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Abstract

In this work, we discuss the compactness of convexity structures
in metric spaces. We also discuss a problem posed by Kirk on an
extension of Caristi’s calssical theorem.
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1 Introduction.

The classical fixed point theorems [1,6] involve an interplay between the geo-
metric structure of the underlying metric spaces and a compactness assump-
tion on the domain of the mapping. The compactness assumption is used to
insure the existence of minimal elements. The existence of such elements is
crucial to many fixed point theorems. That is why recently Buber and Kirk
[3] investigated the existence of minimal element which requires a weakened
form of compactness. In this work, we will prove that under the assumptions
of [3], we have in fact compactness and therefore Zorn’s Lemma applies. We
will also discuss a problem posed by Kirk [5] on a generalization of Caristi’s
classical fixed point theorem.

2 Basic definitions and results.

We begin by describing Penot’s framework [10]. Let (M, d) be a metric space.
We shall use B(a, r) to denote the closed ball centered at a ∈ M with radius
r ≥ 0.

Definition 1. Let F be a nonempty family of subsets of M . F is said to be
a convexity structure on M if F is stable by intersection and contains the
closed balls.

Examples :

(1) Let X be a Banach space and C a closed bounded convex subset of
X. Let F be the set of closed convex subsets of C. Then F defines a
convexity structure on C.

(2) Let M be the unit ball of l∞ and

F =

{⋂
i∈I

B(ai, ri); ai ∈ M and ri ≥ 0

}
.

Then F defines a convexity structure on M .
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The smallest convexity structure A(M) on M that contains the closed balls
is the family of admissible subsets of M . Recall that A ⊂ M is an admissible
set if A =

⋂
i∈I

B(ai, ri).

Let B be a bounded subset of M . Set

r(x, B) = sup{d(x, y); y ∈ B} for x ∈ M
diam(B) = sup{r(x, B); x ∈ B}
R(B) = inf{r(x, B); x ∈ B}

Definition 2. Let F be a convexity structure on M .

(i) We will say that F is normal if for any A ∈ F , not reduced to one
point, we have R(A) < diam(A).

(ii) We will say that F is uniformly normal if there exists c ∈ (0, 1) such
that for any A ∈ F , not reduced to one point, we have R(A) ≤
c diam(A).

A key assumption in the proof of classical fixed theorems in metric spaces,
is a compactness argument. The following definition originated in [10].

Definition 3. Let F be a convexity structure on M , and χ be an infinite
cardinal.

(i) F is said to be χ-compact if any family (Aα)α∈Γ of elements of F , with
card(Γ) ≤ χ, has a nonempty intersection provided

⋂
α∈F

Cα 6= ∅ for any

finite subset F ⊂ Γ.

(ii) F is said to be countably compact (resp. compact) if F is χ0-compact
(resp. χ-compact for any cardinal χ).

Note that since card{F ⊂ Γ; F is finite } = card(Γ), one can assume also
that the family (Cα)α∈Γ is decreasing and Γ is downward directed.

Recall that a mapping T : M → M is said to be nonexpansive if d
(
T (x), T (y)

)
≤

d(x, y) for all x, y in M . We will say that M has the fixed point property

if any nonexpansive self-map T defined on M , has a fixed point
(
i.e. there

exists x ∈ M such that T (x) = x
)
.
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3 Main result.

Main theorem. Let M be a bounded metric space and D be a dense subset
in M . Assume that card(D) ≤ χ and A(M) is χ-compact. Then A(M) is
in fact compact.

Let D = {xα}α∈Γ be such that card(Γ) ≤ χ, and let (Ai)i∈I be a decreasing
family of nonempty elements of A(M), where I is downward directed. Let
us prove that

⋂
i∈I

Ai 6= ∅.

Lemma. For every ε > 0, there exists Iε ⊂ I such that:

d(x, Ai) ≤ d(x, Aω) + ε, for every i ≥ k,

for all k ∈ Iε and x ∈ M , where Aω =
⋂
i∈Iε

Ai.

Proof of Lemma. Note λ(x) = sup{d(x, Ai); i ∈ I}. For any α ∈ Γ, there
exists i(α) ∈ I such that:

λ(xα)− ε ≤ d(x, Ai(α)) ≤ λ(xα).

Since card{i(α); α ∈ Γ} ≤ χ and F is χ-compact, then Aω =
⋂
α∈Γ

Ai(α) 6= ∅.

Let i ≥ k for all k ∈ Iε = {i(α); α ∈ Γ}. Then Ai ⊂ Ai(α) for all α ∈ Γ.
Hence Ai ⊂ Aω. Therefore,

d(xα, Ai) ≤ λ(xα) ≤ d(xα, Ai(α)) + ε ≤ d(xα, Aω) + ε ≤ d(xα, Ai) + ε.

