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1 Introduction

As for the linear case, compactness for the strong topology is very restrictive.
Since the beginning of the fixed point theory, weak-compactness offered an ac-
ceptable alternative in Banach spaces. But when we deal with metric spaces,
this natural extension is no longer easy to implement. One has to go back to
the linear case and investigate the weak-topology with a new eye. First it is
quite striking that convex subsets are closely related to the weak-topology. So
it is natural to consider such concept in metric spaces. Two main directions
have attracted most of the attention: the Menger convexity [?], and convexity
structures [?]. Depending on the metric space at hand, one of the two concepts
rise higher. For example, in hyperconvex metric spaces [?] the concept of con-
vexity structure (introduced by Penot [?] in metric fixed point theory) was very
successful and allowed for some beautiful results. We tried for years to use it
to define some kind of weak-topology but were not successful. For example Lim
and Xu [?] tried to extend some classical known fixed point results for uniformly
Lipschitzian mappings to metric spaces using some kind of weak-convergence.
In particular they introduced a property (P) which enabled them to get some
kind of lower-semi-continuity of the distance for this new weak-topology. A
similar property was recently given in CAT(κ) metric spaces by Dhompongsa,
Kirk, and Sims [?]. Note that when talking about a weak-topology, the world
topology is a little bit abused. Usually we only focus on sequences. The inves-
tigation of these ideas in the general framework of topology will be the subject
of a future research project.
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2 Convexity in Metric Spaces

When we think of linearity, we think of a vector space and more generally a
normed vector space. But many of the linear concepts may be obtained by
defining convexity instead. Since these concepts are based not on the linear
structure but on the convexity, then it is natural to extend them to nonlinear
spaces which still carries some kind of convexity. Historically two successful
routs emerged when dealing with this problem: metric convexity (Menger) and
convexity structures. The first one is based on the convex combination of points
while the second one follows a set theoretic approach. It is worth to mention
that though the second one is more general, it is also very restrictive.

2.1 Menger Convexity

Definition. Let (M, d) be a metric space with I = [0, 1]. A mapping W : M ×
M×I → M is said to be a convex structure on M if for each (x, y, λ) ∈ M×M×I
and z ∈ M , we have

d
(
z, W (x, y, λ)

)
≤ λd(z, x) + (1− λ)d(z, y)

Sometimes the point W (x, y, λ) is denoted λx⊕(1−λ)y whenever the choice
of the convexity mapping W is irrelevant. Using the convexity structure W , one
will easily define a convex subset of M and prove similar properties of convex
sets in the linear case. It is not hard to check that balls are convex sets.

A Wonderful Example [?]. Let B be the open unit ball of the infinite Hilbert
space H. On B, we consider the Poincare hyperbolic metric ρ:

ρ(x, y) = inf
γ

∫ 1

0

α(γ(t), γ′(t))dt

where the infimum is taken over all piece-wise differentiable curves such that
γ(0) = x and γ(1) = y, and where

α(x, v) = sup
f∈F

‖Df(x)(v)‖

with F = {f : B → B; holomorphic}. (B, ρ) is a complete metric space (un-
bounded). Using the Mobius transformations, one can prove that

ρ(x, y) = Argth
(

1− (1− |x|2)(1− |y|2)
|1− < x, y > |2

)1/2

.

Using some complicated computations, one may prove that for any x, y in B,
and λ ∈ [0, 1], there exists a unique z ∈ B such that

ρ(z, w) ≤ λρ(x, w) + (1− λ)ρ(y, w)
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for any w ∈ B. In other words, we have z = λx ⊕ (1 − λ)y. In fact, the
metric space (B, ρ) enjoys some geometric properties similar to uniformly convex
Banach spaces. For example, (B, ρ) has a kind of weak compactness, that is the
family of closed bounded convex subsets of B has the finite infinite intersection
property. Moreover, we have





ρ(a, x) ≤ r

ρ(a, y) ≤ r =⇒ ρ
(
a,

1
2
x⊕ 1

2
y
)
≤ r(1− δ(r, ε)) ,

ρ(x, y) ≥ rε

for any a, x, y in B and any positive r and ε, where

δ(r, ε) = 1− 1
r
Argth

(
sinh(r(1 + ε/2)) sinh(r(1− ε/2))

cosh(r)

)1/2

.

