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Abstract

In this paper, we introduce and study one-local retract of metric
spaces. In particular we prove that any commutative family of non-
expansive mappings defined on a metric space with a compact and
normal convexity structure has a common fixed point. This conclu-
sion was known in Banach spaces with no similar result in metric
spaces.
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1 Introduction

A mapping T defined in metric space (M, d) is said to be nonexpansive if
d(T (x), T (y)) ≤ d(x, y) for every x, y in M . For such mapping we will denote
by Fix(T ) the set of its fixed points, i.e. Fix(T ) = {x ∈ M ; T (x) = x}.
An extensive fixed point theory exists for such mappings, most of which
is couched within Banach space framework. Within that framework, many
results involve geometrical structure properties and compactness of the do-
main in some topology which is weaker than the norm topology, usually
the weak topology itself (for other topologies see [7]). From the beginning,
it was natural to ask whether Kirk’s conclusion holds for any commutative
family of nonexpansive mappings. The first positive attempt was based on
the introduction of complete normal structure property [3]. Later on Lim
[11] noticed that in Banach spaces, normal structure property and complete
normal structure property are equivalent.

The search for similar fixed results in metric spaces was extensive and
exiting. Penot [12] was the first to give a correct formulation of Kirk’s re-
sult in metric spaces. Under this formulation, it was natural to ask whether
Kirk’s conclusion holds for any commutative family of nonexpansive map-
pings. Since Lim’s ideas are purely linear, this problem remained open for
many years.

Inspired by Baillon’s [2] result on hyperconvex metric spaces, we introduce
1-local retract of metric spaces. The investigation of this new concept led
to the proof of the stated open question, i.e. any commutative family of
nonexpansive mappings defined on a metric space with a compact and normal
convexity structure has a common fixed point.

This work forms a part of the author’s Ph.D dissertation [6] which was
never published. I wish to thank Professor M. Pouzet with whom we had
wonderful discussions regarding this work. It is worth to mention that the
notion of 1-local retract is due to him.

2 Basic definitions and results

We begin by describing Penot’s framework. Let (M, d) be a metric space.
B(x, r) will stand for the closed ball centered at x ∈ M with radius r ≥ 0.
For a bounded subset A ⊂ M , we set
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rx(A) = sup{d(x, a); a ∈ A}, x ∈ M ,

r(A) = inf{ra(A); a ∈ A},

δ(A) = diam(A) = sup{ra(A); a ∈ A} = sup{d(x, y); x, y ∈
A},

C(A) = {a ∈ A; ra(A) = r(A)}.

For a bounded subset A of M set

cov(A) =
⋂
{B(x, r); x ∈ M A ⊂ B(x, r)}.

We will say that A is an admissible set if and only if A = cov(A), i.e. A is
an intersection of closed balls. The family of all admissible subsets of M will
be denoted by A(M).

A family F ⊂ 2M is called a convexity structure [12] if

(i) ∅, M ∈ F ,

(ii) {x} ∈ F for every x ∈ M ,

(iii) F is closed under arbitrary intersections.

Following [12], we will say that a convexity structure F of M , is compact
(resp. countably compact) if each descending chain (resp. sequence) of
nonempty sets in F has nonempty intersection. In this work, we will al-
ways assume that closed balls are in any convexity structure. Note that in
this case, the smallest convexity structure is the family A(M) of admissible
subsets of M . It is easy to see that if A(M) is countably compact then (M, d)
is complete.

The fundamental existence theorem [9] requires one additional assumption:
a convexity structure F is said to be normal if for each A ∈ F we have either
δ(A) = 0 or r(A) < δ(A).

Theorem 1.(Kirk [9], Penot [12]). Let (M, d) be a nonempty bounded met-
ric space that possesses a convexity structure F which is compact and normal.
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Then every nonexpansive mapping T : M → M has a fixed point.

The original proof requires the use of Zorn’s lemma which explains why
the compactness of F is assumed. Other constructive proofs [10] are known
which only require F to be countably compact. In this work, we will not
discuss these ideas. Interested readers can refer to [4]. For more on fixed
point property see [1,5].

