative process used in the proof of the Contraction theorem bears
the name of Picard iterates. It is quite sad to see that in 1429 Al-Kashani al-
ready published a book entitled:” The Calculator’s Key”, where he used Picard
iterates. In fact, Al-Kashani set the stage to the so-called numerical techniques
some 600 years ago. He was keen to develop ideas with practical matters, like
the approximate values of sin(1°) which enabled muslim scientists to come up
with a very good approximations to the circumference of the earth. It is amaz-
ing, when reading his ideas, to see that most of the ingredients in Banach’s
Contraction Principle were already known to him.



Chapter 2

Metric Fixed Point Theory
in Banach Spaces

The formal definition of Banach spaces is due to Banach himself. But examples
like the finite dimensional vector space R" was studied prior to Banach’s formal
definition of Banach spaces. In 1912, Brouwer proved the following:

Theorem. Let B be a closed ball in R". Then any continuous mapping
T : B — B has at least one fixed point.

This theorem has a long history. The ideas used in its proof were known to
Poincare as early as 1886. In 1909, Brouwer proved the theorem when n =
3. And in 1910 Hadamard gave the first proof for arbitrary n, and Brouwer
gave another proof in 1912. All of these are older results than the Banach
Contraction Principle. Though in nature the two theorems are different, they
bare some similarities. A combination of the two led to the so-called metric fixed
point theorem in Banach spaces. Indeed, in Brouwer’s theorem the convexity,
compactness, and the continuity of T are crucial, while the lipshitz behavior of
the contraction and completeness are crucial in Banach’s fixed point theorem.
In infinite normed linear vector spaces, we lose the compactness of the bounded
closed convex sets (like closed balls). So if we assume completeness we get
Banach spaces. On these, we have another natural topology (other than the
norm topology), that is the weak-topology. So a weakly-compact convex set
needs not to be compact for the norm. The best example here is the Hilbert
space. In it any bounded closed convex set is weakly-compact. The lipschitz
condition to be considered is when the lipschitz constant is equal to 1. Such
mappings are called nonexpansive. In other words, if (M, d) is a metric space,
then T': M — M is nonexpansive if

d(T(:E),T(y)) < d(z,y) for any z,y € M.

9
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The metric fixed point problem in Banach spaces becomes:

Let X be a Banach space, and C a nonempty bounded closed con-
vex subset of X. When does any nonexpansive mapping 7 : C — C
have at least one fixed point?

Other interesting problems closely related to this one are:
1. The structure of the fixed points sets.

2. The approximation of fixed points.

3. Abstract Metric Theory.

Recognition of fixed point theory for nonexpansive mappings as a noteworthy
avenue of research almost surely dates from the 1965 publication of

1. Browder-Gohde Theorem. If K is a bounded closed convex subset of
a uniformly convex Banach space X and if T : K — K is nonexpansive,
then T has a fixed point. Moreover the fixed point set of T is a closed
convex subset of K.

2. Kirk Theorem.If K is a weakly-compact convex subset of a Banach
space X. Assume that K has the normal structure property, then any
nonexpansive mapping 7' : K — K has a fixed point.

2.0.6 Classical Existence Results

While studying a paper by Brodskii and Milman (1948), Kirk (1965) was able to
discover the stated result. So the normal structure property is an old concept
not directly related to nonexpansive mappings. Hilbert space and uniformly
convex Banach spaces have the normal structure property. In fact, the proofs
given independently by Browder and Gohde of their results do not use this prop-
erty.

Let K be a bounded closed convex subset of a Banach space X and T : K — K
be a nonexpansive mapping. Let € € (0,1) and z¢g € K. Define T; by

T.(zx) =exo+ (1 —&)T(x), for any x € K.

It is easy to check that T.(K) C K (since K is convex) and it is a contraction.
The Banach’s Contraction Principal implies the existence of a unique point
zr. € K such that

xe =cxo+ (1 —e)T(xe) .

which implies

lze — T(x:)|| =€ ||Jzo — T'(ze)] < e diam(K) .
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Therefore we have
inf ||z —T =0.

nf flo —T(2)]
This property is known as the approximate fixed point property. So any non-
expansive mapping defined on a bounded closed convex subset of Banach space
has this property. By taking a sequence {e,} which goes to 0, we generate a
sequence of points {z, } from K such that

lim ||z, — T(z,)]| =0.

n—oo

Such sequence is called an approximate fixed point sequence (a.f.p.s.).

In order to grasp the ideas behind the proofs of the existence of fixed point for
nonexpansive mappings in the Hilbert and uniformly convex spaces, we need
the concept of asymptotic center of a sequence discovered by Edelstein. This
concept is very useful whenever one deals with sequential approximations in
Banach spaces.

Let {x,} be a bounded sequence in a Banach space X, and let C be a closed
convex subset of X. Consider the functional f : C' — [0, 00) defined by

f(z) =limsup ||, — x| .

n—oo

Usually we use the notation f(z) = r(z,{zs}). The infimum of f(x) over C' is
called the asymptotic radius of {z,} and denoted by r(C, {z,}),i.e.

r(C{an}) = inf r(z,{zs}) = inf <hm sup ||z, — :v|>~

n—oo

The set
A(O’ {xn}) = {.I‘ € Cv ’I”(Q]‘, {.Z‘n}) = T(C7 {an})}
is the set of all asymptotic centers of {x,}. If {z,} converges to z € C, then

A(C,{x,}) = {z}. In general the set A(C,{z,}) is not reduced to one point.

Theorem. Every bounded sequence in a uniformly convex Banach space X has
a unique asymptotic center with respect to any closed convex subset of X.

In the Hilbert case, we get more:

Theorem. In a Hilbert space H, the weak limit of a weakly convergent se-
quence coincides with its asymptotic center with respect to H.

Note that in any Hilbert space H, the asymptotic center of a bounded sequence
{z,} with respect to H belongs to the closed convex hull of {z,,}. But this does
not necessarily hold in (even uniformly convex) Banach spaces.
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Let C be a bounded closed convex subset of a uniformly convex Banach space
X and T : C' — C be nonexpansive.

1. Let {z,,} be an a.f.p.s. of T in C. Let z € C be its asymptotic center with
respect to C, then it is quite easy to check that T'(z) is also an asymptotic
center of {z,,} with respect to C. By the uniqueness of the asymptotic
center, we get T'(z) = 2.

2. Let z € X and consider the orbit of « under T, i.e. {T"(x)}. Let z € C
be its asymptotic center with respect to C, then again it is quite easy to
check that T'(z) is also an asymptotic center of {T™(z)} with respect to
C. By the uniqueness of the asymptotic center, we get T'(z) = z.

Remark. In 1965, Browder in fact discovered something truly amazing. Let
C' be a bounded closed convex subset of a uniformly convex Banach space X
and T : C — C be nonexpansive. If {z,} C C converges weakly to = and
{xn — T(x,)} converges strongly (with respect to the norm) to 0, then we have

x—T(x)=0.
This is known as the Demiclosedness principle.

