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Abstract. After the success of stable model semantics [GL88] and its generalization
for programs with classical negations [GL90], the same ideas have been used in [GL91]
to include disjunction into the resulting formalization of commonsense reasoning. The
resulting semantics of disjunctive logic programs is relatively new, and therefore, few results
are known. An additional problem with this semantics is as follows: since it incorporates
a larger number of logical connectives, it is inevitably more complicated, and therefore,
usual syntactic proofs are far less intuitive than the ones for stable models.

That these proofs become really complex, one can see from the fact that even for the
simplest case of stratified programs, it is not so easy to prove that there always exists
an answer set becomes really complicated. So, what is needed is a new methodology that
would enable us to prove the existence of answer sets without going into syntactical details.

As a basis for this new methodology, we decided to use fixed point theorems. Tradi-
tionally, logic programming uses fixed point theorems a lot (see, e.g., [L87]), but these are
fixed point theorems for monotonic mappings of ordered sets (to be more precise, Tarski’s
theorem on lattices). In disjunctive logic programming, an answer set can also be formu-
lated as a fixed point, but this is a fixed point of a multi-valued mapping, and for such
mappings neither Tarski’s theorem, not other known result is applicable.

To overcome this difficulty, we decided to have a look at another case when Tarski’s
theorem was not directly applicable. Such a case was analyzed by M. Fitting in [F93] and
[F93a]. Fitting showed that in some cases, we can use metric fixed point theorems to prove
the existence of stable models. Fitting’s theorem uses historically the first general metric
fixed point theorem: so-called Banach’s contraction principle [AK90], [K55]. This theorem
is also not directly applicable to disjunctive logic programs, because it is about single-
valued mappings, and we are dealing with multi-valued ones. However, Fitting theorem
turned out to be a prefect starting point for us.

In this paper, we describe a generalization of the contraction principle to multi-valued
mappings, and show that the resulting generalization can be used to produce a simple
proof that every stratified disjunctive logic program has an answer set. This result is
easily generalizable to locally stratified disjunctive logic programs [P88].



1. BASIC DEFINITIONS

General remark. Since the main purpose of this paper is to promote a new methodology,
we have tried to make it as understandable as possible. For that reasons, we are including
all the definitions; readers who are already familiar with these definitions, can skip the
corresponding subsection.

1.1. What is a disjunctive logic program and what is an answer set [GL91]

Remark. The definition of an answer set follows the tradition of a stable model semantics
in that it is done in two steps:
• first, if we have variables in the original logic program, we substitute all possible terms

instead of them; as a result, we get a new program that contains only ground instances
of all the rules;

• after that, we apply a special procedure to this new logic program to check whether
a guess is an answer set (or, in case of a stable model semantics, a stable model).

Because of that, when defining answer set, we can safely assume that our program already
has no atoms and contains only ground instances of the rules. Thus, we arrive at the
following definition.

Definition 1 [GL91]. Assume that a set A is given. Its elements will be called atoms.
By a literal we mean either an atom, or an expression of the type ¬p, where p is an atom.
This symbol ¬ will be called classical negation. The set of all literals is denoted by Lit.
An extended rule (or rule for short) is an expression of the form

L1 ∨ L2 ∨ ... ∨ Lk ←− Lk+1 ∧ Lk+2 ∧ ... ∧ Lk+m ∧ not Lk+m+1 ∧ ... ∧ not Lk+m+n,

where n,m, k are non-negative integers. We will say that literals L1, ..., Lk are in the head,
and literals Lk+1, ..., Lk+m+n are in the body of this rule. An extended disjunctive logic
program Π is a set of extended rules.

Remarks.
1. It is usually assumed that the set Lit coincides with all the literals that can be formulated
in the language of the original logic program (with variables).

2. A rule with k = 1 and m = n = 0 is called a fact.

Definition 2 (of an answer set) [GL91]
1. Let Π be an extended disjunctive program which doesn’t contain not. An answer set of
Π is a minimal set S ⊆ Lit such that
(i) for each rule L1∨L2∨...∨Lk ←− Lk+1∧Lk+2∧...∧Lk+m from Π, if Lk+1, .., Lk+m ∈ S,

then, for some i ∈ {1, .., k}, Li ∈ S (sets that satisfy (i) are called closed under the
rules of Π).

(ii) if S contains a pair of complimentary literals (a and ¬a), then S = Lit.

2. Now, let Π be an arbitrary extended disjunctive logic program. For any set S ⊆ Lit,
let ΠS denote the extended disjunctive program obtained from Π by deleting
(i) each rule that has a formula not L in its body with L ∈ S, and



(ii) all formulas of the form not L in the bodies of the remaining rules.

Clearly ΠS doesn’t contain not, so for this program, we can use part 1 of this Definition
to define the set of all its answer sets. We will denote this set by α

(
ΠS

)
. If S ∈ α

(
ΠS

)
,

then we say that S is an answer set for Π.