For the rest of this work, we will need the following technical result.

Proposition 2. Let (M, d) be a nonempty metric space and A be a
nonempty bounded subset of M . Then we have

(1) cov(A) =
⋂{B(x, rx(A)); x ∈ M}

(2) rx(A) = rx(cov(A)) for every x ∈ M

(3) r(cov(A)) ≤ r(A)

(4) δ(cov(A)) = δ(A).

Proof. (1) Since B(x, rx(A)) is the smallest ball centered at x which
contains A, we get the conclusion of (1).

(2) Let x be in M . Then since A ⊂ cov(A), we get rx(A) ≤ rx(cov(A)).
On the other hand from (1) we have cov(A) ⊂ B(x, rx(A)). Hence we have
rx(cov(A)) ≤ rx(A). The proof of (2) is therefore complete.

(3) Obvious from the definition of r and (2).

(4) Because A ⊂ cov(A) it is enough to prove that δ(cov(A)) ≤ δ(A). Let
z ∈ cov(A). Using (1), we get d(x, z) ≤ rx(A) for every x ∈ M . Hence
d(a, z) ≤ ra(A) ≤ δ(A) for every a ∈ A. Therefore, we have A ⊂ B(z, δ(A))
which implies cov(A) ⊂ B(z, δ(A)). Hence for every w ∈ cov(A) we have
d(w, z) ≤ δ(A). This clearly implies δ(cov(A)) ≤ δ(A).

The proof of Proposition 2 is therefore complete.
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Note that in general, the set C(A), for A ∈ F not reduced to one point,
may be empty. Assume that F is compact, then C(A) is not empty and
belongs to F . Indeed, using the definition of r(A), for every n > 1, there
exists x ∈ A such that rx(A) ≤ r(A) + 1/n. This clearly implies that An =⋂
a∈A

B
(
a, r(A) +

1

n

)
is not empty (x ∈ An). It is obvious that An ∈ F for

every n and the sequence (An) is decreasing. Compactness of F implies that

C(A) =
⋂
n≥1

⋂
a∈A

B
(
a, r(A) +

1

n

)
=

⋂
n≥1

An

is not empty and belongs to F .

3 One-local retract

From now on, we only consider the convexity structure of admissible subsets
A(M) for any metric space. With minor modification one can easily extend
the results to arbitrary convexity structures. A subset A of M is said to be
a 1-local retract of M if for every family {Bi; i ∈ I} of closed balls centered
in A with nonempty intersection, it is the case that A ∩ ( ∩ Bi) 6= ∅. It is
immediate that each nonexpansive retract of M is a 1-local retract (but not
conversely). Recall that A ⊂ M is a nonexpansive retract of M if there exists
a nonexpansive map r : M → A such that r(a) = a for every a ∈ A.

The following theorem will throw some light on this notion.

Theorem 3. Let (M, d) be a nonempty metric space and N be a nonempty
subset of M . The following are equivalent.

(i) N is a 1-local retract of M .

(ii) N is a nonexpansive retract of N ∪ {x}, for every x ∈ M .

(iii) Let H be a metric space and T : N → H be a Lipschitzian map, i.e.
there exists α ≥ 0 such that dH(T (a), T (b)) ≤ α dM(a, b), for every
a, b ∈ N , where dH and dM stand respectively for the distances on
H and M . Then, for every x ∈ M , there exists an extension T ∗ :
N ∪ {x} → H, such that dH(T ∗(a), T ∗(b)) ≤ α dM(a, b), for every
a, b ∈ N ∪ {x} and T ∗(a) = T (a) for every a ∈ N .
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Proof. (i) ⇒ (ii) Let x ∈ M . We may assume that x 6∈ N . In or-
der to construct a nonexpansive retract r : N ∪ {x} → N , we only need
to find r(x) ∈ N such that d(a, r(x)) ≤ d(a, x), for every a ∈ N . Since
x ∈

⋂
a∈N

B(a, d(a, x)) in M , then
⋂

a∈N

B(a, d(a, x)) 6= ∅. Therefore we have

N
⋂ ⋂

a∈N

B(a, d(a, x)) 6= ∅ because N is a 1-local retract of M . Then any

point in N
⋂ ⋂

a∈N

B(a, d(a, x)) will work as r(x).

