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Abstract. In this work, we prove that metric spaces with uniform normal

structure have a kind of intersection property, which is equivalent to reflexivity

in Banach spaces.

Introduction

It has always been tempting to generalize certain existence fixed point theo-

rems to metric spaces. In 1969, Kijima and Takahashi [3] gave a metric for-

mulation of Kirk's theorem [4]. But their definition of convex metric spaces is

rather restraining. In our opinion, many results with respect to the fixed point

property in metric spaces, were developed after Penot's formulation [8]. The

compactness of the convexity structure which appears in this formulation ex-

presses the weak compactness, or more precisely, the reflexivity in the case of

Banach spaces.

In this paper we generalize Maluta's theorem [6] to metric spaces. Recall that

the proof given by Maluta is based on a characterization of reflexive Banach

spaces described by Mil'man and Mil'man [7]. This characterization uses the

linear structure and we do not know how the proof could be reproduced in

metric spaces.

Definitions and basic results

In all the following in this work (M, d) will be a metric space.

Definition 1. Let y be a nonempty family of subsets of M. We say that y

defines a convexity structure on M if and only if y is stable by intersection.

In this work, we will always assume that y contains the ball, and, therefore,

we will not recall it.

Definition 2. We say that y has the property (R) if and only if for any decreas-

ing sequence (Cn) of closed bounded nonempty subsets of M, with Cn€&~,

has a nonempty intersection.

Received by the editors October 20, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 47H10, 47H09.
Key words and phrases. Nonexpansive mappings, fixed point property, uniform normal structure.

© 1989 American Mathematical Society
0002-9939/89 $1.00 + 1.25 per page

723

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



724 M. A. KHAMSI

Remark 3. In [8], Penot defined a notion of compactness of a convexity struc-

ture. Here we will avoid using the term "compact", since it creates some confu-

sion with the topological compactness. Then we will say that y has the finite

intersection property if and only if any family (Ca)aer of elements of y has

a nonempty intersection provided naG/CQ / 0 for any finite subset / of T.

Example 4. (i) Let C be a closed bounded convex subset of Banach space X.

Consider the family y of closed convex subsets of C. Then y defines a

convexity structure on C, and y has the property (R) if and only if C is

weakly compact.

(ii) An admissible subset of M (e.g.[l]) is any intersection of closed balls. Let

us denote the family of admissible subsets of M by sf (M). It is obvious that

stf (M) defines a convexity structure on M. In this work any other convexity

structure y on M, contains s/(M).

Definition 5. Let N be a bounded subset of M.

(i) Define:

r(x, N) - sup{d(x ,y) ;y € N} for x € M.

ô(N) = sup{r{x,N);xeN}.

R(N) = inf{r(x,N);xeN}.

&{N) = {x €N;R(N) = r(x,N)}.

(ii) We will say that x e TV is a diametral point if r(x, N). — ô(N), and N

is a dimetral set if any elements of TV is a diametral point.

Now, we are able to define the normal and uniform normal structure in

metric spaces.

Definition 6. We say that M has normal structure [resp. uniform normal struc-

ture] if there exists a convexity structure y on M such that: R(A) < S(A)

[resp. R(A) < cS(A) for a fixed constant c e (0,1 )] for any nonempty A e^,

which is bounded and not reduced to a single point. We will also say that y

is normal [resp. uniformly normal].

Since our work uses the fixed point property, let us give the following defini-

tion.

Definition 7. A mapping T: M —► M is said to be nonexpansive if d(Tx, Ty)

< d(x,y) for all x, y e M. The fixed point set of T will be denoted by

Fix(T). We say that M has the fixed point property if any nonexpansive

mapping defined on M has a fixed point.

The analogue of Kirk's theorem [4] in metric spaces can be stated by

the following:

Theorem 8. Let M be a bounded metric space. Assume that there exists a

convexity structure y on M, which is normal and has the finite-intersection

property. Then M has the fixed point property.
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Remark 9. Kirk noticed in [5], that the finite-intersection property assumption

can be dropped in Theorem 8, provided that y has a kind of sequential finite

intersection property. It is easy to see that this sequential finite-intersection

property is equivalent to the property (R).

On the property (R)

Before we give our first result, let us recall that Gillespie and Williams [2]

proved that a closed bounded nonempty convex subset of Banach space, which

has uniform normal structure, has the fixed point property.

Theorem 10. Let (M ,d) be a complete bounded metric space. Assume that M

has uniform normal structure. Then M has the fixed point property.

Proof. Kirk proved in [5], the following lemma, which can also be derived from

the Gillespie and William's proof.

Lemma 11. Let M be a metric space. Consider T: M —► M, a nonexpansive

mapping. Then any nonempty admissible subset A of M, which is T-invariant,

contains a nonempty admissible subset A0 of M which is T-invariant and

verifies:
S(A) + R(A)

o{A0)<-2-•

Using the Lemma 11, the proof of Theorem 10 is immediate. Indeed, let

T: M —► M be a nonexpansive mapping. Since M has uniform normal struc-

ture, there exists c €)0,1( such that R(A) < câ(A) for any admissible subset

A of M. Since M is bounded, we can apply the Lemma 11 to insure the

existence of a decreasing sequence (An ) of nonempty admissible subsets of M

such that An is T-invariant and S{An+{) < (R(An) + S(An))/2. This implies

that:

(*) S(An) < (J-^y Ô(M)

Therefore C\An ̂  0, since M is complete.

(*) implies that C\An is reduced to a single point, which is fixed by T.

To prove the analogue of Maluta's result [6] in metric spaces, we will need

the following result.

Proposition 12. Let M be a bounded metric space, and (Ma)aer be a family of

nonempty subset of M. Assume that each si (Ma) has uniform normal structure

and c — sup ca e)0,1 (, where ca is the constant which appears in Definition

6. Consider the metric M^ = f[ Ma provided with the sup distance. Then

¿/(M^) has uniform normal structure.

Proof. Let A be an admissible subset of M^. Then A - nie,B(ai, r().

It is clear that B(ai,ri) = \[a&.Ba{aai ,r¡) where a" is the ath-component

of at, and Ba{a°',r¡) is the closed ball centered at a" in Ma. Therefore

A = ILer^c,' where Ac = rWß°(fl/'»ri)-  °ur assumption on {s/(M))a&.
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implies that R(Aa) < cô(AJ for ail a € T. But, S (A) = supa€rf5(^Q) and

R(A) < supagrR(Aa). We deduce that R(A) < cô{A). Therefore ¿¡/{M^) has

uniform normal structure.

Theorem 13. Let M be a complete bounded metric space. Let y be a con-

vexity structure on M which has uniform normal structure. Then y has the

property (R).

Proof. Let (Cn) be a decreasing sequence of nonempty closed bounded subsets

of M, with Cn € y. Put C^ = n„ C„ provided with the sup distance. By

Proposition 12, we deduce that ^(C^) has uniform normal structure. Since

M is complete and each Cn is closed, C^ is a complete metric space. There-

fore we deduce from Theorem 10 that C^ has the fixed point property. Con-

sider the shift T: Cx —> C^ defined by T(xn) - (xn+l). Obviously T is non-

expansive, and therefore T has a nonempty fixed point set. Let (xn) e Fix(T),

by definition of T, (xn) is a constant sequence. Consequently x0 — xn e Cn

for all n e N. This implies that C\Cn ¿ 0.
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