1.2. What is a stratified disjunctive logic program

Definition 3. Let Π be an extended logic program. We will say that Π is stratified if for
some integer α > 1,

Lit =
⋃

1≤i<α

Liti,

where Liti are disjoint sets called strata, so that for every rule

L1 ∨ L2 ∨ ... ∨ Lk ←− Lk+1 ∧ Lk+2 ∧ ... ∧ Lk+m ∧ not Lk+m+1 ∧ ... ∧ not Lk+m+n,

in Π, the following two statements are true:
(i) if Li is in the head, Lj is in the body, Li ∈ Lita, and Lj ∈ Litb, then a ≥ b;
(ii) if Li is in the head, not Lj is in the body, Li ∈ Lita, and Lj ∈ Litb, then a > b.

A decomposition {Liti} of Π satisfying the above conditions is called a stratification
of Π.

Remark. Following [P88], we can generalize this definition to the case when α is an arbi-
trary countable ordinal. Such a program is called locally stratified, and the corresponding
decomposition is called a local stratification. In particular, we can take α = ω. We will
call locally stratified programs with α = ω, countably stratified, and the corresponding
decomposition

Lit =
∞⋃

i=1

Liti

will be called a countable stratification.

1.3. Metric spaces: main definitions, contraction theorem [K55]

Definition 4. Let M be an arbitrary set. A metric or distance on M is a mapping
d : M ×M → R+ (where R+ denotes the set of all non-negative real numbers) such that
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, z) + d(z, y).
The distance d will be said to be ultrametric if it satisfies the additional inequality
(iv) d(x, y) ≤ max(d(x, z), d(z, y)).
A pair (M, d) of a set M and a distance d defined on M is called a metric space.

To describe contraction principle, we need a few extra definitions.



Definition 5. Let M be a metric space.
(i) A sequence {xn} of elements of M is said to be convergent to x ∈ M if

∀ε > 0∃n0∀n(n ≥ n0 =⇒ d(xn, x) < ε).

(ii) A sequence {xn} is said to be Cauchy if

∀ε > 0∃n0∀n,m(n ≥ n0 & m ≥ n0 =⇒ d(xn, xm) < ε).

(iii) A metric space M is said to be complete if all Cauchy sequences in M are convergent.
(iv) A mapping T : M → M is called a contraction if there exists a real number k < 1

such that d(T (x), T (y)) ≤ kd(x, y) for every x, y ∈ M .
(v) A point x ∈ M is called a fixed point of a mapping T if T (x) = x.

BANACH’S CONTRACTION PRINCIPLE [K55], [AK90]. If M is a complete
metric space, then every contraction on M has a unique fixed point.

Remarks.
1. The proof of this Theorem is rather constructive: we start with an arbitrary point
x0 ∈ M , and define xn+1 = T (xn) for n = 0, 1, 2, .... Then, from the contraction property,
we conclude that d(xn+1, xn) ≤ kd(xn, xn−1); therefore, d(xn+1, xn) ≤ knd(x0, Tx0). From
this, one can conclude that the sequence {xn} is Cauchy, and that its limit x is a fixed
point.

2. This Theorem was used by M. Fitting to prove the existence of a stable model ([F93],
[F93a]). Fitting does not apply his result directly to stratified programs; however, he
considers the general case when we have a level mapping l, i.e., in our denotations, a
mapping from Lit to the set N of all positive integers. This mapping means that we
actually have a decomposition of Lit into disjoint sets Si = {L ∈ Lit | l(L) = i}. Vice versa,
if we have a decomposition into countably many sets Si, we can define a level mapping l
as follows: l(L) is the number i of the only set Si to which L belongs. Stratification is a
particular case of such a partition. For stratification, Fitting’s definition reduces to the
following:

Definition 6. Let Π be a countably stratified extended disjunctive program. We will then
define a Fitting metric d on the set 2Lit of all subsets of Lit as follows:
• if A = B, then d(A, B) = 0;
• if A 6= B, then d(A, B) = 2−(m−1), where m is the smallest integer for which

A ∩ Litm 6= B ∩ Litm.

Remark. It is well known that a stable model can be defined as a fixed point of some
mapping T : 2Lit → 2Lit. Fitting actually proved that the set M = 2Lit with this metric d
is complete, and that the corresponding T is a contraction with k = 1/2. Thus, he proved
the existence of a fixed point (i.e., the existence of a stable set).

PROPOSITION 1 [F93], [F93a]. The set M with Fitting’s metric d is a complete metric
space.



Remark. One can easily prove that Fitting’s metric is an ultrametric.

2. HOW TO APPLY METRIC FIXED POINTS
TO DISJUNCTIVE LOGIC PROGRAMS

The idea. The stable set S is defined as a fixed point of some mapping T : M → M ,
i.e., as a set for which S = T (S). The answer set was defined as a set S for which

S ∈ α(ΠS) (1)

Here, the mapping S → α(ΠS) assigns to every element S ∈ M , a set of elements of
M . Such mappings are called multi-valued. We can thus view formula (1) as a (natural)
generalization of the notion of a fixed point to multi-valued mappings. Let’s give formal
definitions.

