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Abstract. Let X be a Banach space and µ a positive measure. We show that
n(Lp(µ,X)) = lim

m
n(lmp (X)), 1 ≤ p < ∞. Also we investigate the positivity of the numer-

ical index of lp-spaces.

1 Introduction.

Let X be a Banach space over IR or IC, we write BX for the closed unit ball and SX

for the unit sphere of X. The dual space is denoted by X∗ and the Banach algebra of all
continuous linear operators on X is denoted by B(X). The numerical range of T ∈ B(X)
is defined by

V (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}·
The numerical radius of T is then given by

v(T ) = sup{|λ| : λ ∈ V (T )}·

Clearly, v is a semi norm on B(X) and v(T ) ≤ ‖T‖ for all T ∈ B(X). The numerical
index of X is defined by

n(X) = inf{v(T ) : T ∈ SB(X)}·

The concept of numerical index was first suggested by Lumer [7] in 1968. Since then a lot
of attention has been paid to this constant of equivalence between the numerical radius
and the usual norm in the Banach algebra of all bounded linear operators of a Banach
space. Classical references here are [1], [2]. For recent results we refer the reader to [3],
[5], [6], [8], [10].

In this paper we show that for any positive measure µ and Banach space X, the
numerical index of Lp(µ,X), 1 ≤ p < ∞ is the limit of the sequence of numerical index
of lmp (X). This gives a partial answer to Martín’s question [9] and generalizes the result
obtained for the scalar case [5]. Also we study the positivity of the numerical index of
lp-space.
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Here Lp(µ,X) is the classical Banach space of p-integrable functions f from Ω into X
where (Ω, Σ, µ) is a given measure space. And lp(X) is the Banach space of sequences

x = (xn)n≥1, xn ∈ X, such that
∞∑

n=1

‖xn‖p < ∞. And finally lmp (X) is the Banach space of

finite sequences x = (xn)1≤n≤m, xn ∈ X, equipped with the norm ‖x‖p =
( m∑

n=1

‖xn‖p
) 1

p

.

2 Main results.

Theorem 2.1. Let X be a Banach space. Then, for every real number p, 1 ≤ p < ∞, the
numerical index of the Banach space lp(X) is given by

n(lp(X)) = lim
m

n(lmp (X)).

Proof. Let m ≥ 1 and T : lmp (X) → lmp (X) x 7→ (T1(x), ..., Tm(x)). Define the linear
operator T̃ : lp(X) → lp(X) as follows for x = (x1, ..., xm, xm+1, ...) ∈ lp(X), T̃ (x) =
(T1(x1, ..., xm), ..., Tm(x1, ..., xm), 0, ...). Clearly, T̃ is bounded and ‖T‖ = ‖T̃‖. We have
also v(T ) = v(T̃ ). To prove this, let us first note that if x = (x1, ..., xm, ...) ∈ Slp(X),
then there exists an element, namely x∗x, in Slq(X∗), where q is the conjugate exponent
to p, such that x∗x(x) = 1. Explicitly x∗x = (‖x1‖p−1x∗1, ..., ‖xm‖p−1x∗m, ...) where the x∗k’s
are taken in SX∗ such that x∗k(xk) = ‖xk‖. Now, let ε > 0. Following the expression
v(T̃ ) = sup{|x∗x(T̃ x)| : x ∈ Slp(X)} ( [4], Lemma 3.2 and Proposition 1.1) there exists
x = (x1, ..., xm, xm+1, ...) ∈ Slp(X) such that

v(T̃ )− ε < |x∗x(T̃ x)|
= |(‖x1‖p−1x∗1, ..., ‖xm‖p−1x∗m)(T (x1, ..., xm))|.

Put r :=
( m∑

k=1

‖xk‖p
)1/p ≤ 1. Then we obtain v(T̃ )−ε < rpv(T ) which yields v(T̃ ) ≤ v(T ).

