ON THE NUMERICAL INDEX OF VECTOR-VALUED FUNCTION SPACES

Elmouloudi ED-DARI, Mohamed Amine KHAMSI, and Asuman Güven AKSOY

Abstract

Let X be a Banach space and μ a positive measure. We show that $n\left(L_{p}(\mu, X)\right)=\lim _{m} n\left(l_{p}^{m}(X)\right), 1 \leq p<\infty$. Also we investigate the positivity of the numerical index of l_{p}-spaces.

1 Introduction.

Let X be a Banach space over \mathbb{R} or \mathbb{C}, we write B_{X} for the closed unit ball and S_{X} for the unit sphere of X. The dual space is denoted by X^{*} and the Banach algebra of all continuous linear operators on X is denoted by $B(X)$. The numerical range of $T \in B(X)$ is defined by

$$
V(T)=\left\{x^{*}(T x): x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1\right\} .
$$

The numerical radius of T is then given by

$$
v(T)=\sup \{|\lambda|: \lambda \in V(T)\} .
$$

Clearly, v is a semi norm on $B(X)$ and $v(T) \leq\|T\|$ for all $T \in B(X)$. The numerical index of X is defined by

$$
n(X)=\inf \left\{v(T): T \in S_{B(X)}\right\}
$$

The concept of numerical index was first suggested by Lumer [7] in 1968. Since then a lot of attention has been paid to this constant of equivalence between the numerical radius and the usual norm in the Banach algebra of all bounded linear operators of a Banach space. Classical references here are [1], [2]. For recent results we refer the reader to [3], $[5],[6],[8],[10]$.

In this paper we show that for any positive measure μ and Banach space X, the numerical index of $L_{p}(\mu, X), 1 \leq p<\infty$ is the limit of the sequence of numerical index of $l_{p}^{m}(X)$. This gives a partial answer to Martín's question [9] and generalizes the result obtained for the scalar case [5]. Also we study the positivity of the numerical index of l_{p}-space.
${ }^{0}$ Mathematics Subject Classification (2000): 47 A 12.
Key words: Numerical index - Numerical radius.

Here $L_{p}(\mu, X)$ is the classical Banach space of p-integrable functions f from Ω into X where (Ω, Σ, μ) is a given measure space. And $l_{p}(X)$ is the Banach space of sequences $x=\left(x_{n}\right)_{n \geq 1}, x_{n} \in X$, such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}<\infty$. And finally $l_{p}^{m}(X)$ is the Banach space of finite sequences $x=\left(x_{n}\right)_{1 \leq n \leq m}, x_{n} \in X$, equipped with the norm $\|x\|_{p}=\left(\sum_{n=1}^{m}\left\|x_{n}\right\|^{p}\right)^{\frac{1}{p}}$.

2 Main Results.

Theorem 2.1. Let X be a Banach space. Then, for every real number $p, 1 \leq p<\infty$, the numerical index of the Banach space $l_{p}(X)$ is given by