Definition 7. By a multi-valued mapping of a set M into itself, we mean a mapping
T : M → 2M . We say that an element x ∈ M is a fixed point of a multi-valued mapping T
if x ∈ T (x).

COROLLARY. A set S is an answer set of an extended disjunctive logic program Π iff
it is a fixed point of the multi-valued mapping S → α(ΠS).

Remark. Since this T is a multi-valued mapping, it cannot be a contraction, and therefore,
we cannot directly apply Banach’s contraction principle to it. Let us find what we can
prove in this case. It turns out that the same ideas that Fitting used to prove that his T
was contraction, lead to the following result:

PROPOSITION 2. Let Π be a countably stratified extended disjunctive logic program.
Let S1, S2 ∈ M = 2Lit. Then

∀A ∈ α
(
ΠS1

)
∃B ∈ α

(
ΠS2

)
such that d(A,B) ≤ 1

2
d(S1, S2).

Proof. The main idea of this proof is the same as in the Fitting’s proof that his T is a
contraction mapping: namely, if d(A, B) = 2−n, this means that the restriction of A to
a strata Liti (1 ≤ i ≤ n) coincides with the restriction of B to the same strata. Since
we are dealing with a stratified program, for an arbitrary literal L ∈ Litn+1, whether we
use A or B as an initial guess, all the rules that have L in the head will have exactly the
same parts of their bodies deleted. Therefore, exactly the same rules with no negation as
failure will determine the validity of L. Hence, the resulting sets of answer sets will agree
on all L ∈ Ln+1. In other words, if SA ∈ α(ΠA), then there exists SB ∈ α(ΠB) for which
SA ∩ Ln+1 = SB ∩ Ln+1. Hence, d(SA, SB) ≤ 2−(n+1). Q.E.D.

Remark. Our idea is to prove the desired result (that every stratified disjunctive logic pro-
gram has an answer set) by proving that every mapping with this “contraction” property
has a fixed point. To the best of our knowledge, none of the existing fixed point theorems
(see, e.g., [AK90]) is directly applicable to this case. So, we must prove a new theorem to



cover it. Here is the theorem that we proved (and that covers the case of disjunctive logic
programs):

Definition 8. Let’s say that a multi-valued mapping T : M → 2M is a contraction if
there exists a real number k < 1 such that for every x ∈ M , for every y ∈ M , and for all
a ∈ T (x), there exists b ∈ T (y) such that d(a, b) ≤ kd(x, y).

FIXED POINT THEOREM FOR MULTIPLE-VALUED CONTRACTIONS.
Assume that M is a complete metric space, T is a multi-valued contraction on M such
that T (x) is not empty for some x ∈ M (i.e., T is not identically empty), and for every
x ∈ M , the set T (x) is closed. Then, T has a fixed point.

Remark. An identically empty mapping T : M → 2M , for which T (x) = φ for every x,
evidently, cannot have fixed points (because x 6∈ φ = T (x)), so the additional condition
that T is not identically empty is necessary.

Proof. Since T is not identically empty, there exists an element x0 ∈ M such that
T (x0) 6= φ. Let x1 ∈ T (x0). Since T is a contraction (in the sense of Definition 8), we
insure the existence of x2 ∈ T (x1) such that d(x1, x2) ≤ kd(x0, x1). We can apply the
same argument again, and thus step-by-step we will construct a sequence xn such that for
every n ≥ 0, we have xn+1 ∈ T (xn) and d(xn+1, xn+2) ≤ kd(xn, xn+1).

Using the triangle inequality, one can prove that

d(xn, xn+m) ≤
m−1∑

i=0

d(xn+i, xn+i+1) ≤
m−1∑

i=0

kn+id(x0, x1) ≤ kn

1− k
d(x0, x1).

This implies that {xn} is a Cauchy sequence in M . Since M is complete, there exists a
point xω which is the limit of xn. From the above inequality, we conclude in the limit
m →∞ that

d(xn, xω) ≤ kn

1− k
d(x0, x1). (2)

Let us show that xω is a fixed point of T .

Since T is a contraction, for every n, there exists yn ∈ T (xω) such that d(xn+1, yn) ≤
kd(xn, xω). Therefore, d(xω, yn) ≤ d(xω, xn+1) + d(xn+1, yn) ≤ d(xω, xn+1) + kd(xn, xω).
Because of (2), we now have

d(xω, yn) ≤ kn+1

1− k
d(x0, x1) + k

kn

1− k
d(x0, x1) =

2kn+1

1− k
d(x0, x1).

In the limit n →∞, d(xω, yn) → 0, hence yn → xω.

But yn ∈ T (xω), and T (x) is closed for every x. Therefore, the limit xω of the sequence
yn also belongs to T (xω). So, xω ∈ T (xω), and xω is the desired fixed point. Q.E.D.

To apply this general theorem to disjunctive logic programs, we thus need to prove
two lemmas:



LEMMA 1. For a countably stratified disjunctive logic program Π, and for every set
S ∈ 2Lit, the set α(ΠS) is closed with respect to Fitting’s metric.