It is easy to check that for r > 0 and ε > 0, we have δ(r, ε) > 0. This is the ana-
logue of the uniform convexity in the nonlinear case. It is not hard to check that
the Chebyshev center of any nonempty convex closed bounded set is reduced to
one point. Note that holomorphic mappings are nonexpansive mappings for the
Poincare distance ρ.

Another Wonderful Example [?]. A metric space (X, d) is said to be a
length space if each two points of X are joined by a rectifiable path (that is, a
path of finite length) and the distance between any two points of X is taken to
be the infimum of the lengths of all rectifiable paths joining them. In this case,
d is said to be a length metric (otherwise known an inner metric or intrinsic
metric). In case no rectifiable path joins two points of the space the distance
between them is said to be ∞.

A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from
x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c (0) = x,
c (l) = y, and d (c (t) , c (t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is an
isometry and d (x, y) = l. The image α of c is called a geodesic (or metric) seg-
ment joining x and y. (X, d) is said to be a geodesic space if every two points of
X are joined by a geodesic. X is said to be uniquely geodesic if there is exactly
one geodesic joining x and y for each x, y ∈ X.

Denote by Mn
κ the following classical metric spaces:

(1) if κ = 0 then Mn
0 is the Euclidean space Rn;

(2) if κ > 0 then Mn
κ is obtained from the sphere Sn by multiplying the spherical

distance by 1/
√

κ;

(3) if κ < 0 then Mn
κ is obtained from the hyperbolic space Hn by multiplying

the hyperbolic distance by 1/
√−κ.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points in X (the vertices of ∆) and a geodesic segment between each
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pair of vertices (the edges of ∆). A comparison triangle for geodesic triangle
∆ (x1, x2, x3) in (X, d) is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in M2

κ such
that dR2 (x̄i, x̄j) = d (xi, xj) for i, j ∈ {1, 2, 3} . If κ > 0 it is further assumed
that the perimeter of ∆ (x1, x2, x3) is less than 2Dκ, where Dκ denotes the
diameter of M2

κ . Such a triangle always exists.
A geodesic metric space is said to be a CAT(κ) space if all geodesic triangles

of appropriate size satisfy the following CAT(κ) comparison axiom.

CAT(κ): Let ∆ be a geodesic triangle in X and let ∆ ⊂ M2
κ be a comparison

triangle for ∆. Then ∆ is said to satisfy the CAT(κ) inequality if for all x, y ∈ ∆
and all comparison points x̄, ȳ ∈ ∆,

d (x, y) ≤ d (x̄, ȳ) .

Complete CAT(0) spaces are often called Hadamard spaces.

Observe that if x, y1, y2 are points of a CAT(0) space and if y0 is the midpoint
of the segment [y1, y2] then the CAT(0) inequality implies

d (x, y0)
2 ≤ 1

2
d (x, y1)

2 +
1
2
d (x, y2)

2 − 1
4
d (y1, y2)

2

because equality holds in the Euclidean metric. In fact a geodesic metric space
is a CAT (0) space if and only if it satisfies inequality (which is known as the
CN inequality of Bruhat and Tits). In particular, d (x, y1) ≤ R, d (x, y2) ≤ R,
and d (y1, y2) ≥ r imply

d (x, y0) ≤
(
1− δ

( r

R

))
R

where δ (ε) =

√
1− ε2

4
and so one has the usual Euclidean modulus of convexity

in CAT(0) spaces.

2.2 The Convexity Structures

Let M be an abstract set. A family Σ of subsets of M is called a convexity
structure if

(i) the empty set ∅ ∈ Σ;

(ii) M ∈ Σ;

(iii) Σ is closed under arbitrary intersections.