$$
n\left(l_{p}(X)\right)=\lim _{m} n\left(l_{p}^{m}(X)\right)
$$

Proof. Let $m \geq 1$ and $T: l_{p}^{m}(X) \rightarrow l_{p}^{m}(X) x \mapsto\left(T_{1}(x), \ldots, T_{m}(x)\right)$. Define the linear operator $\tilde{T}: l_{p}(X) \rightarrow l_{p}(X)$ as follows for $x=\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots\right) \in l_{p}(X), \tilde{T}(x)=$ $\left(T_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, T_{m}\left(x_{1}, \ldots, x_{m}\right), 0, \ldots\right)$. Clearly, \tilde{T} is bounded and $\|T\|=\|\tilde{T}\|$. We have also $v(T)=v(\tilde{T})$. To prove this, let us first note that if $x=\left(x_{1}, \ldots, x_{m}, \ldots\right) \in S_{l_{p}(X)}$, then there exists an element, namely x_{x}^{*}, in $S_{l_{q}\left(X^{*}\right)}$, where q is the conjugate exponent to p, such that $x_{x}^{*}(x)=1$. Explicitly $x_{x}^{*}=\left(\left\|x_{1}\right\|^{p-1} x_{1}^{*}, \ldots,\left\|x_{m}\right\|^{p-1} x_{m}^{*}, \ldots\right)$ where the x_{k}^{*} 's are taken in $S_{X^{*}}$ such that $x_{k}^{*}\left(x_{k}\right)=\left\|x_{k}\right\|$. Now, let $\varepsilon>0$. Following the expression $v(\tilde{T})=\sup \left\{\left|x_{x}^{*}(\tilde{T} x)\right|: x \in S_{l_{p}(X)}\right\}$ ([4], Lemma 3.2 and Proposition 1.1) there exists $x=\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots\right) \in S_{l_{p}(X)}$ such that

$$
\begin{aligned}
v(\tilde{T})-\varepsilon & <\left|x_{x}^{*}(\tilde{T} x)\right| \\
& =\left|\left(\left\|x_{1}\right\|^{p-1} x_{1}^{*}, \ldots,\left\|x_{m}\right\|^{p-1} x_{m}^{*}\right)\left(T\left(x_{1}, \ldots, x_{m}\right)\right)\right| .
\end{aligned}
$$

Put $r:=\left(\sum_{k=1}^{m}\left\|x_{k}\right\|^{p}\right)^{1 / p} \leq 1$. Then we obtain $v(\tilde{T})-\varepsilon<r^{p} v(T)$ which yields $v(\tilde{T}) \leq v(T)$.
The reverse inequality is easy. Therefore

$$
\left\{v(T): T \in l_{p}^{m}(X),\|T\|=1\right\} \subset\left\{v(U): U \in l_{p}(X),\|U\|=1\right\}
$$

which yields $n\left(l_{p}(X)\right) \leq n\left(l_{p}^{m}(X)\right)$. Consequently $n\left(l_{p}(X)\right) \leq \liminf _{m} n\left(l_{p}^{m}(X)\right)$. Now we shall prove that $\limsup _{m} n\left(l_{p}^{m}(X)\right) \leq n\left(l_{p}(X)\right)$. Let $T \in B\left(l_{p}(X)\right)$. Define the sequence of operators $\left\{S_{m}\right\}_{m}$ as follows; for each $m \geq 1, S_{m}$ is defined on $l_{p}^{m}(X)$ by

$$
S_{m}(x)=\left(T_{1}\left(x_{1}, \ldots, x_{m}, 0,0, \ldots\right), \ldots, T_{m}\left(x_{1}, \ldots, x_{m}, 0,0, \ldots\right)\right) \quad\left(x \in l_{p}^{m}(X)\right)
$$

Clearly, the S_{m} 's are bounded and $\left\|S_{m}\right\| \leq\|T\|$ for all m. We claim that
(i) $\left\|S_{m}\right\| \rightarrow\|T\|$
(ii) $\quad v\left(S_{m}\right) \rightarrow v(T)$.

Indeed, we consider the sequence of operators $\left\{\tilde{S}_{m}\right\}_{m}$ defined on $l_{p}(X)$ by

$$
\tilde{S}_{m}(x)=\left(T_{1}\left(x_{1}, \ldots, x_{m}, 0,0, \ldots\right), \ldots, T_{m}\left(x_{1}, \ldots, x_{m}, 0,0, \ldots\right), 0,0, \ldots\right)
$$