The reverse inequality is easy. Therefore

{v(T ) : T ∈ lmp (X), ‖T‖ = 1} ⊂ {v(U) : U ∈ lp(X), ‖U‖ = 1}

which yields n(lp(X)) ≤ n(lmp (X)). Consequently n(lp(X)) ≤ lim inf
m

n(lmp (X)). Now we
shall prove that lim sup

m
n(lmp (X)) ≤ n(lp(X)). Let T ∈ B(lp(X)). Define the sequence of

operators {Sm}m as follows; for each m ≥ 1, Sm is defined on lmp (X) by

Sm(x) = (T1(x1, ..., xm, 0, 0, ...), ..., Tm(x1, ..., xm, 0, 0, ...)) (x ∈ lmp (X))·

Clearly, the Sm’s are bounded and ‖Sm‖ ≤ ‖T‖ for all m. We claim that

(i) ‖Sm‖ → ‖T‖

(ii) v(Sm) → v(T ).
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Indeed, we consider the sequence of operators {S̃m}m defined on lp(X) by

S̃m(x) = (T1(x1, ..., xm, 0, 0, ...), ..., Tm(x1, ...., xm, 0, 0, ...), 0, 0, ...)

for all x = (x1, ..., xm, xm+1, ...) ∈ lp(X). It is easy to see that ‖Sm‖ = ‖S̃m‖, and
S̃m converges strongly to T . This implies that ‖T‖ ≤ lim inf

m
‖S̃m‖, and it follows that

‖Sm‖ → ‖T‖. As in (i) we have also v(Sm) = v(S̃m), so it is enough to prove that
v(S̃m) → v(T ). Let ε > 0 and fix u ∈ SX , u∗ ∈ SX∗ such that u∗(u) = 1. There exists
x ∈ Slp(X) such that

|x∗x(Tx)| > v(T )− ε· (1)

For each n ≥ 1, consider

xn =
(
x1, ..., xn−1, λnu, 0, 0, ...

)
; x∗xn =

(‖x1‖p−1x∗x1
, ...., ‖xn−1‖p−1x∗xn−1

, λp−1
n u∗, 0, 0, ...

)

where λn =
( ∞∑

k=n

‖xk‖p
)1/p. Then

x∗xn(xn) = 1 = ‖x∗xn‖ = ‖xn‖·
Moreover, ‖x−xn‖ → 0 and ‖x∗x−x∗xn‖ → 0 where x∗x =

(‖x1‖p−1x∗x1
, ...., ‖xn‖p−1x∗xn

, ...
)
.

It follows that x∗xn(Txn) → x∗x(Tx) as n tends to infinity. Let n0 ≥ 1 be such that

|x∗xn(Txn)| > v(T )− ε (n ≥ n0)· (2)

Since S̃m converges strongly to T , thus for fixed n ≥ n0, x∗xn(S̃mxn) converges to x∗xn(Txn)
as m tends to infinity. So there is m0 ≥ n such that

|x∗xn(S̃mxn)| > v(T )− ε (m ≥ m0)· (3)

This yields v(S̃m) > v(T )− ε for all m ≥ m0 and therefore v(S̃m) converges to v(T ) as m
tends to infinity. Now, following (i) and (ii) we have n(lp(X)) ≥ lim sup

m
n(lmp (X)). Indeed,

for a given ε > 0, we find T ∈ SB(lp(X)) such that

n(lp(X)) + ε > v(T )·

Since v(T ) = lim
m

v(S̃m), there exists m0 such that

n(lp(X)) + ε > v(S̃m) (m ≥ m0)·

But v(S̃m) = v(Sm) ≥ n(lmp (X))‖Sm‖, and ‖Sm‖ → ‖T‖ = 1, so there exists k0 ≥ m0

such that
n(lp(X)) + ε > n(lmp (X))(1− ε) (m ≥ k0)·

This implies n(lp(X)) ≥ lim sup
m

n(lmp (X)) and completes the proof of Theorem 2.1.