Proof. Let S ∈ 2Lit and {An} be a sequence of elements in α(ΠS) which converges to A.
Let us prove that A ∈ α(ΠS).

To prove that, we need to prove the two things:
• that A is closed under the rules of ΠS , and
• that A is minimal, i.e., that no B ⊂ A, B 6= A, is closed under these rules.

1. Let us first prove that A is closed under the rules (i.e., if all the literals from the body
of a rule belong to A, then one of the literals from the head of this rule also belongs to A).
Let R be a rule in ΠS such that every literal from its body belongs to A. Let’s prove that
one of the literals from its head also belongs to A.

Indeed, every literal from R (i.e., from its body and from its head) belongs to some
stratum Liti (for some integer i). Let us denote the maximum of these integers i by s (s
for stratum). Then, all literals L from the body of A belong to the union of the first s
strata:

L ∈
s⋃

i=1

Liti.

Since An converges to A, there exists an n0 such that for all n ≥ n0, we have d(An, A) ≤
2−(s+1). In particular, for n = n0, d(An0 , A) ≤ 2−(s+1). By definition of Fitting’s metric
d, this means that A∩Liti = An0 ∩Liti for all i ≤ s. We have chosen s in such a way that
all literals from R belong to one of the strata Liti, i ≤ s. According to our choice of R,
every literal L from the body of R belong to A. Therefore, it belongs to A∩Liti for some
i ≤ s. Since A ∩ Liti = An0 ∩ Liti, this literal L thus belongs to An0 ∩ Liti and hence, to
An0 .

So, all literals from the body of R belong to An0 . But An0 ∈ α(ΠS) and therefore,
An0 is closed under the rules. Hence, one of the literals from the head of R also belongs to
An0 . Because of our choice of s, this literal L belongs to Liti for some i ≤ s. Therefore,
L ∈ An0 ∩ Liti = A ∩ Liti, and hence L ∈ A. So, A is closed.

2. Let us now show that A is minimal.

We will prove it by reduction to a contradiction. Assume that A is not minimal. This
means that there exists a set B ⊂ A, B 6= A, that is closed under the rules of ΠS .

The fact that B 6= A means that some literal L from A is not in B. Let us denote
the number of the stratum to which this literal L belongs, by s (i.e., L ∈ Lits). Then,
B ∩ Lits 6= A ∩ Lits. Since An → A, there exists an n0 such that for all n ≥ n0, we have
d(An, A) ≤ 2−(s+1). In particular, for n − n0, we have d(An0 , A) ≤ 2−(s+1). Similarly to
Part 1 of this proof, this means that An0 ∩ Liti = A ∩ Liti for all i ≤ s.

Let us now define a new set

B∗ = (B
⋂ s⋃

i=1

Liti)
⋃

(An0

⋂ ∞⋃

i=s+1

Liti)



It is easy to see that B∗ is closed under the rules of ΠS .

For i ≤ s, from B ⊂ A, we conclude that B∗∩Liti ⊆ A∩Liti = An0 ∩Liti and hence,
B∗∩Liti ⊆ An0 ∩Liti. For i > s, a similar inclusion B∗∩Liti ⊆ An0 ∩Liti follows directly
from the definition of B∗. So, for every stratum, its intersection with B∗ is a subset of its
intersection with An0 . Therefore, B∗ ⊆ An0 . On the other hand, for i = s (because of our
choice of s) B∗ ∩ Lits = B ∩ Lits 6= A ∩ Lits = An0 ∩ Lits. Therefore, B∗ 6= An0 . So,
inside An0 , there is another set that is also closed under the rules of ΠS . So, An0 is not
minimal.

But An0 ∈ α(ΠS) and therefore, An0 is minimal. This contradiction shows that our
assumption (that A is not minimal) is false. Hence, A is minimal.

3. So, A is closed under the rules, and A is minimal. Hence A ∈ α(ΠS). Q.E.D.

LEMMA 2. For a countably stratified disjunctive logic program Π, there exists a set
S ⊆ Lit such that α(ΠS) is not empty.

Remark. To prove this Lemma, we will prove the following more general result.

LEMMA 3. For a countably stratified disjunctive logic program Π, for every set S ⊆ Lit,
α(ΠS) is not empty.

Proof. For an arbitrary set S, the set Lit is closed under the rules of ΠS . One can easily
prove that there exists a minimal set with this property. Therefore, α(ΠS) is not empty.
Q.E.D.

Lemmas 1 and 2 enable us to prove the main result:

MAIN RESULT. Let Π be a countably stratified extended disjunctive logic program. Then
Π has an answer set.

Since stratified programs are a particular case of countably stratified programs, we
have the following Corollary:

COROLLARY. Let Π be a stratified extended disjunctive logic program. Then Π has an
answer set.