The convex subsets of M are the elements of Σ. If M is a metric space, we will
always assume that closed balls are convex. The smallest convexity structure
which contains the closed balls is A(M) the family of admissible subsets of M .
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Recall that A is an admissible subset of M if it is an intersection of closed
balls. In his attempt to generalize the concept of weak-compactness, Kijima
and Takahashi [?] considered compact metric spaces, which was very restrictive.
Penot [?] on the other hand, defined compactness for convexity structures which
leads to weak-compactness in the linear case. Indeed, a convexity structure Σ
is said to be compact if and only if every family of subsets of Σ which has the
finite intersection property has a nonempty intersection, i.e. if (Ai)i∈I , with
Ai ∈ Σ, then ⋂

i∈I

Ai 6= ∅

provided
⋂

i∈If

Ai 6= ∅ for any finite subset If of I.

In the linear case (Banach spaces), the natural family which defines the con-
vexity is the family of convex sets. Clearly this family is bigger than the family
of admissible sets. In 1979, it was discovered that in the case of l∞, the family
of admissible sets enjoy a geometric property (uniform normal structure) which
the family of closed convex sets fail (see [?] and [?]). It was an amazing result
which opened the door to major discoveries.

Recall the following definitions

Definition. Let Σ be a convexity structure. We will say that Σ is normal (resp.
uniformly normal) if for any A ∈ Σ not reduced to one point, there exists a ∈ A
such that

sup{d(a, x); x ∈ A} < sup{d(x, y); x, y ∈ A} = diam(A)

resp.
sup{d(a, x); x ∈ A} ≤ α diam(A)

where α < 1 and is independent of A (depends only on Σ).

A Wonderful Example. Consider the Banach space l∞. Then the family of
admissible subsets is compact and normal. In fact we have for any nonempty
A ∈ A(l∞), there exists a ∈ A such that

sup{d(a, x); x ∈ A} =
1
2

diam(A) .

This is not the case for the family of all closed convex subsets of l∞. Investi-
gating this example closely, one can generalize this conclusion to a large class of
metric spaces called hyperconvex metric spaces. The notion of hyperconvexity is
due to Aronszajn and Panitchpakdi [?] who discovered it when investigating an
extension of Hahn-Banach theorem in metric spaces. The corresponding linear
theory is well developed and associated with the names of Gleason, Goodner,
Kelley and Nachbin (see for instance [?, ?, ?, ?]). The nonlinear theory is still
developing. The recent interest into these spaces goes back to the results of

5



Sine [?] and Soardi [?] who proved independently that fixed point property for
nonexpansive mappings holds in bounded hyperconvex spaces.

In general weak compactness is used to prove the existence of a minimal
invariant set via Zorn’s lemma. In 1979, Gillespie and Williams [?] showed that
a constructive proof (of Kirk’s fixed point theorem [?]) may be found which
uses only countable compactness. In other words, the convexity structure Σ is
assumed to satisfy a countable intersection property, i.e. for any (An)1≤n, with
An ∈ Σ, then

∞⋂
n=1

An 6= ∅

provided
m⋂

n=1

An 6= ∅ for any m ≥ 1. This weakening is very important since in

many practical cases, we do not have a compactness generated by a topology but
a compactness defined sequentially. The latest usually generates some kind of
countable compactness. Note also that if the convexity structure Σ is uniformly
normal then it is countably compact [?]. This is an amazing metric translation
of a well known similar result in Banach spaces due to Maluta [?]. It is natural
to ask whether a convexity structure which is countably compact is basically
compact. The answer is yes if we are dealing with uniform normal structure. In
fact, if A(M) is countably compact and normal, then A(M) is compact.