Since {xα, α ∈ Γ} is dense in M and the function x → d(x, Ai) is uniformly
continuous, we get

d(x, Ai) ≤ d(x, Aω) + ε for every x ∈ M.♠

Proof of Main theorem. Let ε1 = 1 and consider Aω1 =
⋂
i∈I1

Ai given by

the lemma. Let also I1 = {i ∈ I; i ≥ k for all k ∈ I1}.
Case1. I1 = ∅. In this case, we have

⋂
i∈I

Ai =
⋂
i∈I1

Ai = Aω1 .

Case2. I1 6= ∅.
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Subcase 2.1 : If card(I1) ≤ χ, then
⋂

i∈I1

Ai 6= ∅. Therefore, we have

⋂
i∈I

Ai =
⋂

i∈I1

Ai 6= ∅.

Subcase 2.2 : If card(I1) > χ. Let ε2 = 1
2
, by the lemma, there exists

I2 ⊂ I1 such that:

d(x, Ai) ≤ d(x, Aω2) +
1

2
, for every i ≥ k,

for all k ∈ I2 and x ∈ M , where Aω2 =
⋂
i∈I2

Ai 6= ∅.

As above note I2 = {i ∈ I1; i ≥ k for all k ∈ I2}.
Case 1. I2 = ∅. Then

⋂
i∈I1

Ai =
⋂
i∈I2

Ai 6= ∅.

Case 2. I2 6= ∅. Then:

Subcase 2.1 : card (I2) ≤ χ, in this case, we have⋂
i∈I

Ai =
⋂

i∈I2

Ai 6= ∅,

Subcase 2.2 : otherwise if card (I2) > χ, let ε3 = 1
3

and repeat the
process.

Assume that I1, I1, I2, I2, ....., In, In are constructed. Then:

Case 1. card(In) ≤ χ, in this case
⋂
i∈I

Ai =
⋂

i∈In

Ai 6= ∅.

Case 2. card(In) > χ. Let εn+1 = 1
n+1

and consider Aωn+1 =
⋂

i∈In+1

Ai

given by the lemma with In+1 ⊂ In. Consider In+1 = {i ∈ In; i ≥
k for all k ∈ In+1}. If In+1 = ∅ then

⋂
i∈I

Ai =
⋂

i∈In+1

Ai, otherwise

In+1 6= ∅ and start over.
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If the process stops then
⋂
i∈I

Ai 6= ∅. If the process does not stop, then we

construct a sequence I1,I1, I2,I2,....,In,In,.... such that

(∗) dist(x, Ai) ≤ dist
(
x, Aωn

)
+

1

n
,

for any k ∈ In, i ≥ k and n ≥ 1. Note that Aωn+1 ⊂ Aωn since for any

i ∈ In+1, we have Ai ⊂
⋂

k∈In

Ak = Aωn . Let
⋂
n

Aωn = Aω. Since F is

χ-compact and χ ≥ χ0, then Aω is not empty. We claim that

Aω ⊂
⋂
i∈I

Ai.

Indeed, let i ∈ I. If there exists n ≥ 1 and k ∈ In such that i ≤ k, then
Aω ⊂ Aωn ⊂ Ak ⊂ Ai. Otherwise, assume that for any n ≥ 1 and any k ∈ In,
we have k ≤ i. Using (∗), we get

dist(x, Ai) ≤ dist
(
x, Aωn

)
+

1

n
,

for any x ∈ M and n ≥ 1. In particular, we have

dist(x, Ai) ≤ dist
(
x, Aω

)
+

1

n
,

which implies dist(x, Ai) ≤ dist
(
x, Aω

)
for every x ∈ M . Therefore, if

x ∈ Aω, then dist(x, Ai) ≤ 0, which implies that x ∈ Ai. Hence, we have

Aω ⊂ Ai.

Our claim is therefore proved which completes the proof.♠

As a corollary, we get Buber and Kirk’s result [3].

Corollary 4. Let M be a separable metric space for which A(M) is count-
ably compact. Then A(M) has minimal elements.

Recall the classical Kirk’s fixed point theorem [8].
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Theorem [8]. Let M be a bounded metric space. Assume A(M) is compact
and normal. Then M has the fixed point property.

The original proof is based on the existence of minimal elements in A(M).
Kirk [9] extended this result to metric spaces for which A(M) is countably
compact and normal. The proof is constructive and does not use Zorn’s
lemma. Recall that in [7], it is proved that if A(M) is uniformly normal,
then it is countably compact. It is still unknown whether these assumptions
imply compactness.

The next result deals with a question that was asked by Kirk [5] on
Caristi’s classical fixed point theorem [4]. Recall that this theorem states
that any map T : M → M defined on a complete metric space has a fixed
point provided that there exists a lower semi-continuous map φ mapping M
into the nonnegative real numbers such that

d(x, T (x)) ≤ φ(x)− φ(T (x)), for every x ∈ M.