Remarks.
1. For locally stratified disjunctive logic programs (with an arbitrary countable ordinal α),
we can apply a similar proof, with the only difference that instead of Fitting’s metric d,
we will have to consider an “ultrametric” whose values are not real numbers, but elements
of the ordered set {2−β}, where β are all ordinals < α, and the order is defined as follows:
2−β < 2−γ iff β > γ. This result is somewhat technical, so we describe it in all necessary
detail in the Appendix.

2. Fitting in [F93], [F93a] provides an example when a metric fixed point theorems proves
the existence of a stable set for a non-stratified program. Namely, he considers a program
that describes wining positions in a positional game, in which players make moves in turn



and there are no draws. If a position is winning for one of the players, then no further
moves are possible. This program consists of the rules and the facts. Rules are of the
following type:

win(X) ← move(X, Y ), not win(Y ),

and the facts (of the type move(X, Y )) describe possible moves. Predicate win(X) means
that X is a winning position, i.e., if a player is in a position X, then there exists a strategy
that enables him to win (no matter what the actions of the opposite player are).

The (informal) meaning of the above rule is as follows: if a player is in a position X,
and he can move into another position Y that is not winning (i.e., losing) for the opposite
player, then he wins. If he cannot make such a move, this means that wherever he moves
to, the resulting position is winning for the second player. So, if no such move exists, then
X is a losing position for X.

Let’s modify this example into an example where a metric fixed point theorem helps
to find a stable model for a non-stratified disjunctive logic program. We will consider the
same game, but this time, we will assume that the players are still training (it is not yet
a championship). So, if a person is about to win, then instead of going all the way to his
victory, he can stop the game and teach another player (i.e., explain how he could win).
A program that describes this situations contains the same facts win(X, Y ), but slightly
different rules:

canwin(X) ← move(X,Y ), not can win(Y )

win(X) ∨ teach(X) ← canwin(X).

Rules of the first type describe when a player can win. Rules of the second type tell that if a
player can win, then he will either win, or teach. This program is non-stratified. However,
for this program, the mapping S → α(ΠS) is a contraction (this is proved just like in [F93]
and [F93a]) and therefore, our fixed point theorem proves the existence of its fixed point
(i.e., of a stable model of Π).
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APPENDIX: GENERALIZED METRICS, FIXED POINTS, AND
THE EXISTENCE OF ANSWER SETS FOR LOCALLY STRATIFIED

DISJUNCTIVE LOGIC PROGRAMS

A1. MOTIVATIONS FOR THE FOLLOWING DEFINITIONS

A1.1. Why it is necessary to generalize the notion of a metric space

Since metric fixed points can be applied so naturally to stratified logic programs, it
makes sense to try to apply similar techniques to locally stratified logic programs. The
first thing we need is to generalize Fitting’s metric to such programs. Fitting’s distance is
defined as follows: d(A, B) = 2−(m−1), where m is the smallest integer for which A∩Litm 6=
B∩Litm. For locally stratified programs, we have strata Litm indiced by ordinal numbers
m. So, in addition to integer m, we have values m that are infinite ordinals (not integers).
If the first strata Litm for which A ∩ Litm 6= B ∩ Litm is an infinite ordinal, then, if we
literally follow Fitting’s definition, we will define d(A, B) as 2−α for some infinite ordinal
α. This is just an expression, because the operation 2−x is not defined for infinite ordinals
x. So, to apply Fitting’s idea, we must make sense out of this expression.

Since this 2−α is the distance, maybe we can somehow interpret is as a non-negative
real number? Alas, such an interpretation is impossible. To be more precise, we can
interpret it as whatever we want, but if we do interpret is as a non-negative real number,
the above-given proof will be no longer applicable. Indeed, one of the properties of 2−m

that we used in our proofs was that if m < n then 2−m > 2−n (i.e., that a function x → 2−x

is strictly decreasing, or, using the term used in logic programming community, antitonic).
Since we want to use a similar proof, we would like to keep this property. If α is an infinite
ordinal, then α > n for every integer n, and therefore, since we want monotonicity, we
would have 2−α < 2−n for all n. So, if 2−α is a real number, then we can conclude that
2−α ≤ 0. On the other hand, 2−α is a non-negative real number, so the only possibility



is that 2−α = 0. But according to the definition of a metric, d(A,B) = 0 if and only if
A = B. So, if we take two sets A and B that coincide for all the strata Litm for finite m
and differ for some strata Litα, then on one hand, these two sets are different: A 6= B,
and on the other hand, d(A,B) = 2−α = 0 and so, A = B. This contradiction shows that
we cannot use real numbers.

Instead, we need a “metric” with the values in some other set that will include not
only real numbers, but also some non-negative elements that are smaller than 2−n for all
n. Such sets are known (in particular, in the so-called non-standard analysis), and the
corresponding elements (that are smaller than any positive fraction but still greater than
0) are called infinitesimal (see, e.g., [AK90]).

A1.2. What properties of the generalized metric do we need? A general
description

In order to handle the locally stratified case (and hopefully, for some future applica-
tions as well), we must describe a (generalized) metric on a set M as a mapping from the
set of pairs M ×M to some set V (V for values). We want to be able to apply standard
results about metrics to generalized metrics as well. Therefore, we want a generalized
metric to satisfy properties (i)–(iii) from Definition 4.