As we mentioned before, Kirk’s theorem is based on the normal structure prop-
erty discovered by Brodskii and Milman.

2.0.7 The Normal Structure Property

The reason behind separating it from the other results is the important role it
played during the first 20 years (since 1965) of the theory. In order to appreciate
this property, let us give more information on nonexpansive mappings in Banach
spaces. Indeed, let C' be a weakly compact convex subset of a Banach space X.
Let T : C — C be nonexpansive. The first pioneers of the metric fixed point
theory were mostly concerned about the existence of fixed points. So assume
that T fails to have a fixed point in C. Since C' is weakly compact, there exists
(by Zorn) a minimal nonempty closed convex subset K of C' invariant under T,
i.e. T(K) C K. The central research of the metric fixed point theory in Banach
spaces always centered around the discovery of new properties of such minimal
convex sets. The first property is due to Kirk.

Theorem. Under the above notations, we have
1. conv(T'(K)) = K.

2. sup ||z — z|| = diam(K) > 0, for any z € K.
zeK
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The normal structure property forbids the conclusion 2 to hold.

Definition. A closed convex subset C' of a Banach space X is said to have
the normal structure property if any bounded convex subset K of C' which
contains more than one point, contains a nondiametral point, i.e. there exists
a point zg € K such that

sup ||zg — z|| < diam(K) .
zeK

We will also say that X has the normal structure property if any bounded closed
convex subset has the normal structure property.

Throughout this section we will use the following notations:

diam(C) = sup |lz —y;
z,yeC

r.(C) = sup |z — =||;
T

r(C) = inf r,(C);

zeC
C(C)={ze€C; r,(C)=r(C)}.

The number r(C) and the set C(C) are called the Chebyshev radius and
Chebyshev center of C, respectively.

Now we are ready to state Kirk’s theorem.

Theorem. Let X be a Banach space and suppose that C' is a nonempty weakly
compact convex subset of X which has the normal structure property. Then
any nonexpansive mapping 7' : C' — C has a fixed point.

For the following ten years most of the results were solely concentrated on the
study of the normal structure property. For example, most of the classical known
Banach spaces have normal structure property. So most of the fixed point exis-
tence theorems were in fact theorems about normal structure property. It got
so bad that some thought that any reflexive (or superreflexive) Banach spaces
have the normal structure property. It was not before 1972 (196877) that James
renormed the Hilbert space I to get rid of this property.

For any 8 > 0, define the new norm ||.||g on Iz by

2]l = max{{[z[l2, 5 f|#[lo} -

Set Xg = (I2,|-lls)- James showed that the supereflexive Banach space X 5
fails the normal structure property. This answered the question asked by the
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people working on the fixed point property in Banach spaces. Right after James
published his result the natural question of whether X 5 has the fixed point
property arose. It was Karlovitz (in 1975) who settled this question to the affir-
mative. We will discuss more Karlovitz ideas later on. Hence we see that normal
structure property (which is a geometric property) implies the fixed point prop-
erty but they are not equivalent. Then people started to dissociate themselves
from the normal structure property. In fact, Baillon and Schoneberg (1981)
studied the space X 5 and proved that this space has a geometric, known as
asymptotic normal structure property which implies the fixed point prop-
erty. In fact, they proved that Xg has this geometric property for 4 < 2. Then
it was asked what happened to X3 for 5 > 2. No definitive answer was given to
a point that some though again that may be these spaces may lead an example
of a superreflexive space which fails the fixed point property. No luck again.
This time it was Lin (1985) who settled this question by proving that Xz has the
fixed point property for any 8 > 0. After this, and other results some went too
far to claim that no geometric property is equivalent to the fixed point property.
This question is still open.

2.0.8 More on Normal Structure Property

Since Kirk publication of his paper, people intensified their investigation of this
property. For example it was proved that uniformly convex Banach spaces have
this property. In particular, it was shown that if X is a Banach space set

Tty

ax(s):inf{l—

H el < 1.yl < 1.z — ol = }

defined for € € [0,2]. The characteristic (or coefficient) of convexity of the
Banach space X is the number

eo(X) =sup{e > 0:d(e) = 0}.

X is uniformly convex if and only if €9(X) = 0, i.e. d(g) > 0, for any € € [0, 2].
And X is said to be uniformly non-square if and only if €¢(X) < 2. James
studied these spaces extensively. Assume that €9(X) < 1, and let € € (g9(X), 1).
Then for any nonempty bounded closed convex subset of X, there exists a point
x € C such that

r(z,C) < (1 - 5(5)) diam(C) .

So we have
N(X) = Sup{di;incé)C)} < (1 *5(80(X)))

where the supremum is taken over all nonempty bounded closed convex subset
of X with more than one point. The number N (X) is known as the coefficient
of uniform normal structure property. So we have the normal structure
property and even more: uniform normal structure property, i.e. N(X) < 1. So
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uniformly convex Banach spaces have a stronger geometric property. In fact, a
weaker version was discovered to still imply the normal structure property. It
is known as uniform convexity in every direction (U.C.E.D.). Indeed, let
z € X be a unit vector (||z]| = 1). The modulus of uniform convexity dx (e, z)
of X in the direction z is defined by

inf{l —

It is not hard to show that if X is U.C.E.D., then for any nonempty bounded
closed convex subset K of X, the Chebishev center C(K) of K has at most one
point. So clearly if X is U.C.E.D., then it has the normal structure property.
Spaces which are U.C.E.D. or equivalently renormed to be U.C.E.D. were ex-
tensively studied by Zizler (1971).

T+y
2

Htllwsl,llyél, x—yzaz,nx—ynzs} .

Remark. There is a sequential characterization of the normal structure prop-
erty discovered by Brodskii and Milman in their original work, which played a
key role in studying this property.

A bounded sequence {z,} in a Banach space is said to be a diametral
sequence if

lim dist(x,y1,conv{zy, T2, -, xn}) = diam{zy, za,- - -}.

n—o0

We have

Theorem. A bounded convex subset K of a Banach space has normal structure
if and only if it does not contain a diametral sequence.

2.0.9 Normal Structure and Smoothness

As with convexity, it is possible to scale Banach spaces with respect to their
smoothness.
Let X be a Banach space. Define the modulus of smoothness px of X by

p(n) = SUP{ Hx J;nyH +

for any n > 0. X is said to be uniformly smooth (U.S.) if

r—ny
2

|- titell < 1wl < 1}

tim 22X _ ¢
n—0 7

Theorem. For any Banach space X, we have

1. px~(n) =sup{ne/2 — dx(£);0 < e < 2}, for any n > 0;
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o 1 200D _ 20(X).

77%0 ’]’] 2 ’
3. X is uniformly convex if and only if X* is uniformly smooth.