(ii) ⇒ (iii) Let x ∈ M , H be a metric space and T : N → H be a Lip-
schitzian map such that dH(T (a), T (b)) ≤ α dM(a, b), for every a, b ∈ N ,
for some α ≥ 0. Define T ∗ : N ∪ {x} → H by T ∗(a) = T (r(a)) for every
a ∈ N ∪ {x}, where r is a nonexpansive retract from N ∪ {x} into N . T ∗

satisfies the conclusion of (ii).

(iii) ⇒ (ii) Take H = N and T = idN the identity map of N .

(ii) ⇒ (i) In order to prove that N is a 1-local retract, let (Bi)i∈I be a family
of closed balls of M centered in N such that

⋂
i∈I

Bi 6= ∅. We need to prove

that N
⋂ ⋂

i∈I

Bi 6= ∅. Let x ∈
⋂
i∈I

Bi. If x ∈ N , we have nothing to prove.

Assume that x 6∈ N . Let r be a nonexpansive retract from N ∪ {x} into N .
Then it is easy to see that r(x) ∈ N

⋂ ⋂
i∈I

Bi.

The proof of Theorem 3 is therefore complete.

We have the following technical lemma.

Lemma 4. Let (M, d) be a nonempty metric space and N be a nonempty
1-local retract of M . Then we have

r(cov(A)) = r(A)

for every A ∈ A(N).

Proof. Assume that A is not reduced to one point. According to Propo-
sition 2, we have r(cov(A)) ≤ r(A). Let us prove that r(A) ≤ r(cov(A)).
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Since A ∈ A(N), then A = N
⋂ ⋂

i∈I

Bi, where (Bi)i∈I is a family of closed

balls of M centered in N . Let z ∈ cov(A). Set m = rz(cov(A)). Then z
belongs to S =

⋂
a∈A

B(a, m)
⋂ ⋂

i∈I

Bi. Since N is a 1-local retract of M , then

N ∩ S is not empty. Let a ∈ N ∩ S. Clearly we have A ⊂ B(a, m). Then
ra(A) ≤ m. Therefore r(A) ≤ m = rz(cov(A)). Since z was arbitrary in
cov(A), we get r(A) ≤ r(cov(A)). The proof of Lemma 4 is complete.

It is not very hard to see that compactness and normality of A(M) is not
hereditary to A(N), where N ⊂ M .

Theorem 5. Let (M, d) be a nonempty metric space and N be a nonempty
subset 1-local retract of M . Assume that A(M) is compact and normal. Then
A(N) is compact and normal.

Proof. The definition of 1-local retracts implies obviously that A(N) is com-
pact. Let us prove that A(N) is normal. Choose A ∈ A(N) not reduced to
one point. By Proposition 2, we have δ(cov(A)) = δ(A) and by Lemma 4 we
have r(cov(A)) = r(A). Since A(M) is normal and cov(A) ∈ A(M), then
r(cov(A)) < δ(cov(A)). Hence we have r(A) < δ(A). The proof of Theorem
5 is therefore complete.

The following theorem is the main result of this work. The idea of the
proof was inspired from [2].

Theorem 6. Let (M, d) be a nonempty metric space for which A(M) is
compact and normal. Let (Mβ)β∈Γ be a decreasing family of 1-local retracts
of M , where Γ is totally ordered. Then

⋂
β∈Γ

Mβ is not empty and is a 1-local

retract of M .

Proof. Consider the family

F = {A = Πβ∈ΓAβ ; Aβ ∈ A(Mβ) and (Aβ) is decreasing }.

F is not empty since Πβ∈ΓMβ ∈ F . From Theorem 5, we know that A(Mβ)
is compact, for every β ∈ Γ. Therefore, F satisfies the assumptions of Zorn’s
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lemma. Hence for every D ∈ F , there exists a minimal element A ∈ F such
that A ⊂ D. We claim that if A = Πβ∈ΓAβ is minimal, then there exists
β0 ∈ Γ such that δ(Aβ) = 0 for every β ≥ β0. Indeed, let A = Πβ∈ΓAβ be a
minimal element of F . Fix β ∈ Γ. For every D ⊂ M , set

covβ(D) =
⋂

x∈Mβ

B(x, rx(D)).