By simply looking at these properties, we can immediately find out that in order to
be able to formulate these properties, this set V must be equipped with the following
additional structure:
• V must contain an element called 0;
• an ordering relation < must be defined on V ;
• a binary operation + must be defined on V .

What properties do we want these structures to satisfy?

Let us start with +.
• In the usual metric spaces, for y = z, triangle inequality is trivially true, because it

turns into d(x, y) ≤ d(x, y) + d(y, y) = d(x, y) + 0, and for usual addition, v + 0 = a
for all v. So, we would like to retain this property.

• When we formulate triangle inequality for the usual metric, we do not care whether we
write it in a way is written in Definition 4 (d(x, y) ≤ d(x, z) + d(z, y)), or in the form
d(x, y) ≤ d(z, y) + d(x, z), because for usual addition, u + v = v + u for all u, v (i.e.,
+ is a commutative operation). In our generalization, we want to be able to simply
apply standard metric results, without thinking about what order is appropriate. So,
we want our operation + to be also commutative.

• For usual metric spaces, from triangle inequality, we can easily deduce a more general
inequality, e.g., d(x, y) ≤ d(x, z) + d(z, t) + d(t, y). Here, we do not to worry in
what order to apply add (i.e., whether we should understand the right-hand side of
this inequality as (d(x, z) + d(z, t)) + d(t, y) or d(x, z) + (d(z, t) + d(t, y)) because for
normal addition, it does not matter: addition is associative ((u+ v)+w = u+(v +w)
for all u, v, and w). We do not want to worry about the order for generalized metric,
so we want the operation + on V to be associative as well.



A set V with an associative binary operation + is called a semigroup. If + is also commu-
tative, this semigroup is called commutative, or Abelian. If an Abelian semigroup has an
element 0 with the property that 0 + v = v + 0 = v for all v, then this element is called a
zero, and V is called an Abelian semigroup with a 0.

Now, about the ordering relation <:
• For usual metric, triangle inequality is trivially true for x = y, because then, it turns

into 0 = d(x, x) ≤ d(x, y) + d(y, x), and 0 ≤ v for any element v ∈ R+. We would like
to retain this property for V , i.e., we would like to have v ≥ 0 for every v ∈ V .

• Arguments about metric often use the fact that if v1 ≤ v2 and ṽ1 ≤ ṽ2, then v1 + ṽ1 ≤
v2 + ṽ2. So, we would also like to retain this property.

A semigroup with an order that agrees with + (in this sense) is called an ordered semigroup.

A1.3. The set of values that we will use

We want to describe the case when “distances” are described by “numbers” 2−α for
different ordinals α. Here, the ordering is natural: 2−α < 2−β iff α > β.

Fitting’s metric is actually an ultrametric, i.e., triangle inequality is true for max
instead of +. Therefore, as a desired semigroup operation, we can take max.

A1.4. How to define convergence for generalized metric spaces?

For usual metric, convergence can be defined in two different ways: First, we can
define it as in Definition 5: a sequence {xn} converges to x ∈ M if a sequence dn, defined
as dn = d(xn, x), tends to 0 in the sense that ∀ε > 0∃n0∀n(n ≥ n0 =⇒ dn < ε). This is
a traditional definition (that uses a so-called “ε− δ−language”).

This definition has a perfect computational sense. Suppose that we are interested in
some number x (e.g., x is an (unknown) solution to a given equation). In many cases,
we cannot immediately produce an exact expression for x. Instead, we have an iterative
procedure that computes x with better and better accuracy. If by xn, we denote the result
of n−th iteration, then xn → x. This means that if we want to compute xn with some
accuracy ε > 0, then for some n0, our iterative procedure enables us to do that.

From computational viewpoint, however, convergence has no practical value unless
we know n0. Indeed, if we do not know n0, then no matter where we stop, there is not
guarantee that we actually computed x with a desired accuracy. So, to make convergence
meaningful, we must not only postulate that for every ε, there exists an n0, but also
provide an algorithm, that describes an accuracy vn of step n. In other words, we must
have a decreasing sequence vn ↓ 0 such that dn ≤ vn for all n.

How can we notice that iterations are converging? A usual way of seeing that is by
noticing that the results obtained on several iterations are very close to each other, i.e.,
that the distance d(xn, xm) between these results becomes small when m and n increases.

How small can it become? If d(xn, x) ≤ vn, and d(xm, x) ≤ vm, then because of
triangle inequality, d(xn, xm) ≤ d(xn, x)+d(xm, x) ≤ vn +vm. Vice versa, if the inequality



d(xn, xm) ≤ vn + vm is true for all n and m, then, when we go to the limit m → ∞, we
can conclude that d(xn, x) ≤ vn. The usual notion of a Cauchy sequence describes when
a sequence converges. The above inequality tells when a sequence converges with a given
order of convergence. So, this inequality is a reasonable (algorithms-inspired) analogue of
the notion of a Cauchy sequence for convergence with a given order.