for all $x=\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots\right) \in l_{p}(X)$. It is easy to see that $\left\|S_{m}\right\|=\left\|\tilde{S}_{m}\right\|$, and \tilde{S}_{m} converges strongly to T. This implies that $\|T\| \leq \liminf _{m}\left\|\tilde{S}_{m}\right\|$, and it follows that $\left\|S_{m}\right\| \rightarrow\|T\|$. As in (i) we have also $v\left(S_{m}\right)=v\left(\tilde{S}_{m}\right)$, so it is enough to prove that $v\left(\tilde{S}_{m}\right) \rightarrow v(T)$. Let $\varepsilon>0$ and fix $u \in S_{X}, u^{*} \in S_{X^{*}}$ such that $u^{*}(u)=1$. There exists $x \in S_{l_{p}(X)}$ such that

$$
\begin{equation*}
\left|x_{x}^{*}(T x)\right|>v(T)-\varepsilon \tag{1}
\end{equation*}
$$

For each $n \geq 1$, consider
$x^{n}=\left(x_{1}, \ldots, x_{n-1}, \lambda_{n} u, 0,0, \ldots\right) ; x_{x^{n}}^{*}=\left(\left\|x_{1}\right\|^{p-1} x_{x_{1}}^{*}, \ldots,\left\|x_{n-1}\right\|^{p-1} x_{x_{n-1}}^{*}, \lambda_{n}^{p-1} u^{*}, 0,0, \ldots\right)$
where $\lambda_{n}=\left(\sum_{k=n}^{\infty}\left\|x_{k}\right\|^{p}\right)^{1 / p}$. Then

$$
x_{x^{n}}^{*}\left(x^{n}\right)=1=\left\|x_{x^{n}}^{*}\right\|=\left\|x^{n}\right\| .
$$

Moreover, $\left\|x-x^{n}\right\| \rightarrow 0$ and $\left\|x_{x}^{*}-x_{x^{n}}^{*}\right\| \rightarrow 0$ where $x_{x}^{*}=\left(\left\|x_{1}\right\|^{p-1} x_{x_{1}}^{*}, \ldots,\left\|x_{n}\right\|^{p-1} x_{x_{n}}^{*}, \ldots\right)$. It follows that $x_{x^{n}}^{*}\left(T x^{n}\right) \rightarrow x_{x}^{*}(T x)$ as n tends to infinity. Let $n_{0} \geq 1$ be such that

$$
\begin{equation*}
\left|x_{x^{n}}^{*}\left(T x^{n}\right)\right|>v(T)-\varepsilon \quad\left(n \geq n_{0}\right) . \tag{2}
\end{equation*}
$$

Since \tilde{S}_{m} converges strongly to T, thus for fixed $n \geq n_{0}, x_{x^{n}}^{*}\left(\tilde{S}_{m} x^{n}\right)$ converges to $x_{x^{n}}^{*}\left(T x^{n}\right)$ as m tends to infinity. So there is $m_{0} \geq n$ such that

$$
\begin{equation*}
\left|x_{x^{n}}^{*}\left(\tilde{S}_{m} x^{n}\right)\right|>v(T)-\varepsilon \quad\left(m \geq m_{0}\right) \tag{3}
\end{equation*}
$$

This yields $v\left(\tilde{S}_{m}\right)>v(T)-\varepsilon$ for all $m \geq m_{0}$ and therefore $v\left(\tilde{S}_{m}\right)$ converges to $v(T)$ as m tends to infinity. Now, following (i) and (ii) we have $n\left(l_{p}(X)\right) \geq \limsup _{m} n\left(l_{p}^{m}(X)\right)$. Indeed, for a given $\varepsilon>0$, we find $T \in S_{B\left(l_{p}(X)\right)}$ such that

$$
n\left(l_{p}(X)\right)+\varepsilon>v(T)
$$

Since $v(T)=\lim _{m} v\left(\tilde{S}_{m}\right)$, there exists m_{0} such that

$$
n\left(l_{p}(X)\right)+\varepsilon>v\left(\tilde{S}_{m}\right) \quad\left(m \geq m_{0}\right)
$$