3 Generalized Metric Spaces

In 1986 Jawhari, Misane and Pouzet [?] were able to show that Sine and Soardi’s
fixed point theorems are equivalent to the classical Tarski’s fixed point theorem
[?] in complete ordered sets (via generalized metric spaces).
Traditionally discrete techniques are often used in metric spaces (via Zorn’s
lemma for example). The other way is not that common. But let us generalize
the common distance into the discrete case. For that let M be an arbitrary set
and V a set with a binary operation which will be denoted ⊕. We assume that
⊕ enjoys most of the properties that the classical addition does. In particular,
we have a zero element 0 ∈ V which satisfies u⊕ 0 = 0⊕ u = u, for any u ∈ V.
We also assume that V is ordered by ≤ such that 0 ≤ u and u ⊕ v ≤ u′ ⊕ v′

whenever u ≤ u′ and v ≤ v′. Note that V is not totally behaving like the set of
positive numbers since we do not have a multiplication operation on V.

Definition. Let V be a set as described above and M be an arbitrary set. The
mapping d : M ×M → V is called a generalized distance if

(i) d(x, y) = 0 iff x = y;

(ii) d(x, y) = τ
(
d(y, x)

)
, where τ is an involution, that is τ(τ(x)) = x;
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(iii) d(x, y) ≤ d(x, z)⊕ d(z, y)

To appreciate the power behind the above new concept, let us show how
any ordered set is a generalized metric space. Let (M,≺) be an ordered set.
Set V = {0, α, β, 1} ordered as: 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and α and β are not
comparable. Define ⊕ as the max operation, i.e. u⊕ v = max(u, v). Define the
generalized distance d by

(i) d(x, x) = 0;

(ii) d(x, y) = α, if x ≺ y;

(iii) d(x, y) = β, if y ≺ x;

(iv) d(x, y) = 1, if x and y are not comparable;

(v) τ(0) = 0, τ(α) = β, τ(β) = α, and τ(1) = 1.

With d, M becomes a generalized metric space. Armed with this distance, we
can talk about balls (left and right to be precise) and admissible sets. It is quite
amazing to show that if (M,≺) is a complete lattice, then A(M) is compact and
normal. Also it is an amazing fact to see that nonexpansive maps are exactly
the monotone increasing maps. The famous Tarski theorem [?] becomes Kirk
theorem [?]. More can be said and little is known....

3.1 More on Hyperconvex Metric Spaces

Recall That a metric space M is said to be hyperconvex if for any collection
of points {xα}α∈Γ in M and positive numbers {rα}α∈Γ such that d(xα, xβ) ≤
rα + rβ for any α and β in Γ, we must have

⋂

α∈Γ

B(xα, rα) 6= ∅ .

Also a metric space M is said to be injective if it has the following extension
property: Whenever Y is a subspace of X and f : Y → M is nonexpansive,
then f has a nonexpansive extension f̃ : X → M. This fact has several nice
consequences.

Theorem 3.1. Let H be a metric space. The following statements are equiva-
lent:

(i) H is hyperconvex;

(ii) H is injective.

A similar result to Aronszajn and Panitchpakdi’s main theorem may be
stated in terms of retractions as follows.
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Theorem 3.2. Let H be a metric space. The following statements are equiva-
lent:

(i) H is hyperconvex;

(ii) for every metric space M which contains H metrically, there exists a non-
expansive retraction R : M → H;

Note that statement (ii) is also known as an absolute retract property. This
is why hyperconvex metric spaces are also called absolute nonexpansive retract
(or in short ANR).

4 Some Open Problems

Sine and Soardi results are at the origin of the recent interest to hyperconvex
metric spaces. Both Sine and Soardi showed that nonexpansive mappings de-
fined on a bounded hyperconvex metric space have fixed points. Their results
were stated in different context but the underlying spaces are simply hypercon-
vex spaces.

Theorem 4.1. Let H be a bounded hyperconvex metric space. Any nonexpan-
sive map T : H → H has a fixed point. Moreover, the fixed point set of T ,
Fix(T ), is hyperconvex.

Note that since Fix(T ) is hyperconvex, then any commuting nonexpansive
maps Ti, i = 1, 2, ..., n, defined on a bounded hyperconvex set H, have a com-
mon fixed point. Moreover their common fixed point set Fix(T1) ∩ Fix(T2) ∩
· · · ∩ Fix(Tn) is hyperconvex.