Note that one may reverse the roles of X and X* to obtain for example

oy — 1o PX() _ eo(XT)
PX(O)*}]% n 2

Using James non-squareness result, we see that X is superreflexive if and only
1

In 1978-79 Baillon proved that any uniformly smooth space X has the fixed
point property. In fact, he precisely proved this conclusion provided p'y (0) < %

In 1982, Turett published a paper where he proved that the condition py (0) <
% implies the normal structure property. Unfortunately Turett’s proof is an
exact reproduction of Baillon’s original proof. Later on this conclusion was
strengthened by Prus (1988) and Khamsi (1987) to show that the condition
P (0) < % implies the super-normal structure property (and hence the uniform
normal structure property) for both X and its dual X*. The proof is based on
nonstandard techniques.

2.0.10 Karlovitz-Goebel Lemma

As mentioned before, if K is a minimal convex associated to a nonexpansive
mapping, then little is known about its properties except the two properties
discovered by Kirk. In 1975, independently Karlovitz and Goebel proved the
following:

Theorem. Let K be a subset of a Banach space X which is minimal with
respect to being nonempty, weakly compact, convex, and T-invariant for some
nonexpansive mapping 7', and suppose {z,} C K is an a.f.p.s., i.e.

lim ||, — T(z,)]| = 0.

n—oo

Then for each x € K,
lim ||z — z,|| = diam(K).

Recall again that it was this property that allowed Karlovitz to prove that the
space X /5 has the fixed point property. In this theorem a.f.p.s. are important.
It is this that pushed Maurey to use ultrapowers.

From 1965 to 1980 most of the classical Banach spaces were investigated and
proved to have the fixed point property. Missing to the call was ¢y and (general)
lattice Banach spaces. During that period of time, it was strongly believed that
any weakly compact convex subset of any Banach space have the fixed point
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property. It was Alspach (1980-81) who disproved this claim by constructing an
isometry on a weakly compact convex subset of L[0,1] without a fixed point.
This example set the stage to the second revolution in the theory (after the
first one in 1965). Indeed, almost right after Alspach’s example was made pub-
lic, Maurey (1980) published his famous results (using nonstandard techniques).

The Open Problem. It is still unknown whether reflexive (or superreflexive)
Banach spaces have the fixed point property.

2.1 Non-Standard Techniques

In order to appreciate Maurey’s ideas, we need to define the concept of ultra-
power of a Banach space. Throughout this section X denotes a Banach space
and U a nontrivial ultrafilter over the positive integers.

Consider the vector space

loo(X) = {(2) C X : sup [2a] < o0}.

1<n<oco

It is known (and easily checked) that ¢, (X) is a Banach space with the norm
defined by

(@)l = sup |lan]l , for (zn) € loo(X).
1<n<oco

Set
N = {(an) € loo(X); lim [z || = O}.

The Banach space ultrapower X of X (relative to the ultrafilter U is the
quotient space £ (X)/N. Thus the elements of X are equivalence classes [(z,)]
of bounded sequences (x,,) C X, where one agrees that two such sequences (z,)
and (y,,) are equivalent if and only if

lim 7~ yl] = 0.

The norm |||, in X is the usual quotient norm. Thus for & = [(z,,)] € X,

12l = inf{[[(zn + yn)ll : (yn) € N}

We remark that there is another approach which leads to the same thing. Notice
that since {||z,||} is bounded it lies in a compact subset of R.. Therefore 1ibr[n |zl

always exists. In fact one can prove that for # = [(z,)] € X,

12l = tim 2]
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For each x € X let (z,,) denote the sequence for which z,, = x, and let & =
[(z,)] € X. Then the subspace X = {& : x € X} is isometric to X via the
mapping x — & since

2]l = lin [|2n [} = Lim [|]| = fJ]]

Definition. We will say that the Banach space X has the property super-P if
and only if its ultrapower X has the property P.

A precise definition using finite representability may be used but here we
tried a simple approach.

For example, we can talk of: superreflexive, super normal structure property,
super fixed point property, etc...

Extending Mappings to Ultrapowers
Let K C X be bounded closed and convex, and suppose T : K — K. Letting

K ={[(zn)] € X; x, € K for each n},

there is a canonical way to extend 7" to a mapping T : K — K by setting for
& =[(zn)] € K, i
T(z) = [(T(xn))]-

It is immediate that K is a bounded closed and convex subset of X. It is quite
straightforward to prove that if T is nonexpansive, then T is nonexpansive as
well. Moreover, since K is bounded and T is nonexpansive there always exist
afp. s (z,) C K, ie.
i [l — T(a,)]| = 0.

Set & = [(x,)]. Then T(&) = &, i.e. Fiz(T) # 0. Not only does the mapping
T always have fixed points, but in fact we can prove that F m(f) is metrically
convex (Maurey 1980). When dealing with minimal invariant convex sets, more
can be said. Indeed, let X be a Banach space and C be a nonempty, convex,
weakly compact subset of X. Assume that there exists a nonexpansive mapping
T : C — C whose fixed point set Fiz(T) is empty. Since C is weakly compact,
there exists K a closed convex subset of C', which is T-invariant and minimal.
Before, we have seen some of the properties of this minimal set. Define K as
usual to be

K= {[(xn)] € X : 2, € K for each n}

Maurey proved some more properties of K:

1. diam(K) = diam(K) = diam(Fiz(T));

2. For any z € K, dist(z, Fiz(T)) = diam(K);
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3. For any # € Fiz(T), dist(z, K) = diam(K);
Using these properties Maurey proved the follwoing;:

Theorem. Any reflexive subspace of L'[0,1]) has the fixed point property. As
well as the Hardy space H'.

Theorem. Let K be a weakly compact, convex subset of a superreflexive space
X. Then any isometric map T : K — K has a fixed point.

Recall that up to 1980, it was still unknown whether the classical space ¢y has
the fixed point property. Maurey, through his new ideas, was able to prove it
by using the basic lattice properties of ¢g. In fact, Borwein and Sims (1984) did
rewrite these ideas in general lattice Banach spaces to obtain similar conclusions.

Refining some of the properties satisfied by the minimal invariant sets (in
the ultrapower language), Lin (1985) proved the following result:

Theorem. Let {1, } be an approximate fixed point sequence (a.f.p.s.) for T in
K, ie. |T(wy) — Wyl — 0 as n goes to co. Then for any = € K, we have

lim ||w, — |y = diam(K).

This enabled him to prove one of the most elegant applications of Maurey’s
ideas:

Theorem. Let X be a Banach space with an unconditional Schauder basis.
Assume that its constant of unconditionality A\ satisfies

V33 -3
<73

A ~ 1.37

Then X has the fixed point property.
Note that the canonical basis of the spaces Xz are 1-unconditional, then Xg

has the fixed point property for any 8 > 0. This settled the question was for
all.
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Chapter 3

Metric Fixed Point Theory
in Hyperconvex Spaces

3.1 Preface

The notion of hyperconvexity is due to Aronszajn and Panitchpakdi (1956) who
discovered it when investigating an extension of Hahn-Banach theorem in metric
spaces. The corresponding linear theory is well developed and associated with
the names of Gleason, Goodner, Kelley and Nachbin. The nonlinear theory is
still developing. The recent interest into these spaces goes back to the results
of Sine and Soardi (1979) who proved independently that fixed point property
for nonexpansive mappings holds in bounded hyperconvex spaces.