But $v\left(\tilde{S}_{m}\right)=v\left(S_{m}\right) \geq n\left(l_{p}^{m}(X)\right)\left\|S_{m}\right\|$, and $\left\|S_{m}\right\| \rightarrow\|T\|=1$, so there exists $k_{0} \geq m_{0}$ such that

$$
n\left(l_{p}(X)\right)+\varepsilon>n\left(l_{p}^{m}(X)\right)(1-\varepsilon) \quad\left(m \geq k_{0}\right)
$$

This implies $n\left(l_{p}(X)\right) \geq \lim \sup n\left(l_{p}^{m}(X)\right)$ and completes the proof of Theorem 2.1.
m
It is well known that $n\left(\oplus_{\lambda} X_{\lambda}\right)_{l_{\infty}}=\inf _{\lambda \in \Lambda} n\left(X_{\lambda}\right)$ [9]. This shows that, in particular, $n\left(l_{\infty}(X)\right)=n(X)\left(=\lim _{m} n\left(l_{\infty}^{m}(X)\right)\right)$. So, Theorem 2.1 is also valid for $p=\infty$.

Theorem 2.2. Let (Ω, Σ, μ) be a σ-finite measure space. Then, for every Banach space X and every real number $p, 1 \leq p<\infty$,

$$
n\left(L_{p}(\mu, X)\right)=n\left(l_{p}(X)\right)
$$

Proof. Let us first prove that $n\left(L_{p}(\mu, X)\right) \leq n\left(l_{p}(X)\right)$. For this we adapt the proof due to Javier and Martin for the scalar case (not published result). Indeed, if μ is not atomic, $L_{p}(\mu, X)$ is isometric to $L_{p}(\mu, X) \oplus_{p} L_{p}(\mu, X)$, so they have the same numerical index. Let $T=\left(T_{1}, T_{2}\right) \in B\left(l_{p}^{2}(X)\right)$ and define the operator S on $L_{p}(\mu, X) \oplus_{p} L_{p}(\mu, X)$ by $S\left(f_{1}, f_{2}\right)(\omega)=T\left(f_{1}(\omega), f_{2}(\omega)\right)$. One can check easily that $\|T\|=\|S\|$. Moreover, $v(T)=v(S)$. Indeed, let $f_{1}=\sum_{i=1}^{m} x_{i} \frac{1_{A_{i}}}{\mu\left(A_{i}\right)^{1 / p}}, f_{2}=\sum_{i=1}^{n} y_{i} \frac{1_{B_{i}}}{\mu\left(B_{i}\right)^{1 / p}}$ be simple functions in $L_{p}(\mu, X)$ with $\left\|\left(f_{1}, f_{2}\right)\right\|^{p}=\sum_{i=1}^{m}\left\|x_{i}\right\|^{p}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{p}=1$. For each i we can find x_{i}^{*} and y_{i}^{*} in $S_{X^{*}}$ such that $x_{i}^{*}\left(x_{i}\right)=\left\|x_{i}\right\|$ and $y_{i}^{*}\left(y_{i}\right)=\left\|y_{i}\right\|$. If we set $g_{1}=\sum_{i=1}^{m}\left\|x_{i}\right\|^{p-1} x_{i}^{*} \frac{1_{A_{i}}}{\mu\left(A_{i}\right)^{1 / q}}$ and $g_{2}=\sum_{i=1}^{n}\left\|y_{i}\right\|^{p-1} y_{i}^{*} \frac{1_{B_{i}}}{\mu\left(B_{i}\right)^{1 / q}}$, we have clearly $\left(g_{1}, g_{2}\right) \in S_{L_{q}\left(\mu, X^{*}\right) \oplus_{q} L_{q}\left(\mu, X^{*}\right)}$ and $<$ $\left(g_{1}, g_{2}\right),\left(f_{1}, f_{2}\right)>=1$. Moreover,

$$
\begin{aligned}
\left|\left(g_{1}, g_{2}\right)\left(S\left(f_{1}, f_{2}\right)\right)\right| & \leq \int_{\Omega}\left|\left(g_{1}(\omega), g_{2}(\omega)\right)\left(T\left(f_{1}(\omega), f_{2}(\omega)\right)\right)\right| d \mu(\omega) \\
& \leq v(T) \int_{\Omega}\left\|f_{1}(\omega)\right\|^{p}+\left\|f_{2}(\omega)\right\|^{p} d \mu(\omega)=v(T)
\end{aligned}
$$