It is well known that n(⊕λXλ)l∞ = inf
λ∈Λ

n(Xλ) [9]. This shows that, in particular,

n(l∞(X)) = n(X) (= lim
m

n(lm∞(X))). So, Theorem 2.1 is also valid for p = ∞.
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Theorem 2.2. Let (Ω,Σ, µ) be a σ-finite measure space. Then, for every Banach space
X and every real number p, 1 ≤ p < ∞,

n(Lp(µ,X)) = n(lp(X))·
Proof. Let us first prove that n(Lp(µ,X)) ≤ n(lp(X)). For this we adapt the proof
due to Javier and Martin for the scalar case (not published result). Indeed, if µ is not
atomic, Lp(µ,X) is isometric to Lp(µ,X) ⊕p Lp(µ,X), so they have the same numerical
index. Let T = (T1, T2) ∈ B(l2p(X)) and define the operator S on Lp(µ,X) ⊕p Lp(µ, X)
by S(f1, f2)(ω) = T (f1(ω), f2(ω)). One can check easily that ‖T‖ = ‖S‖. Moreover,

v(T ) = v(S). Indeed, let f1 =
m∑

i=1

xi
1Ai

µ(Ai)1/p
, f2 =

n∑

i=1

yi
1Bi

µ(Bi)1/p
be simple functions in

Lp(µ,X) with ‖(f1, f2)‖p =
m∑

i=1

‖xi‖p +
n∑

i=1

‖yi‖p = 1. For each i we can find x∗i and y∗i

in SX∗ such that x∗i (xi) = ‖xi‖ and y∗i (yi) = ‖yi‖. If we set g1 =
m∑

i=1

‖xi‖p−1x∗i
1Ai

µ(Ai)1/q

and g2 =
n∑

i=1

‖yi‖p−1y∗i
1Bi

µ(Bi)1/q
, we have clearly (g1, g2) ∈ SLq(µ,X∗)⊕qLq(µ,X∗) and <

(g1, g2), (f1, f2) >= 1. Moreover,

|(g1, g2)(S(f1, f2))| ≤
∫

Ω

|(g1(ω), g2(ω))(T (f1(ω), f2(ω)))|dµ(ω)

≤ v(T )
∫

Ω

‖f1(ω)‖p + ‖f2(ω)‖pdµ(ω) = v(T ).

Following [4], we have v(S) ≤ v(T ). For the reverse inequality, let (x1, x2) ∈ Sl2p(X).

Take A ∈ Σ with µ(A) > 0 and consider (f1, f2) =
(
x1

1A

µ(A)
1
p
, x2

1A

µ(A)
1
p

)
. From what we

have just seen (g1, g2) =
(
‖x1‖p−1x∗1

1A

µ(A)
1
q
, ‖x2‖p−1x∗2

1A

µ(A)
1
q

)
∈ SLq(µ,X∗)⊕qLq(µ,X∗) and

< (g1, g2), (f1, f2) >= 1. Moreover,

∣∣(‖x1‖p−1x∗1, ‖x2‖p−1x∗2)(T (x1, x2))
∣∣ =

∣∣
∫

Ω

(g1(ω), g2(ω))S(f1, f2)(ω)dµ(ω)
∣∣ ≤ v(S)·

This yields v(T ) ≤ v(S). Consequently {v(T ) : T ∈ Sl2p(X)} ⊂ {v(S) : S ∈ SLp(µ,X)⊕pLp(µ,X)}
which yields n(Lp(µ,X)⊕p Lp(µ,X)) ≤ n(l2p(X)). So

n(Lp(µ,X)) ≤ n(l2p(X))·
Now, for any integer m ≥ 1, with the same work as above, we obtain

n(Lp(µ,X)) ≤ n(lmp (X))·
It follows from Theorem 2.1 that

n(Lp(µ,X)) ≤ n(lp(X))·
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If µ is atomic then Lp(µ,X) is isometric to Lp(ν, X)⊕p

[⊕i∈IX
]
lp
for a suitable set I and an

atomless measure ν. With the help of Remark 2 [9], we also have n(Lp(µ,X)) ≤ n(lp(X)).
The reverse inequality n(Lp(µ,X)) ≥ n(lp(X)) follows with the same technique used in
[5] for the scalar case.