Recall also that Jawhari, Misane and Pouzet (1986) were able to show that
Sine and Soardi’s fixed point theorem is equivalent to the classical Tarski’s fixed
point theorem in complete ordered sets (via generalized metric spaces). There-
fore, the notion of hyperconvexity should be understood and appreciated in a
more abstract formulation.

3.2 Introduction and basic definitions

Recall the Hahn-Banach theorem:

Theorem 3.2.1. Let X be a real vector space, Y be a linear subspace of X,
and p a seminorm on X. Let f be a linear functional defined on Y such that
f(y) < ply), for ally € Y. Then there exists a linear functional g defined on
X, which is an extension of f (i.e. g(y) = f(y), for all y € Y ), which satisfies
g(x) < p(x), forallze X.

The proof is based on the following well-known fundamental property of the
real line R:

21
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“If {Ia}aer is a collection of intervals such that I, N Ig # 0, for any a, B €T,

then we have ﬂ I, £ 0.
aecll

It is this property that is at the heart of the new concept discovered by
Aronszajn and Panitchpakdi. Note that an interval may also be seen on the real
line as a closed ball. Indeed, the interval [a, b] is also the closed ball centered at
(a+ b)/2 with radius r = (b — a)/2, i.e.

(0,0 = B a+b b—a
T 2 7 2 '

So the above intersection property may also be seen as a ball intersection
property.

Definition 3.2.2. (Menger convezity) Let M be a metric space. We say that
M s metrically convez if for any points x,y € M and positive numbers o and (3
such that d(z,y) < a+0, there exists z € M such that d(z,z) < o and d(z,y) <
B, or equivalently z € B(xz,«) N By, 5).

So M is metrically convex if
B(z,a)NB(y,B) #0 if d(z,y) <a+p
for any points z,y € M and positive numbers « and f.
Therefore, the Hahn-Banach extension theorem is closely related to an inter-

section property of the closed balls combined with some kind of metric convexity.
Hyperconvexity captures these ideas.

Definition 3.2.3. The metric space M is said to be hyperconvezr if for any
collection of points {xo}taer n M and positive numbers {ro}toer such that
d(x,x8) <1 +1s for any o and B in T', we must have

ﬂ B(xg,ra) #0 .

acl

3.3 Some basic properties of Hyperconvex spaces

Clearly from the previous section, the real line R is hyperconvex. In fact, we
can easily prove that the infinite dimensional Banach space [, is hyperconvex.
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Theorem 3.3.1. Let (M,,ds)acr be a collection of hyperconver metric spaces.
Consider the product space M = [[ My. Fiz a = (aq) € M and consider the

acl’
subset M of M defined by
M = {(xa) € M; supda(Ta,aq) < oo}.
ael’

Then (M,d) is a hyperconvex metric space where do is defined by
doc (). (40)) = 5P do (s, 1)
ac

for any (24), (ya) € M.
Its proof is an easy consequence from the fact:
B((za),r) = [ ] Ba(za:7) -
acll
Note that any metric space M may be embedded isometrically into a hyper-

convex metric space. Indeed, let (M, d) be a metric space. Set

loo (M) = {(@m)menr € RM; sup |z,| < oo}
meM

To see that M embeds isometrically into I (M), fix a € M and consider the
map I : M — (M) defined by

I(b) = (al(b7 m) — d(a, m)) . for any b € M.

me

Tt is easy to check that do. (I(b),[(c)) = d(b,c) for any b,c € M.

In order to prove that hyperconvex spaces are complete, it is enough to have
a weaker version of the intersection of balls. Indeed, we say that M has the ball
intersection property if ﬂ B, # () for any collection of balls (Bgy)qer such

acl
that () Ba # 0, for any finite subset I'y C T".
OéEFf

Proposition 3.3.2. Any metric space M which has the ball intersection prop-
erty is complete. In particular any hyperconvexr metric space is complete.

At this point we introduce some notation which will be used throughout the
remainder of this work. For a subset A of a metric space M, set:

r:(A) = sup{d(z,y):y € A}, € M;
r(A) = inf{ry,(A):z e M};

R(A) = inf{r,(A):z € A};

diam(A) = sup{d(z,y):z,y€ A};

C(4) = {zeM:r,(4) =r(A)};
Ca(A) = {reA:r(A)=r(A);

cov(A) = ({B:Bisaballand B D A}.
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r(A) is called the radius of A (relative to M), diam(A) is called the diameter
of A, R(A) is called the Chebyshev radius of A, C'(A) is called the center of A
(in M), C4(A) is called the Chebyshev center of A, and cov(A) is called the
cover of A.

We have the following:

Theorem 3.3.3. Suppose A is a bounded subset of a hyperconvex metric space
M. Then:

cov(A) = ({B(z,ry(4)) : x € M}.

rz(cov(A)) = rp(A), for any x € M.

r(cov(A)) = r(4).

r(A) = %diam(A).

diam(cov(A)) = diam(A).

If A = cov(A), then r(A) = R(A). In particular we have R(A) = %diam(A).

S v oo~

Definition 3.3.4. Let M be a metric space. By A(M) we denote the collection
of all subsets of M which are intersection of balls, i.e. A(M)={AC M;A=
cov(A)}. The elements of A(M) are called admissible subsets of M.

It is clear that A(M) contains all the closed balls of M and is stable by
intersection, i.e. the intersection of any collection of elements from A(M) is
also in A(M). From the above results, for any A € A(M), we have

c) =N B(a,R(A)) A e A(M).
acA
Moreover, diam(C(A)) < diam(A)/2. So we have A = C(A) if and only if
A€ A(M) and diam(A) =0, i.e. A is reduced to one point.

Additionally, we will denote the class of hyperconvex subsets of a metric
space M as H(M).

Definition 3.3.5. A subset E of a metric space M is said to be proximinal
(with respect to M ) if the intersection EN B(x, dist(x, E)) is nonempty for each
e M.

It is not hard to show that admissible subsets of a hyperconvex metric space
M are proximinal in M.

3.4 Hyperconvexity, Injectivity and Retraction

In this section, we will discuss Aronszajn and Panitchpakdi ideas on how hy-
perconvexity captures Hahn-Banach extension theorem in metric spaces.
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A metric space M is said to be injective if it has the following extension
property: Whenever Y is a subspace of X and f : Y — M is nonexpansive,
then f has a nonexpansive extension f : X — M. This fact has several nice
consequences.

Theorem 3.4.1. Let H be a metric space. The following statements are equiv-
alent:

(i) H is hyperconvex;
(i) H is injective.
A similar result to Aronszajn and Panitchpakdi’s main theorem may be

stated in terms of retractions as follows.

Theorem 3.4.2. Let H be a metric space. The following statements are equiv-
alent:

(i) H is hyperconvex;

(ii) for every metric space M which contains H metrically, there exists a non-
expansive retraction R: M — H;

(iii) for any point w not in H, there exists a nonexrpansive retraction R :
Hu{w}—H.