Before we discuss Kirk’s problem, let us start by giving some basic definitions
regarding this problem. Let φ : M → [0,∞) be a map. Define the order ≺φ

[2] on M by
x ≺φ y iff d(x, y) ≤ φ(y)− φ(x),

for any x, y in M . It is straightforward that (M,≺φ) is indeed an ordered
set. However, it is not clear what are the minimal assumptions on M and φ
which oblige (M,≺φ) to have minimal elements. As a matter of fact, if a is
a minimal element in (M,≺φ) and T : M → M is any map which satisfies

(C) d(x, T (x)) ≤ φ(x)− φ(T (x)), for all x ∈ M,

then T (a) = a, i.e a is a fixed point of T . Caristi [4] noticed that if M is
complete and φ is lower semi-continuous, then (M,≺φ) satisfies the assump-
tions of Zorn’s Lemma and therefore has minimal elements. In attempting
to improve Caristi’s result, Kirk has raised the question of whether a map
T : M → M which satisfies

(K) d(x, Tx)p ≤ φ(x)− φ(Tx), for all x ∈ M,
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for some p > 1, has a fixed point. We answer this question by the negative.
Indeed, let M = {xn ; n ≥ 1} ⊂ [0,∞) be defined by

xn = 1 +
1

2
+

1

3
+ ... +

1

n
,

for all n ≥ 1. Then M is a closed subset of [0,∞) and therefore is complete.
Define T : M → M by Txn = xn+1 for all n ≥ 1. Then,

d(x, Tx)p =
1

(n + 1)p
= φ(x)− φ(Tx),

where φ(xn) =
∑

n+1≤i

1

ip
, for all n ≥ 1. It is easy to see that φ is lower semi-

continuous. Furthermore one can also show that T is nonexpansive and fails
to have a fixed point.
It is commonly known that any contraction map T : M → M

(
i.e d(Tx, Ty) ≤

k d(x, y) with k ∈ (0, 1), and more generally any map T which satifies for
any x ∈ M

d(T 2(x), T (x)) ≤ kd(x, Tx) with k ∈ (0, 1)
)

satisfies (C) with φ(x) = 1
1−k

d(x, Tx). Clearly one can deduce that, in this
case, φ(Tx) ≤ kφ(x) for all x ∈ M . More generally, let T be a selfmap
defined on a complete metric space M which satisfies (K) and such that

φ(Tx) ≤ kφ(x) holds with k ∈ (0, 1). Then the Picard iterates
(
T n(x)

)
(for

any x ∈ M) converges to a fixed point. Indeed, one can easily show that

T satisfies (C) where the new function φ′ is defined by φ′(x) = Kφ
1
p (x) for

every x ∈ M , where K is a constant. So for any x ∈ M (T n(x)) is a Cauchy
sequence, which converges to a ∈ M . Clearly φ(a) ≤ lim inf φ(T n(x)). And
since φ(T n(x)) ≤ knφ(x), we obtain φ(a) = 0. This obviously implies that
d(a, Ta)p = 0, i.e Ta = a.

In all the previous results, the main question was about the existence of
minimal elements in ordered sets. Although in many instances this can be
insured by applying Zorn’s Lemma, it is well known that there exists ordered
sets with minimal elements but fails to satisfy the assumptions of Zorn’s
Lemma. Therefore a natural question is to characterize ordered set in which
the existence of a minimal element is insured. The following theorem answers
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this question.

Theorem 5. Let (A,≺) be a partially ordered set. Then the following state-
ments are equivalent.

(1) A contains a minimal element,

(2) Any set valued map T defined on A which satisfies

x ∈ A and y ∈ T (x) =⇒ y ≺ x ,

has a fixed point, i.e there exists a in A such that a ∈ Ta.

Proof. (1) ⇒ (2) Obviously any minimal element is fixed by T . We complete
the proof of Theorem 1 by showing that (2) ⇒ (1). Assume that A fails to
have a minimal element. Define the set valued map T on A by

T (x) = {y ∈ A; y ≺ x with y 6= x},

for any x ∈ A. Clearly our assumption on A implies that T (x) is not empty
for any x ∈ A. (2) will imply that T has a fixed point a ∈ A. Contradiction
with the definition of T .
So, the proof of Theorem 5 is complete. ♠

Remark. Recall that in [11], it is proved that Zorn’s Lemma is equivalent
to:

Let F be a family of selfmappings defined on a partially ordered set
such that x ≤ f(x) (resp. f(x) ≤ x), for all x ∈ A and all f ∈ F .
If each chain in A has an upper bound (resp. lower bound), then the
family F has a common fixed point.
As it was noted to us by the referee, Taskovic’s proof is not correct since
it uses the axiom of choice (see the review of paper [11] in Mathematical
Reviews) but the conclusion is still true.

The authors would like to thank the referee for pointing out that the proof
of the main theorem can be easily derived using a Lindelof argument. The
technical proof given in this work can be of some interest to people working
in modular spaces (see [12,13,14,15,16]). Since this proof can be adapted in
this setting but not the Lindelof argument.
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