Consider A′ = Πα∈ΓA′
α where

A′
α = covβ(Aβ) ∩ Aα if α ≤ β

A′
α = Aα if α ≥ β

The family (A′
α≥β) is decreasing since A ∈ F . Let α ≤ γ ≤ β. Then

A′
γ ⊂ A′

α since Aγ ⊂ Aα and Aβ = covβ(Aβ) ∩ Aβ. Hence the family (A′
α)

is decreasing. On the other hand if α ≤ β, then covβ(Aβ) ∩ Aα ∈ A(Mα)
since Mβ ⊂ Mα. Hence A′

α ∈ A(Mα). Therefore, we have A′ ∈ F . Since A
is minimal, then A = A′ which implies

Aα = covβ(Aβ) ∩ Aα, for every α ≤ β .

Let x ∈ Mβ and α ≤ β. Since Aβ ⊂ Aα, then rx(Aβ) ≤ rx(Aα). Because
covβ(Aβ) =

⋂
x′∈Mβ

B(x′, rx′(Aβ), then we have covβ(Aβ) ⊂ B(x, rx(Aβ) which

implies rx(covβ(Aβ) ≤ rx(Aα). Since Aα ⊂ covβ(Aβ), then

rx(Aβ) ≤ rx(Aα) ≤ rx(covβ(Aβ)) ≤ rx(Aβ).

Therefore, we have rx(Aα) = rx(Aβ) for every x ∈ Mβ. Using the definition
of r, we get

r(Aα) ≤ r(Aβ).

Let a ∈ Aα and set s = ra(Aα). Then a ∈ covβ(Aβ) since Aα ⊂ covβ(Aβ).
Hence a ∈

⋂
x∈Aβ

B(x, s)
⋂

covβ(Aβ). Since Mβ is a 1-local retract, then

Sβ = Mβ

⋂ ⋂
x∈Aβ

B(x, s)
⋂

covβ(Aβ) 6= ∅.
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Since Aβ = Mβ

⋂
covβ(Aβ), then we have

Sβ = Aβ

⋂ ⋂
x∈Aβ

B(x, s).

Let z ∈ Sβ, then z ∈
⋂

x∈Aβ

B(x, s). Hence rz(Aβ) ≤ s which implies r(Aβ) ≤

s = ra(Aα), for every a ∈ Aα. Hence r(Aβ) ≤ r(Aα). Therefore we have

r(Aβ) = r(Aα), for every α and β in Γ.

Assume that δ(Aβ) > 0 for every β ∈ Γ. Set A′′
β = C(Aβ) for every β ∈

Γ. Since r(Aβ) = r(Aα), for every α and β in Γ, then the family (A′′
β) is

decreasing. Indeed, let α ≤ β and x ∈ A′′
β. Then we have rx(Aβ) = r(Aβ).

Since we proved that rz(Aβ) = rz(Aα) for every z ∈ Mβ, then

rx(Aα) = rx(Aβ) = r(Aβ) = r(Aα),

which implies that x ∈ A′′
α. Therefore, we have A′′ = Πβ∈ΓA′′

β ∈ F . Since
A′′ ⊂ A and A is minimal, we get A = A′′. Therefore, we have C(Aβ) = Aβ

for every β ∈ Γ. This contradicts the fact that A(Mβ) is normal for every
β ∈ Γ. Hence there exists β0 ∈ Γ such that

δ(Aβ) = 0, for every β ≥ β0.

The proof of our claim is therefore complete. Then we have Aβ = {a}, for
every β ≥ β0. This clearly implies that

a ∈
⋂
β∈Γ

Mβ 6= ∅.