Remark 3.4.3. Note that statement (i) is also known as an absolute retract
property. This is why hyperconvexr metric spaces are also called absolute nonezx-
pansive retract (or in short ANR).

Using the statement (iii), Khamsi (1986) introduced a new concept called
1-local retract.

Definition 3.4.4. Let M be a metric space. A subset N is called a 1-local
retract of M if for any point x € M \ N, there exists a nonexpansive retraction
R:MU{z} — N.

If we take in this definition the set M to be any metric space which contains
N metrically, the 1-local retract property becomes absolute 1-local retract prop-
erty. Note that absolute 1-local retracts are absolute nonexpansive retract, i.e.
hyperconvex.

Notice that statement (ii), in the above theorem, has a nice extension. In-
deed, we have the following result:

Corollary 3.4.5. Let H be a metric space. The following statements are equiv-
alent:
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(i) H is hyperconvex;

(i) there exist a hyperconvex metric space H* which contains H metrically
and a nonexpansive retraction R: H* — H;

In other words, a nonexpansive retract of a hyperconvex metric space is also
hyperconvex.

Remark 3.4.6. This result was used by Khamsi to prove that hyperconvex met-
ric spaces enjoy a better convexity property than the Menger one. Indeed, let
H be a hyperconvexr metric space. We have seen that H embeds isometrically
into loo(H). Hence there exists a nonexpansive retraction R : loo(H) — H.

1=n
Let x1,...,xy, be in H and positive numbers oy, ...,a, such that > a; = 1.
i=1

1=

=n
In loo(H), consider the convex linear combination Y a;x;. Set @ wx; =
i=1 1<i<n

i=n
R <Z aixi> € H. Then, for any w € H, we have
i=1

d( @ aixi,w) zd(R(lg?aﬂi),R(w)) < iami—w

which implies

loo (H)

d( @ ai:vi,w) Sfaid(xi7w).
i=1

1<i<n

We will rewrite the above inequality as

d( @ aixi,-) < izznaid(xi,~).
i=1

1<i<n
In fact we have a more general formula
d( P i P aiyi) < Y ad(@i, ).
1<i<n 1<i<n 1<i<n

One may argue that the choice of our convex combination in H depends on
the retraction R and the choice of the isometric embedding, the answer is yes.
Therefore depending on the problem, one may have to be careful about this
choice.

Sine (1989) began the study of the retraction property in hyperconvex spaces
in a little more detailed way than what we have stated so far. His results are
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crucial in investigating nonexpansive mappings defined on hyperconvex metric
spaces. We will begin the final part of this section focusing on admissible subsets,
for which Sine proved the following relevant fact. For any positive real number
r and any set A in a metric space M, we define the r-parallel set of A as

A+r= U{B(am); a € A}.
We have the following result.

Theorem 3.4.7. Let H be a hyperconvex metric space. Let J be an admissible
subset of H. Set J = NperB(xq,7a). Then for any r > 0, we have

J—l—T:aOFB(xa,ra—i—r).

In other words, the r-parallel of an admissible subset of a hyperconver metric
space is also an admissible set (this is not a common property of metric spaces).

Remark 3.4.8. For any positive real number r and any set A in a metric space

M, we define the r-neighborhood
N, (A) = {z € M, dist(z, A) < r}.

If A is proziminal, i.e. for everyx € M there exists a € A such that dist(x, A) =
d(x,a), then the r-parallel set A+r and the r-neighborhood N,.(A) are identical.

Before we state Sine’s result recall that a map T defined on a metric space
M is said to be e-constant if d(x,Tz) < € for all x € M. We have the following
result:

Theorem 3.4.9. Let H be a hyperconver metric space. Let J be a nonempty
admissible subset of H. Then for any € > 0 there exists an e-constant nonezx-
pansive retraction of the parallel set J. = J + € onto J.

3.5 More on Hyperconvex spaces

Hyperconvexity, as we mentioned before, is an intersection property. In other
words, if a metric space is hyperconvex then the family of admissible sets has
some kind of compactness behavior.

Early investigators of hyperconvexity wondered whether the compactness of the
family of admissible sets holds also for the family of hyperconvex sets. Notice
that this family is not stable under intersection. Therefore one may ask whether
any descending chain of nonempty hyperconvex sets has a nonempty intersec-
tion. This question was answered by Baillon (1988) in a highly technical proof.
It is not known to us if a simple proof of this result exists.
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Theorem 3.5.1. Let M be a bounded metric space. Let (Hg)ger be a decreasing
family of nonempty hyperconver subsets of M, where I is totally ordered. Then
(\ Hp is not empty and is hyperconvez.
Ber

One of the implications of Baillon’s Theorem is the existence of hyper-
convex closures. Indeed, let M be a metric space and consider the family
H(M) = {H; H is hyperconvex and M C H}. In view of what we said previ-
ously, the family H(M) is not empty. Using Baillon’s result, any descending
chain of elements of H(M) has a nonempty intersection. Therefore one may use
Zorn’s lemma which will insure us of the existence of minimal elements. These
minimal hyperconvex sets are called hyperconvex hulls. Isbell (1964) was among
the first to investigate the properties of the hyperconvex hulls. In fact he was
the first one to give a concrete construction of a hyperconvex hull.

It is clear that hyperconvex hulls are not unique. But they do enjoy some
kind of uniqueness. Indeed, we have:

Proposition 3.5.2. Let M be a metric space. Assume that Hy and Hs are two
hyperconvezr hulls of M. Then Hy and Hs are isometric.

Remark 3.5.3. Though hyperconvex hulls are not unique, the previous proposi-
tion shows that up to an isometry they are indeed unique. It is quite an amazing
result. From now on, we will denote the hyperconvex hull of M by h(M). Recall
that if M is a subset of a hyperconver set H, then there exists a hyperconvex

hull h(M) such that M C h(M) C H.

Isbell, in his study of the hyperconvex hulls, showed that if M is compact
then h(M) is also compact. A generalization of this result was discovered by
Espinola and Lopez (1996).

Definition 3.5.4. Let M be a metric space and let B(M) denote the collection
of nonempty, bounded subsets of M. Then:

(i) The Kuratowski measure of noncompactness o : B(M) — [0, 00) is defined
by

a(A) = inf {5 >0; AC U A; with A; € B(M) and diam(A;) < 5} .
i=1

(i1) The Hausdorff (or ball) measure of noncompactness x : B(M) — [0,00) is
defined by

Xx(A) = inf {7' >0; AC U B(x;,r) withxz; € M }

i=1
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These two measures are very much related to each other and to compactness.
Indeed, the following classical properties are well known.

(1) For any A € B(M), we have 0 < a(A) < §(A) = diam(A).
)

2) For any A € B(M), we have o(A) =0 if and only if A is precompact.

4) For any A € B(M), we have x(A4) < a(A4) < 2x(A).