We consider the case when a rapidly decreasing sequence (like 2−n) not necessarily
converges to 0. To get 0, it is thus not sufficient to get a sequence of iterations: we may
need to use additional steps after infinitely many iterations. In mathematical terms, we
must use transfinite induction.

Now, we are ready for the formal definitions.

A2. GENERALIZED METRIC SPACES:
DEFINITIONS AND THE MAIN RESULT

A2.1. Definitions for the general case

Definition A1. By a semigroup, we mean a set V with an associative binary operation
+ : V × V → V . If + is also commutative, then a semigroup is called commutative, or
Abelian. A semigroup is called a semigroup with 0, if there exists an element 0 ∈ V such
that 0 + u = u for all u ∈ V .

Definition A2. By an ordered semigroup with 0, we mean a semigroup with 0, on which
there is an ordering < such that 0 ≤ v for all v ∈ V , and if v1 ≤ v2 and ṽ1 ≤ ṽ2, then
v1 + ṽ1 ≤ v2 + ṽ2.

Definition A3. Let V be an ordered Abelian semigroup with 0, and let M be an arbitrary
set. A generalized metric (or generalized distance) on M is a mapping d : M ×M → V
such that
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, z) + d(z, y).
A pair (M, d) of a set M and a distance d defined on M is called a generalized metric
space.

A2.2. Our set of values

Comment. In the following text, we will use the following set of values:

Definition A4. Let us denote by V the set of all expressions of the type 0 or 2−α, where
α is a countable ordinal (i.e., α < ω1, where ω1 denotes the first non-countable ordinal).
An order on V is defined as follows: 0 ≤ v for every v ∈ V , and 2−α < 2−β iff α > β. As
a semigroup operation +, we will use the maximum max(u, v).

A2.3. Convergence

Definition A5. Assume that α is either a countable ordinal or ω1, and v = {vβ}β<α is a
decreasing family of elements of V . Let M be a generalized metric space, and let {xβ}β<α

be a family of elements of M .



(i) A family {xβ} is said to v−cluster to x ∈ M if

∀β(β < α =⇒ d(xβ) < vβ).

(ii) A family {xβ} is said to be v−Cauchy if

∀β∀γ(β < γ < α =⇒ d(xβ , xγ) < vβ).

(iii) A generalized metric space M is said to be complete if for every v, every v−Cauchy
family v−clusters to some element of M .

(iv) A set A ⊆ M will be called complete if for every v, whenever an v−Cauchy family
consists of elements of A, it v− cluster to some element of A.

Comments.
1. Clustering is similar to convergence, but not exactly. The main difference is that if
a sequence converges to x, then this x is uniquely determined by this sequence, while a
family can cluster to different points. E.g., if we take vn = 2−n, and xn = 2−n, then xn

clusters to both 0 and 2−ω.

In the same sense, completeness of a subset A is similar to closeness.

2. For our set of values, only division by 2 makes sense (namely, (1/2) · 2−α = 2−(α+1)),
therefore, we can define contraction only for k = 1/2.

A2.4. Fixed point theorem for multi-valued mappings in a generalized metric
space

Definition 8′. Let’s say that a multi-values mapping T : M → 2M is a (1/2)−contraction
if for every x ∈ M , for every y ∈ M , and for every a ∈ T (x), there exists a b ∈ T (y) such
that d(a, b) ≤ (1/2)d(x, y).

FIXED POINT THEOREM FOR MULTI-VALUED CONTRACTIONS OF
GENERALIZED METRIC SPACES. Assume that M is a complete generalized met-
ric space, T is a multi-valued (1/2)−contraction on M such that T (x) is not empty for
some x ∈ M (i.e., T is not identically empty), and for every x ∈ M , the set T (x) is
complete. Then, T has a fixed point.

Proof. Since T is not identically empty, there exists an element x0 ∈ M such that
T (x0) 6= φ. Let’s choose an arbitrary element x1 ∈ T (x0). Since T is a (1/2)−contraction,
there exists an x2 ∈ T (x1) such that d(x1, x2) ≤ (1/2)d(x0, x1). We can apply the same
argument again, and thus step-by-step, we will contruct a sequence xn such that for every
n, we have xn+1 ∈ T (xn) and d(xn+1, xn+2) ≤ (1/2)d(xn, xn+1). Therefore, d(xn, xn+1) ≤
2−nd(x0, x1). Since d is an ultra-metric (i.e., triangle inequality is true for max instead of
+), we can conclude that for integers m and n, if m < n, then d(xm, xn) ≤ 2−md(x0, x1).

Let us now extend (using transfinite recursion) this sequence into a family {xβ}β<ω1

with the property that xβ+1 ∈ T (xβ), and if β < γ, then d(xβ , xγ) ≤ 2−βd(x0, x1) (here,
we define 2−β2−γ as 2−(γ+β)).



This transfinite recursion will run as follows. Assume that we have already described
xβ for all β < α. How to choose xα?

