Note on a fixed point theorem in Banach lattices.

Mohamed Amine Khamsi Department of Mathematical Sciences The University of Texas at El Paso El Paso, Texas 79968-0514, U.S.A.

Abstract

In this note we give the complete and detailed proof of Lemma 1 of [1]. We also discuss a counterexample that was suggested for this lemma.

1 Definitions and Main results

Let E be a real Banach space endowed with a lattice structure satisfying

$$(x^+ \le y^+ \text{ and } x^- \le y^-) \Longrightarrow ||x|| \le ||y||$$

for all $x, y \in E$.

Let τ be the coarsest topology on E for which the map $x \to || |x| \wedge u ||$ from E to R+ is continuous at 0 for every $u \in E_+$.

Example. Let E be a real Banach space endowed with an unconditional Schauder basis (e_n) . Then E is a vector lattice for the "coordinatewise order" defined by

$$\sum x_n e_n \le \sum y_n e_n$$
 when $x_n \le y_n$

for n = 0, 1, 2. The topology τ is the topology of coordinatewise convergence.

It is easy to see that, in general, τ is a Hausdorff linear topology coarser than the topology defined by the norm. Furthermore we have the following result.

<u>Proposition.</u> Every convex τ -compact subset C of E is norm-bounded. <u>Proof.</u> We will prove a stronger result. Indeed, let θ be a Hausdorff linear topology on E coarser than the topology defined by the norm and C be a nonempty θ -compact convex subset of E. Let us show that C is norm-bounded.

Let E_C be the linear subspace spanned by C, i.e $E_C = \bigcup t(C-C); t > 0$. Define

$$||x||_C = \inf\{t > 0; x \in t(C - C)\}$$

for $x \in E_C$. Clearly $||.||_C$ is a norm on E_C since C - C is θ -compact. Let us show that $(E_C, ||.||_C)$ is a Banach space. So consider (x_n) to be a cauchy sequence in $(E_C, ||.||_C)$. Since $\sup ||x_n||_C < \infty$ then the θ -closure of $\{x_n; n \in N\}$ is θ -compact. Therefore, there exists $x \in E$ a θ -cluster point of (x_n) . Let $\epsilon > 0$ because (x_n) is cauchy there exists $n_0 \in N$ such that

$$x_n - x_m \in \epsilon(C - C)$$
 for $n, m \ge n_0$.

Since $x - x_m$ is a θ -cluster point of $(x_n - x_m)_n$ we deduce that

$$x - x_m \in \epsilon(C - C)$$
 for $m \ge n_0$

because $\epsilon(C-C)$ is θ -closed. Therefore $x \in E_C$ and $||x-x_m||_C \leq \epsilon$ for all $m \geq n_0$, i.e. (x_n) converges to x in $(E_C, ||.||_C)$.

Following the same idea one can easily show that the graph of the canonical injection $i_C : E_C \to E$ is closed in $(E_C, ||.||_C) \times (E, \theta)$. A fortiori it is also closed in $(E_C, ||.||_C) \times (E, \theta)$. Therefore $i_C : (E_C, ||.||_C) \to (E, ||.||)$ is continuous. This clearly implies that C - C, and therefore C, is bounded. The proof of our claim is therefore complete.

<u>Remark.</u> It was suggested as counterexample to Lemma 1, the following:

Let E be a Banach space with (e_n) as Schauder basis. Consider the closed convex hull C of $\{0, e_1, 2e_2, ..., ne_n, ..\}$. Then C is compact for the pointwise topology but it is not bounded!.

First, we give an example when this situation does not occur. Indeed, let E and C be as described above and $\sum \lambda_n$ be a convergent series of positive numbers. Put

$$x_n = \sum_{i=1}^{i=n} \lambda_i ie_i \text{ for all } n \in N.$$

Then $x_n \in C$ for all $n \in N$. Assume that (x_n) has a subsequence which is converging pointwise. Then the limit point should be $x = \sum_{n=1}^{\infty} \lambda_n n e_n$. So one should have $\lim_n n \lambda_n = 0$ because x would be in E. To see that this can fail to happen one can take

$$\lambda_n = k^{-3}$$
 for $n = k^4$ and 0 otherwise.

Then $\sum_{n} \lambda_n < \infty$ and $\limsup n\lambda_n = \infty$.

the mystake in the counterexample described above is that the convex hull C is compact in \mathbb{R}^N the space of all real sequences, which is strictly bigger than E.

References

 M. A. Khamsi and Ph. Turpin, "Fixed points of nonexpansive mappings in Banach lattices", Proc. Amer. Math. Soc., Volume 105(1989), 102-110.