)
(2)
(3) Forany A € B(M) and B € B(M), we have o(AUB) = max{a(A), a(B)}.
(4)
(5) 1

f (A;)ier is a decreasing chain of closed bounded sets such that inf;c; «(4;) =

0, then [ 4; is not empty and is compact, i.e. a( N Ai) =
el el

In hyperconvex metric spaces, the two measures behave nicely. Indeed, we
have:

Proposition 3.5.5. Let H be a hyperconvex metric space and A be a bounded
subset of H. Then we have a(A) = 2x(A).

Theorem 3.5.6. Let M be any bounded metric space and h(M) its hyperconvex
hull. Then we have

x(h(M)) = x(M) and o(h(M)) = a(M).

3.6 Fixed point property and Hyperconvexity

Sine and Soardi results are at the origin of the recent interest to hyperconvex
metric spaces. Both Sine and Soardi showed that nonexpansive mappings de-
fined on a bounded hyperconvex metric space have fixed points. Their results
were stated in different context but the underlying spaces are simply hypercon-
vex spaces.

Theorem 3.6.1. Let H be a bounded hyperconvexr metric space. Any nonex-
pansive map T : H — H has a fixed point. Moreover, the fized point set of T,
Fiz(T), is hyperconvez.

Note that since Fix(T) is hyperconvex, then any commuting nonexpansive
maps T3, i = 1,2, ...,n, defined on a bounded hyperconvex set H, have a com-
mon fixed point. Moreover their common fixed point set Fix(T;) N Fix(T2) N

--NFix(T,) is hyperconvex.

Combining these results with Baillon’s theorem, we get the following:

Theorem 3.6.2. Let H be a bounded hyperconvex metric space. Any commuting
family of nonexpansive maps {T;}ier, with T; : H — H, has a common fized
point. Moreover, the common fized point set ﬂ Fiz(T;) is hyperconver.

iel
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Remark 3.6.3. Baillon asked whether boundedness may be relaxed. He precisely
asked whether the conclusion holds if the nonexpansive map has a bounded orbit.
In the classical Kirk’s fized point theorem, having a bounded orbit implies the
existence of a fixed point. Prus answered this question in the negative. Indeed,
consider the hyperconver Banach space H = lo, and the map T : H — H defined
by

T((J;n)> =(1+ liLI{nxn,xl, Ta,...)

where U is a nontrivial ultrafilter on the set of positive integers. We may also
take a Banach limit instead of a limit over an ultrafilter. The map T is an
isometry and has no fived point. On the other hand, we have

T"(0) = (1,1,...,1,0,0,...)

where the first block of length n has all its entries equal to 1 and 0 after that.
So T has bounded orbits.

Recently, we wondered whether Sine and Soardi’s theorem holds for asymp-
totically nonexpansive mappings. Recall that a map 7T is said to be asymptot-
ically nonexpansive if

d(T"(x), T"(y)) < And(z,y)

and lim A\,, = 1. This question is till unknown. But a partial positive answer is
n

known for approximate fixed points. Before we state this result, recall that if
T:H — H is a map, then z € H is an e-fixed point if d(z,T(z)) < ¢ where
€ > 0. The set of e-fixed points of T is denoted by Fix.(T"). Sine obtained the
following wonderful result:

Theorem 3.6.4. Let H be a bounded hyperconver metric space and T : H — H
a nonezxpansive map. For any e > 0, Fiz.(T) is not empty and is hyperconvex.

Now we are ready to state the following unpublished result.

Theorem 3.6.5. Let H be a bounded hyperconver metric space and T : H — H
be asymptotically nonexpansive. For any e > 0, Fix.(T) is not empty, in other
words we have

wlgf{ d(z,T(x)) = 0.

3.7 Set-valued mappings in Hyperconvex spaces

Recall that A(M) denotes the family of all nonempty admissible subsets of a
metric space M. In both instances endowed with the usual Hausdorff metric
dp . Recall that the distance between two closed subsets A, B of a metric space
in the Hausdorff sense is given by

dp(A,B) =inf{e >0: A C N.(B) and B C N.(A)}
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where N (A) denotes the closed e-neighborhood of A.

Theorem 3.7.1. Let H be hyperconvex, and let T* : H — A(H). Then there
exists a mapping T : H — H for which T(x) € T*(x) for each x € H and for
which d(T(z), T(y)) < dg(T*(x),T*(y)) for each x,y € H.

As a corollary of this we have:

Corollary 3.7.2. Let H be bounded and hyperconvex, and suppose T* : H —
A(H) is nonexpansive. Then T* has a fized point, that is, there exists x € H
such that x € T*(x).

The method of Theorem ?? also gives the following. In this theorem Fix(T™*) =
{r e H:zeT*(x)}.

Theorem 3.7.3. Let H be hyperconvex, let T* : H — A(H) be nonexpansive
and suppose Fix(T*) # (. Then there exists a nonexpansive mapping T : H —
H with T(z) € T*(x) for each x € H and for which Fiz(T) = Fiz(T*). In
particular, Fiz(T*) is hyperconves.

Remark 3.7.4. Due to its importance in different branches of mathematics,
selection problems have been widely studied along the last fifty years. The prob-
lem is usually as follows: given a certain multivalued mapping to be able to find
an univalued selection of it with certain properties as, for instance, continu-
ity or measurability. Theorem 77 is very surprising since it is not common at
all to be able to guarantee that a nonerpansive multivalued mapping admits a
nonexpansive selection, in fact this seems to be a quite characteristic fact from
the hyperconver geometry. The reader will find a large collection of results and
references on multivalued selection problems in the recent book:

D. Repovs, and P.V. Semenov, Continuous Selections of Multivalued
Mappings, Kluwer Academic Publishers, Dordrecht, 1998.

We finish this section with two applications of Theorem ?7. First we show
that the family of all bounded A-lipschitzian functions of a hyperconvex space
M into itself is itself hyperconvex and second we will study a best approxima-
tion problem in hyperconvex spaces.

Let f and g be two bounded A-lipschitzian functions of a hyperconvex space
M into itself, we define the distance between them in the usual way, that is, if
f,g: M — M, set

d(f,g) = sup d(f(:r:),g(x))
xeM

Theorem 3.7.5. Let M be hyperconvez and for A > 0 let §x denote the family of
all bounded \-lipschitzian functions of M into M. Then §y is itself a hyperconvex
space.

This leads to the following.



32CHAPTER 3. METRIC FIXED POINT THEORY IN HYPERCONVEX SPACES

Corollary 3.7.6. Let M be a bounded hyperconvex metric space and let f € F7.
Then the family

R={reF (M) C Fiz(f)}
is a nonexpansive retract of Fi.

One of the most important concepts in approximation theory is that one
of metric projection. In this last part of the section we study the problem of
finding nonexpansive selections of the metric projection. Let us introduce some
definitions first.

Definition 3.7.7. Let M be a metric space and A a proximinal subset of M,
then the mapping R : M — 24 defined as

R(z) = Bz, dist(z, A)) N A

for every x € M is called the metric projection on A (relative to M ).

Notice that the proximinality of A guarantees that R(x) # () for all z € M.
We will also deal with the following concept.