Following [4], we have $v(S) \leq v(T)$. For the reverse inequality, let $\left(x_{1}, x_{2}\right) \in S_{l_{p}^{2}(X)}$. Take $A \in \Sigma$ with $\mu(A)>0$ and consider $\left(f_{1}, f_{2}\right)=\left(x_{1} \frac{1_{A}}{\mu(A)^{\frac{1}{p}}}, x_{2} \frac{1_{A}}{\mu(A)^{\frac{1}{p}}}\right)$. From what we have just seen $\left(g_{1}, g_{2}\right)=\left(\left\|x_{1}\right\|^{p-1} x_{1}^{*} \frac{1_{A}}{\mu(A)^{\frac{1}{q}}},\left\|x_{2}\right\|^{p-1} x_{2}^{*} \frac{1_{A}}{\mu(A)^{\frac{1}{q}}}\right) \in S_{L_{q}\left(\mu, X^{*}\right) \oplus_{q} L_{q}\left(\mu, X^{*}\right)}$ and $<\left(g_{1}, g_{2}\right),\left(f_{1}, f_{2}\right)>=1$. Moreover,

$$
\left|\left(\left\|x_{1}\right\|^{p-1} x_{1}^{*},\left\|x_{2}\right\|^{p-1} x_{2}^{*}\right)\left(T\left(x_{1}, x_{2}\right)\right)\right|=\left|\int_{\Omega}\left(g_{1}(\omega), g_{2}(\omega)\right) S\left(f_{1}, f_{2}\right)(\omega) d \mu(\omega)\right| \leq v(S)
$$

This yields $v(T) \leq v(S)$. Consequently $\left\{v(T): T \in S_{l_{p}^{2}(X)}\right\} \subset\left\{v(S): S \in S_{L_{p}(\mu, X) \oplus_{p} L_{p}(\mu, X)}\right\}$ which yields $n\left(L_{p}(\mu, X) \oplus_{p} L_{p}(\mu, X)\right) \leq n\left(l_{p}^{2}(X)\right)$. So

$$
n\left(L_{p}(\mu, X)\right) \leq n\left(l_{p}^{2}(X)\right)
$$

Now, for any integer $m \geq 1$, with the same work as above, we obtain

$$
n\left(L_{p}(\mu, X)\right) \leq n\left(l_{p}^{m}(X)\right)
$$

It follows from Theorem 2.1 that

$$
n\left(L_{p}(\mu, X)\right) \leq n\left(l_{p}(X)\right)
$$

If μ is atomic then $L_{p}(\mu, X)$ is isometric to $L_{p}(\nu, X) \oplus_{p}\left[\oplus_{i \in I} X\right]_{l_{p}}$ for a suitable set I and an atomless measure ν. With the help of Remark 2 [9], we also have $n\left(L_{p}(\mu, X)\right) \leq n\left(l_{p}(X)\right)$. The reverse inequality $n\left(L_{p}(\mu, X)\right) \geq n\left(l_{p}(X)\right)$ follows with the same technique used in [5] for the scalar case.