Corollary 2.3. Let (Ω,Σ, µ) be a σ-finite measure space. Then, for every Banach space
X and every real number p, 1 ≤ p < ∞

n(Lp(µ,X)) = lim
m

n(lmp (X))·

3 On the positivity of the numerical index of lp-space

It was proved that the numerical index of lmp , p 6= 2, m = 1, 2, ... cannot be equal to
0 this is equivalent to that the numerical radius and the operator norm are equivalent on
B(lmp ), p 6= 2 (see Theorem 2.3 [6]). In this section we shall also prove that both norms
are equivalent on B(lp, lmp ).

Theorem 3.1. For every real number p ≥ 1, p 6= 2 and every integer m, the numerical
radius is equivalent to the operator norm on B(lp, lmp ).
Here lp is real and lmp is identified with its natural embedding in lp.

Proof. Let T = (tik) ∈ B(lp, lmp ). We first have

‖T‖ ≤
∥∥∥
( ∞∑

k=1

∣∣t1k

∣∣q
) 1

q

, ...,
( ∞∑

k=1

∣∣tmk

∣∣q
) 1

q
∥∥∥

p

≤
( ∞∑

k=1

|t1k|q
) 1

q

+ · · ·+
( ∞∑

k=1

∣∣tmk

∣∣q
) 1

q

.

Consider {T j} ∈ B(lp, lmp ) defined by T jek = Tek for k 6= j and T j(ej) = 0. Then for

x =
∞∑

k=1

xkek ∈ Slp we have

x∗x(T 1x) = ε1|x1|p−1
∞∑

k=2

t2kxk + · · ·+ εm|xm|p−1
∞∑

k=2

tmkxk (εj ∈ {−1, 1})·

Take x1 = ε12−1/p with ε1 ∈ {−1, 1} we obtain

∣∣∣x∗x(T 1x)
∣∣∣ =

∣∣∣2−1/q
( ∞∑

k=2

t1kxk

)
+ε1

{
ε2|x2|p−1

∞∑

k=2

t2kxk+· · ·+εm|xm|p−1
∞∑

k=2

tmkxk

}∣∣∣ ≤ v(T 1)

Since ε1 is arbitrary in {−1, 1} then

2−1/q
∣∣∣
∞∑

k=2

t1kxk

∣∣∣ +
∣∣∣ε2|x2|p−1

∞∑

k=2

t2kxk + · · ·+ εm|xm|p−1
∞∑

k=2

tmkxk

∣∣∣ ≤ v(T 1).
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And in particular

2−1/q
∣∣∣
∞∑

k=2

t1kxk

∣∣∣ ≤ v(T 1)

for all (x2, ...., xm, ...) ∈ lp such that
∞∑

k=2

|xk|p =
1
2
. That is

1
2

∣∣∣
∞∑

k=2

t1kyk

∣∣∣ ≤ v(T 1) ∀(y2, ...., ym, ...) ∈ Slp

which yields
1
2

( ∑

k 6=1

|t1k|q
) 1

q ≤ v(T 1).

The same work as above shows that

1
2

( ∑

k 6=j

|tjk|q
) 1

q ≤ v(T j) (∗)

for j = 1, 2, ..., m. Now let Rj = T − T j then we have

v(T j) ≤ v(T ) + ‖Rj‖.

And following (*) we obtain

( ∞∑

k=1

|tjk|q
) 1

q ≤ 2
(
v(T ) + ‖Rj‖

)
+ |tjj |

which yields

‖T‖ ≤ 2mv(T ) + 2
m∑

j=1

‖Rj‖+
m∑

j=1

|tjj |.

Now let {Tn} be a v-cauchy sequence in B(lp, lmp ). Since v(TnPm) = v(PmTnPm) ≤ v(Tn)
where Pm is the operator projection on lmp (see [5] p 4), and using the fact that in finite
dimensional space lmp both norms are equivalent, then each Rj

n = Tn − T j
n converges in

operator norm to some Rj . Therefore {Tn} is ‖‖-cauchy. This completes the proof of the
Theorem 3.1.

It’s still unknown if the numerical radius and the operator norm are equivalent on the
Banach space B(lp), p 6= 2 which gives a complete answer to the question of C. Finet and
D. Li.
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