Definition 3.7.8. A subset A of a metric space M is said to be a proximinal
nonexpansive retract of M if there exists a nonexpansive selection of the metric
projection on A, i.e. if there exists a nonexpansive retraction r : M — A such
that r(z) € B(x, dist(x, A)) N A for each x € M.

The first one in taking up the problem of characterizing proximinal nonex-
pansive retracts in hyperconvex metric spaces was Sine.

Theorem 3.7.9. Let E be an admissible subset of a hyperconvex metric space
H. Then E is a proximinal nonexpansive retract of H.

Remark 3.7.10. Most of the theorem cited here were proven for a larger class
than admissible subsets: externally hyperconvex, weak-externally hyperconvex.

3.8 Lambda-Hyperconvexity

Since the beginning it was known that the Hilbert space ¢ fails hyperconvexity.
By studying this case closely, Khamsi and al. (2000) introduced a property
very similar to hyperconvexity, called A-hyperconvexity. The idea is to expand
the radius of the given balls by a uniform factor. For example, every pairwise
intersecting collection of balls in /5 has non-empty intersection if the radius of
the balls are increased by the factor /2. In light of this, the following definition
becomes natural.
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Definition 3.8.1. Let M be a metric space and let X > 1. We say that the
metric space M is \-hyperconvez if for every non-empty admissible set A €
A(M), for any family of closed balls {B(xu,7a)}taca, centered at xo, € A for
a € A, the condition

d(xq,x8) <14 +1s for every a, B € A,

mmplies
AN ( ﬂ B(xm)\ra)) £ .
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Let \(M) be the infimum of all constants A such that M is A-hyperconvez, and
say that \(M) is exact if M is A\(M)-hyperconvez.

Griinbaum (1920) and other authors have studied a similar property not in-
volving the underlying admissible set A. But its introduction becomes essential
when we try to connect this concept to the fixed point property via the normal
structure property.

Let us recall Griinbaum’s definition: For a metric space M, let the expansion
constant E(M) be the infimum of all constants p such that the following holds:
Whenever a collection {B(Zq,r): a € A} intersects pairwise, then

ﬂ B(To, pt 7o) # 0.

acA

We say E(M) is exact, if the condition is even satisfied for u = E(M).

Trivially, E(M) < A(M) holds in metrically convex spaces (see Definition
??). On the other hand, if M is a two element metric space, then E(M) = 1,
while A(M) = 2, so both concepts do not coincide in general.

Let us first summarize some basic properties of \-hyperconvex metric spaces,
some of which are trivial, while the others can be easily derived from correspond-
ing results about expansion constants:

Theorem 3.8.2. Let M be a metric space.
1. M is hyperconvez if and only if it is 1-hyperconver.
2. Every A-hyperconvex metric space is complete.

3. Reflexive Banach spaces and dual Banach spaces are 2-hyperconver.

B

. There is a subspace X of €1 which fails to be 2-hyperconver.

D

. Hilbert space is \/2-hyperconvez.



34CHAPTER 3. METRIC FIXED POINT THEORY IN HYPERCONVEX SPACES

We will finish this section, and hence this chapter on hyperconvexity, by
studying the connection between A-hyperconvexity and the fixed point property.
The theorem we will finish with is based on a metric generalization of Kirk’s
fixed point theorem established by Khamsi (1989). In order to state this gener-
alization we need to know what a uniform normal structure on a metric space is.

Let M be a metric space and F a family of subsets of M. Then we say that
F defines a convezity structure on M if it contains the closed balls and is stable
by intersection. For instance A(M), the class of the admissible subsets of M,
defines a convexity structure on any metric space M. We say that F is a uni-
form normal structure on M if there exists ¢ < 1 such that R(A) < ¢- diam(A)
for every A € F with diam(A) > 0, where R(A) and diam(A) are, respectively,
the Chebyshev radius and diameter of A defined in Section 3.

Now we may state the generalization of Kirk’s fixed point theorem.

Theorem 3.8.3. Let M be a bounded complete metric space. If M has a uni-
form mormal structure then it has the fixed point property for nonerpansive map-

Pings.
The connection between A-hyperconvexity and the fixed point property is
giving by the following theorem.

Theorem 3.8.4. Let M be a bounded \-hyperconvex space. If A < 2, then any
nonexpansive mapping T : M — M has a fized point.



Chapter 4

Metric Fixed Point Theory
in Metric Spaces

4.1 The Metric Convexity

The Banach Contraction Principle theorem is a metric result and does not
depend on any linear structure. But Kirk’s fixed point theorem is strongly con-
nected to the linear convexity structure of linear spaces. As early as 1965, many
have tried to weaken this tiding. Takahashi (1970) was may be the first one to
give a metric analogue to Kirk’s theorem. His approach was based on defining
a convexity in metric spaces extremely similar to the linear convexity.

Definition. Let (M, d) be a metric space with I = [0,1]. A mapping W : M x
M xI — M issaid to be a convex structure on M if for each (x,y, \) € M xM xI
and z € M, we have

a2 W (@,y,0)) < Ad(z,2) + (1= Nd(z,p)

Sometimes the point W (z,y, A) is denoted Az @ (1 — X)y whenever the choice
of the convexity mapping W is irrelevant. Using the convexity structure W, one
will easily define a convex subset of M and prove similar properties of convex
sets in the linear case. It is not hard to check that balls are convex sets. A very
nice example of such situation is given by:

Let B be the open unit ball of the infinite Hilbert space H. On B, we
consider the Poincare hyperbolic metric p:

1
plz,y) = igf/ a(y(t),'(t))dt
0
where the infimum is taken over all piece-wise differentiable curves such that

35
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~7(0) = and v(1) = y, and where

a(z,v) = sup || D f(z)(v)]
feF

with F = {f : B — B;holomorphic}. (B,p) is a complete metric space (un-
bounded). Using the Mobius transformations, one can prove that

(1= =) =y
l-<zy>?

1/2
plx,y) = Argth(l - U(x,y)) with o(x,y) =

Using some complicated computations, one may prove that for any z,y in B,
and X € [0, 1], there exists a unique z € B such that

p(z,w) < Ap(z,w) + (1= A)p(y, w)

for any w € B. In other words, we have z = Ax @ (1 — N)y. In fact, the
metric space (B, p) enjoys some geometric properties similar to uniformly convex
Banach spaces. For example, (B, p) has a kind of weak compactness, that is
the family of convex subsets of B (in the abstract sense) has the finite infinite
intersection property. Moreover, we have

pla,z) <r

11
pla,y) <r = p(cu 5% ® 53/) <r(l1-4(re),
p(x,y) = re

for any a,z,y in B and any positive r and ¢, where

sinh(r(1 + £/2)) sinh(r(1 — 5/2)))” :

1
d(re)=1-— ;Argth ( cosh(1)

It is easy to check that for > 0 and ¢ > 0, we have d(r,e) > 0. This is
the analogue of the uniform convexity in the nonlinear case. It is not hard to
check that convex subsets enjoy the normal structure property and that the
Chebishev center is reduced to one point. Note that holomorphic mappings are
nonexpansive mappings for the Poincare distance p.