Corollary 2.3. Let (Ω, Σ, μ) be a σ-finite measure space. Then, for every Banach space X and every real number $p, 1 \leq p<\infty$

$$
n\left(L_{p}(\mu, X)\right)=\lim _{m} n\left(l_{p}^{m}(X)\right) .
$$

3 On the positivity of the numerical index of l_{p}-Space

It was proved that the numerical index of $l_{p}^{m}, p \neq 2, m=1,2, \ldots$ cannot be equal to 0 this is equivalent to that the numerical radius and the operator norm are equivalent on $B\left(l_{p}^{m}\right), p \neq 2$ (see Theorem $\left.2.3[\mathbf{6}]\right)$. In this section we shall also prove that both norms are equivalent on $B\left(l_{p}, l_{p}^{m}\right)$.

Theorem 3.1. For every real number $p \geq 1, p \neq 2$ and every integer m, the numerical radius is equivalent to the operator norm on $B\left(l_{p}, l_{p}^{m}\right)$.
Here l_{p} is real and l_{p}^{m} is identified with its natural embedding in l_{p}.
Proof. Let $T=\left(t_{i k}\right) \in B\left(l_{p}, l_{p}^{m}\right)$. We first have

$$
\begin{aligned}
\|T\| & \leq\left\|\left(\sum_{k=1}^{\infty}\left|t_{1 k}\right|^{q}\right)^{\frac{1}{q}}, \ldots,\left(\sum_{k=1}^{\infty}\left|t_{m k}\right|^{q}\right)^{\frac{1}{q}}\right\|_{p} \\
& \leq\left(\sum_{k=1}^{\infty}\left|t_{1 k}\right|^{q}\right)^{\frac{1}{q}}+\cdots+\left(\sum_{k=1}^{\infty}\left|t_{m k}\right|^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Consider $\left\{T^{j}\right\} \in B\left(l_{p}, l_{p}^{m}\right)$ defined by $T^{j} e_{k}=T e_{k}$ for $k \neq j$ and $T^{j}\left(e_{j}\right)=0$. Then for $x=\sum_{k=1}^{\infty} x_{k} e_{k} \in S_{l_{p}}$ we have

$$
x_{x}^{*}\left(T^{1} x\right)=\varepsilon_{1}\left|x_{1}\right|^{p-1} \sum_{k=2}^{\infty} t_{2 k} x_{k}+\cdots+\varepsilon_{m}\left|x_{m}\right|^{p-1} \sum_{k=2}^{\infty} t_{m k} x_{k} \quad\left(\varepsilon_{j} \in\{-1,1\}\right) .
$$

Take $x_{1}=\varepsilon_{1} 2^{-1 / p}$ with $\varepsilon_{1} \in\{-1,1\}$ we obtain
$\left|x_{x}^{*}\left(T^{1} x\right)\right|=\left|2^{-1 / q}\left(\sum_{k=2}^{\infty} t_{1 k} x_{k}\right)+\varepsilon_{1}\left\{\varepsilon_{2}\left|x_{2}\right|^{p-1} \sum_{k=2}^{\infty} t_{2 k} x_{k}+\cdots+\varepsilon_{m}\left|x_{m}\right|^{p-1} \sum_{k=2}^{\infty} t_{m k} x_{k}\right\}\right| \leq v\left(T^{1}\right)$
Since ε_{1} is arbitrary in $\{-1,1\}$ then

$$
2^{-1 / q}\left|\sum_{k=2}^{\infty} t_{1 k} x_{k}\right|+\left.\left|\varepsilon_{2}\right| x_{2}\right|^{p-1} \sum_{k=2}^{\infty} t_{2 k} x_{k}+\cdots+\varepsilon_{m}\left|x_{m}\right|^{p-1} \sum_{k=2}^{\infty} t_{m k} x_{k} \mid \leq v\left(T^{1}\right)
$$