This construction will be different in three different cases:
1) when an ordinal α has at least two preceding ones (i.e., when α = γ + 1 for some γ);
2) when an ordinal α has only on preceding ordinal, i.e., when α = γ + 1 for a limit

ordinal γ;
3) when α is a limit ordinal itself.

1. Assume that α = γ + 2. Then, we have xγ and xγ+1 ∈ T (xγ) such that d(xγ , xγ+1) ≤
2−γd(x0, x1). Since T is a (1/2)−contraction, there exists an element xα ∈ T (xγ+1) for
which d(xα, xγ+1) ≤ (1/2)2−γd(x0, x1) = 2−(γ+1)d(x0, x1). Using triangle inequality, one
can easily check that when β < γ + 1, we have

d(xα, xβ) ≤ max(d(xα, xγ+1), d(xγ+1, xβ)) = max(2−(γ+1), 2−β) = 2β .

2. Suppose that xβ is constructed for all β < α, and α = γ + 1, where γ is a limit
ordinal. Then, for every β < γ, from d(xβ , xγ) ≤ 2−βd(x0, x1) and from the fact that T is
a (1/2)−contraction, we conclude that there exists a yβ ∈ T (xγ) such that d(yβ , xβ+1) ≤
2−(β+1)d(x0, x1).

From the ultrametric triangle inequality, we can now conclude that if β < δ,
then d(yβ , yδ) ≤ 2−(β+1)d(x0, x1). Therefore, for an appropriate v (namely, for vβ =
2−(β+1)d(x0, x1)), the family yβ is a v−Cauchy family. All values yβ belong to T (xγ). We
assumed that T (x) is complete for each x. Therefore, in T (xγ), there exists a value xα to
which the sequence yβ v−clusters, i.e., for which d(xα, yβ) ≤ 2−(β+1)d(x0, x1).

From the ultrametric triangle inequality, we can now conclude that d(xα, xβ+1) ≤
2−(β+1)d(x0, x1) for all β < γ.

From this inequality, we can conclude that d(xγ , xα) ≤ max(xα, xβ+1), d(xβ+1, xγ)) ≤
2−(β+1)d(x0, x1) for all β < γ. Since γ is a limit ordinal, we can thus conclude that
d(xγ , xα) ≤ 2−γd(x0, x1).

3. Assume that α is a limit ordinal, and that xβ are already constructed for all β < α.
Then, the family {xβ}β<α is v−Cauchy for vβ = 2−βd(x0, x1). Since M is complete, there
exists an x ∈ M to which xβ v−clusters, i.e., for which d(xβ , x) ≤ 2−βd(x0, x1) for all
β < α. So, we can take this x as the desired xα.

In all three cases, we have constructed xα with the desired property. Now, we have a
sequence xα for all α < ω1 such that if α < β, then d(xα, xβ) ≤ 2−αd(x0, x1). So, we have
a v−Cauchy sequence, and since M is complete, it v−clusters to some x ∈ M for which
d(xα, x) ≤ 2−αd(x0, x1). Let us prove that this x is the desired fixed point.

Indeed, for every α, from the facts that xα+1 ∈ T (xα) and that T is a
(1/2)−contraction, it follows that there exists a yα ∈ T (x) such that d(yα, xα+1) ≤
(1/2)d(x, yα) ≤ 2−(α+1)d(x0, x1). From triangle inequality, we can now conclude that



if β < α, then d(yα, yβ) ≤ 2−βd(x0, x1). So, yβ is a v−Cauchy family of elements of T (x).
Since T (x) is complete, there exists a y ∈ T (x) to which yα v−clusters, i.e., for which
d(y, yα) ≤ 2−αd(x0, x1).

Therefore, for every countable ordinal β,

d(x, y) ≤ max(d(x, xβ+1), d(xβ+1, yβ), d(yβ , y)) ≤ 2−βd(x0, x1).

According to our definition of V , the only value from V that is smaller than all values 2−β

is 0. So, d(x, y) = 0, hence x = y. Since y ∈ T (x), we thus conclude that x = y ∈ T (x),
i.e., that x is a fixed point of T . Q.E.D.

A3. THIS FIXED POINT THEOREM CAN BE APPLIED TO
LOCALLY STRATIFIED DISJUNCTIVE LOGIC PROGRAMS

THEOREM. Let Π be a locally stratified extended disjunctive logic program. Then Π has
an answer set.

Idea of the proof. Let Litα denote strata of Π. Define the generalized distance d on the
set M = 2Lit as follows:
• if A = B, then d(A, B) = 0;
• if A 6= B, then d(A, B) = 2−α, where α is the smallest ordinal for which

A ∪ Litα 6= B ∪ Litα.

Similarly to the proof of our Main Theorem, one can prove that thus defined general-
ized metric space is complete, and that the multi-valued mapping T (S) = α(ΠS) satisfies
the assumptions of the fixed point theorem. Therefore, T has a fixed point which is an
answer set to the program Π. Q.E.D.