4.2 The Convexity Structures

In 1977, Penot was successful in giving an abstract formulation of Kirk’s theo-
rem via the Convexity Structures:

Let M be an abstract set. A family X2 of subsets of M is called a convezity
structure if

(i) the empty set § € ;
(i) M € %;



4.2. THE CONVEXITY STRUCTURES 37

(iii) 3 is closed under arbitrary intersections.

The convex subsets of M are the elements of . If M is a metric space, we
will always assume that closed balls are convex. The smallest convexity struc-
ture which contains the closed balls is A(M) the family of admissible subsets of
M. Recall that A is an admissible subset of M if it is an intersection of closed
balls. Since Kirk’s theorem involves some kind of compactness and the normal
structure property, it was of no surprise that the generalized attempts did de-
fine these two concepts in metric spaces. Takahashi in his attempt considered
compact metric spaces, which was very restrictive. Penot on the other hand,
defined compactness for convexity structures which leads to weak-compactness
in the linear case. Indeed, a convexity structure X is said to be compact if and
only if every family of subsets of ¥ which has the finite intersection property
has a nonempty intersection, i.e. if (A;);er, with A; € ¥, then

(A #0

el

provided ﬂ A; # 0 for any finite subset Iy of I. Since the normal structure
ieIf

property is a metric notion, then it was not that difficult to extend it to convexity

structures. Indeed, the convexity structure X is said to be normal if and only

if for any nonempty and bounded A € ¥ not reduced to one point, there exists

a € A such that

sup{d(a,z); z € A} <sup{d(z,y); =,y € A} = diam(A) .
Penot’s formulation becomes

Theorem. If (M, d) is a nonempty bounded metric space which possesses a con-
vexity structure which is compact and normal, then every nonexpansive mapping

T : M — M has a fixed point.

Remark. In the general Kirk’s theorem, the Banach space is supposed to have
normal structure which means that the family of all convex sets is normal. But
This family is a large one and contains the admissible sets. For example, the
Banach space [*° is a wonderful example which illustrates the power behind
Penot’s formulation. Indeed, [°° fails to satisfy the normal structure property
but A(I>°) is compact and normal which implies the following theorem discov-
ered separately by Sine and Soardi in 1979:

Theorem. If A is a nonempty admissible subset of [°°, then every nonexpansive
mapping T : A — A has a fixed point.

Remark. In the original proof of Kirk’s theorem, the weak compactness is used
to prove the existence of a minimal invariant set via Zorn’s lemma. Gillespie and
Williams (1979) showed that a constructive proof may be found which uses only
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countable compactness. In other words, the convexity structure ¥ is assumed
to satisfy a countable intersection property, i.e. for any (A, )1<n, with 4,, € 3,

then -
() An#0

n=1
m

provided ﬂ A,, # 0 for any m > 1. This weakening is very important since in
many pragtitlzal cases, we do not have a compactness generated by a topology but
a compactness defined sequentially. The latest usually generates some kind of
countable compactness. Note also that if the convexity structure X is uniformly
normal then it is countably compact. This is an amazing metric translation of
a well known similar result in Banach spaces due to Maluta. It is natural to ask
whether a convexity structure which is countably compact is basically compact.
The answer is yes if we are dealing with uniform normal structure. In fact, if
A(M) is countably compact and normal, then A(M) is compact.

4.3 Generalized Metric Spaces

In the next example, we discuss another amazing translation of Kirk’s theorem.
Indeed, traditionally discrete techniques are used in metric spaces in our day-
to-day research. The other way is not that common. But let us generalize the
common distance into the discrete case. For that let M be an arbitrary set and
V a set with a binary operation which will be denoted @&. We assume that &
enjoys most of the properties that the classical addition does. In particular, we
have a zero element 0 € V which satisfies u 0 = 0@ v = u, for any u € V.
We also assume that V is ordered by < such that 0 < v and u® v < v & v’
whenever u < v’ and v < v’. Note that V is not totally behaving like the set of
positive numbers since we do not have a multiplication operation on V.

Definition. Let V be a set as described above and M be an arbitrary set. The
mapping d : M x M — V is called a generalized distance if

(i) d(z,y) =0 iff 2 = y;
(i) d(z,y) = T(d(y,x)), where 7 is an involution, that is 7(7(z)) = ;

(iii) d(z,y) < d(z, 2) & d(z,y)

To appreciate the power behind the above new concept, let us show how
any ordered set is a generalized metric space. Let (M, <) be an ordered set.
Set V = {0,,0,1} ordered as: 0 < a<1,0< g <1, and o and 8 are not
comparable. Define @ as the max operation, i.e. u® v = max(u,v). Define the
generalized distance d by

(i) d(z,z) = 0;
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(i) d(z,y

(iii) d(z,y) = 6, if y < x;

(iv) d(z,y

(v) 7(0) =0, 7(a) = B, 7(f) = o, and 7(1) = 1.

x,y) =a,if x < y;
z,y) =1, if x and y are not comparable;

With d, M becomes a generalized metric space. Armed with this distance,
we can talk about balls (left and right to be precise) and admissible sets. It
is quite amazing to show that if (M, <) is a complete lattice, then A(M) is
compact and normal. Also it is an amazing fact to see that nonexpansive maps
are exactly the monotone increasing maps. The famous Tarski theorem becomes
Kirk theorem. More can be said and little is known....

4.4 Structure of the Fixed Point Set

In the previous discussion, we looked at the fundamental problem of whether
a fixed point exists. But once this problem is resolved, it is quite natural to
wonder about the structure of the fixed point set. In particular, if we want to
prove the existence of a common fixed point for two commuting mappings, we
will need to find out more about the fixed point set. In particular, whether the
main fixed point existence result is valid for such sets. Properties like retractions
help solve this question. May be the first interesting result in this direction goes
back to Bruck in the linear case. Inspired by hyperconvexity, we introduce the
following

Definition. Let M be a metric space. A subset A of M is said to be 1-local
retract of M if for any family (B;);ecs of closed balls centered in A for which

ﬂBﬁé@

icl
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it is the case that

One of the most fundamental properties of 1-local retracts is

Proposition. Let M be a metric space and suppose that A(M) is compact and
normal. If N is a nonempty 1-local retract subset of M, then A(N) is compact
and normal.

The proof is technical but follows the same ideas used in the hyperconvex
case. In order to connect this concept with our previous discussion, we have

Theorem. Let M be a metric space and suppose that A(M) is compact and
normal. If T : M — M is nonexpansive, then the fixed point set Fixz(T) of T is
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a nonempty 1-local retract subset of M.
This conclusion may be easily extended to finite commutative families:

Theorem. Let M be a metric space and suppose that A(M) is compact and
normal. Then every finite family F of commuting nonexpansive self-mappings
of M has a nonempty common fixed point set Fixz(F). Moreover, Fiz(F) is a
nonempty 1-local retract subset of M.

The conclusion of this theorem is still valid for infinite families but the proof
is extremely difficult and not intuitive. Again it uses ideas developed by Baillon
in the hyperconvex case.