And in particular

$$
2^{-1 / q}\left|\sum_{k=2}^{\infty} t_{1 k} x_{k}\right| \leq v\left(T^{1}\right)
$$

for all $\left(x_{2}, \ldots, x_{m}, \ldots\right) \in l_{p}$ such that $\sum_{k=2}^{\infty}\left|x_{k}\right|^{p}=\frac{1}{2}$. That is

$$
\frac{1}{2}\left|\sum_{k=2}^{\infty} t_{1 k} y_{k}\right| \leq v\left(T^{1}\right) \quad \forall\left(y_{2}, \ldots, y_{m}, \ldots\right) \in S_{l_{p}}
$$

which yields

$$
\frac{1}{2}\left(\sum_{k \neq 1}\left|t_{1 k}\right|^{q}\right)^{\frac{1}{q}} \leq v\left(T^{1}\right)
$$

The same work as above shows that

$$
\begin{equation*}
\frac{1}{2}\left(\sum_{k \neq j}\left|t_{j k}\right|^{q}\right)^{\frac{1}{q}} \leq v\left(T^{j}\right) \tag{*}
\end{equation*}
$$

for $j=1,2, \ldots, m$. Now let $R^{j}=T-T^{j}$ then we have

$$
v\left(T^{j}\right) \leq v(T)+\left\|R^{j}\right\|
$$

And following (*) we obtain

$$
\left(\sum_{k=1}^{\infty}\left|t_{j k}\right|^{q}\right)^{\frac{1}{q}} \leq 2\left(v(T)+\left\|R^{j}\right\|\right)+\left|t_{j j}\right|
$$

which yields

$$
\|T\| \leq 2 m v(T)+2 \sum_{j=1}^{m}\left\|R^{j}\right\|+\sum_{j=1}^{m}\left|t_{j j}\right| .
$$

Now let $\left\{T_{n}\right\}$ be a v-cauchy sequence in $B\left(l_{p}, l_{p}^{m}\right)$. Since $v\left(T_{n} P_{m}\right)=v\left(P_{m} T_{n} P_{m}\right) \leq v\left(T_{n}\right)$ where P_{m} is the operator projection on l_{p}^{m} (see [5] p 4), and using the fact that in finite dimensional space l_{p}^{m} both norms are equivalent, then each $R_{n}^{j}=T_{n}-T_{n}^{j}$ converges in operator norm to some R^{j}. Therefore $\left\{T_{n}\right\}$ is $\|\|$-cauchy. This completes the proof of the Theorem 3.1.

It's still unknown if the numerical radius and the operator norm are equivalent on the Banach space $B\left(l_{p}\right), p \neq 2$ which gives a complete answer to the question of C. Finet and D. Li.

References

[1] F. F. Bonsall and J. Duncan, Numerical ranges of Operators on Normed Spaces and of elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, (Cambridge Univ. Press, 1971).
[2] F. F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Ser. 10 (Cambridge Univ. Press, 1973).
[3] C. Finet, M. Martín and R. Payá, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (2003), no. 3, 871-877.
[4] J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481-488.
[5] E. Ed-dari, On the numerical index of Banach spaces, Linear Algebra and its Applications 403 (2005), 86-96.
[6] E. Ed-dari, M.A. Khamsi, The numerical index of the L_{p}-space, Proc. Amer. Math. Soc. 134 (2006) p 2019-2025.
[7] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
[8] G. López, M. Martín and R. Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999) 207-212.
[9] M. Martín and R. Payá, Numerical index of vector-valued function spaces, Studia Mathematica 142 (3) (2000) 269-280.
[10] M. Martín, A survey on the numerical index of Banach space, Extracta Math 15 (2000), 265-276.
E. ED-DARI

Université d'Artois
Faculté des Sciences Jean Perrin
SP 18
62307-Lens Cedex
FRANCE
Elmouloudi.Eddari@euler.univ-artois.fr
M. A. KHAMSI

University of Texas at El Paso
Dept. of Mathematical Sciences 500 West University
Ave. El Paso, Texas 79968-0514 USA
mohamed@math.utep.edu
A. G. AKSOY

Department of Mathematics
Claremont McKenna College
Claremont, CA 91711
asuman.aksoy@claremontmckenna.edu