Combining these results with Baillon’s theorem, we get the following:

Theorem 4.2. Let H be a bounded hyperconvex metric space. Any commuting
family of nonexpansive maps {Ti}i∈I , with Ti : H → H, has a common fixed
point. Moreover, the common fixed point set

⋂

i∈I

Fix(Ti) is hyperconvex.

Remark 4.3. Baillon asked whether boundedness may be relaxed. He precisely
asked whether the conclusion holds if the nonexpansive map has a bounded orbit.
In the classical Kirk’s fixed point theorem [?], having a bounded orbit implies
the existence of a fixed point. Prus answered this question in the negative [?].
Indeed, consider the hyperconvex Banach space H = l∞ and the map T : H → H
defined by

T
(
(xn)

)
= (1 + lim

U
xn, x1, x2, ...)

where U is a nontrivial ultrafilter on the set of positive integers. We may also
take a Banach limit instead of a limit over an ultrafilter. The map T is an
isometry and has no fixed point. On the other hand, we have

Tn(0) = (1, 1, ..., 1, 0, 0, ...)
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where the first block of length n has all its entries equal to 1 and 0 after that.
So T has bounded orbits.

Recently, we wondered whether Sine and Soardi’s theorem holds for asymp-
totically nonexpansive mappings. Recall that a map T is said to be asymptot-
ically nonexpansive if

d(Tn(x), Tn(y)) ≤ λnd(x, y)

and lim
n

λn = 1. This question is till unknown. But a partial positive answer is

known for approximate fixed points [?]. Before we state this result, recall that
if T : H → H is a map, then x ∈ H is an ε-fixed point if d(x, T (x)) ≤ ε where
ε ≥ 0. The set of ε-fixed points of T is denoted by Fixε(T ). Sine obtained the
following wonderful result:

Theorem 4.4. Let H be a bounded hyperconvex metric space and T : H → H
a nonexpansive map. For any ε > 0, Fixε(T ) is not empty and is hyperconvex.

Now we are ready to state the following result [?].

Theorem 4.5. Let H be a bounded hyperconvex metric space and T : H → H
be asymptotically nonexpansive. For any ε > 0, Fixε(T ) is not empty, in other
words we have

inf
x∈H

d(x, T (x)) = 0.

Next we discuss the case of uniformly Lipschitzian mappings defined in hy-
perconvex metric spaces.

Definition 4.6. Let M be a metric space. A mapping T : C → C of a subset C
of M is said to be Lipschitzian if there exists a non-negative number k such that
d(Tx, Ty) ≤ kd(x, y) for all x and y in C. The smallest such k is called Lips-
chitz constant and will be denoted by Lip(T ). Same mapping is called uniformly
Lipschitzian if sup

n≥1
Lip(Tn) < ∞.

It is well-known fact that if a map is uniformly Lipschitzian, then one may
find an equivalent distance for which the map is nonexpanive (see [?] and [?]).
Indeed, let T : C → C be uniformly Lipschitzian. Setting

ρ(x, y) = sup{d(Tnx, Tny) : n = 0, 1, 2...}

for x, y ∈ C, one can obtain a metric ρ on C which is equivalent to the metric d
and relative to which T is nonexpansive. In this context, it is natural to ask the
question: if a set C has the fixed point property (fpp) for nonexpansive map-
pings with respect to the metric d, then does C also have (fpp) for mappings
which are nonexpansive relative to an equivalent metric? This is known as the
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stability of (fpp). The first result in this direction is due to Goebel and Kirk [?].
Motivated by such questions, the following fixed point theorems of uniformly
Lipschitzian mappings in hyperconvex metric spaces is still open:

Problem. Let M be a bounded hyperconvex metric space. Let T : M → M be
a uniformly Lipschitzian map such that

σ(T ) = sup
n≥1

Lip(Tn) ≤ k .

For what value of k does T have a fixed point?
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