In order to complete the proof, we need to show that S =
⋂
β∈Γ

Mβ is a 1-local

retract of M . Let (Bi)i∈I be a family of closed balls centered in S such that⋂
i∈I

Bi 6= ∅. Set Dβ =
⋂
i∈I

Bi

⋂
Mβ for β ∈ Γ. Since Mβ is a 1-local retract

of M , and the family (Bi) is centered in Mβ, then Dβ is not empty and
Dβ ∈ A(Mβ). Therefore, D = ΠDβ ∈ F . Let A = ΠAβ ⊂ D be a minimal
element of F . The above proof shows that

∅ 6=
⋂
β∈Γ

Aβ ⊂
⋂
β∈Γ

Dβ.
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The proof of Theorem 6 is therefore complete.

Remark. From Theorem 6, one can deduce that any decreasing fam-
ily (Mβ)β∈Γ of 1-local retracts of M , where Γ is downward directed, has a
nonempty intersection which is a 1-local retract of M .

4 Main fixed point theorem

As we mentioned in the introduction, it was unknown whether a bounded
metric space with a compact and normal convexity structure enjoys the fixed
point property for any commutative family of nonexpansive mappings.

Before we get to the main result of this work, let us note that under the
assumptions of Theorem 1, the fixed point set of a nonexpansive mapping is
a 1-local retract of M . Indeed, let T : M → M be a nonexpansive map. We
know that Fix(T ) is not empty. Let (Bi)ji∈I be a family of closed balls cen-
tered in Fix(T ) with a nonempty intersection. Since T is nonexpansive, then
S =

⋂
i∈I

Bi is T -invariant, i.e. T (S) ⊂ S. The set S belongs to A(M), which

implies that A(S) is compact and normal. Therefore by Theorem 1, T has
a fixed point in S, i.e. S∩Fix(T ) 6= ∅. This completes the proof of our claim.

The next results discuss the existence of fixed points of commutative fam-
ily of nonexpansive mappings and the structure of their common fixed point
set.

Theorem 7. Let (M, d) be a nonempty bounded metric space such that
A(M) is compact and normal. Then any finite commuting family of non-
expansive mappings T1, T2, .., Tn, Ti : M → M , has a common fixed point.
Moreover if we denote by Fix((Ti)) the set of the common fixed points,i.e.
Fix((Ti)) = {x ∈ M ; Ti(x) = x i = 1, .., n}, then Fix((Ti)) is a 1-local
retract of M .

Proof. First let us prove that F = Fix((Ti)) is not empty. Using Theo-
rem 1, we know that Fix(T1) is not empty. Since Fix(T1) is a 1-local retract
of M , then Theorem 5 implies that A(Fix(T1)) is compact and normal. On
the other hand, we have T2(Fix(T1)) ⊂ Fix(T1) because T1 and T2 commute.
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Hence T2 has a fixed point in Fix(T1). If we restrict ourselves to Fix(T1, T2),
the common fixed point set of T1 and T2, then one can prove in an identical
argument that T3 has a fixed point in Fix(T1, T2). Step by step, we can
prove that the common fixed point set F of T1, .., Tn is not empty. The same
argument used to prove that the fixed point set of a nonexpansive map is a
1-local retract, can be reproduced here to prove that F is a 1-local retract.
The proof of Theorem 7 is therefore complete.

Now we are ready to prove the main result of this work.

Theorem 8. Let (M, d) be a nonempty bounded metric space such that
A(M) is compact and normal. Then any commuting family of nonexpansive
mappings (Ti)i∈I , Ti : M → M , has a common fixed point. Moreover if we
denote by Fix((Ti)) the set of the common fixed points, then Fix((Ti)) is a
1-local retract of M .

Proof. Let Γ = 2I = {β; β ⊂ I}. It is obvious that Γ is downward
directed (the order on Γ is the set inclusion). Theorem 7 implies that for
every β ∈ Γ, the set Fβ of common fixed point set of the mappings Ti, i ∈ β,
is a nonempty 1-local retract of M . Clearly the family (Fβ)β∈Γ is decreasing.
Using the remark following Theorem 6, we deduce that

⋂
β∈Γ

Fβ is nonempty

and is a 1-local retract of M . The proof of Theorem 8 is complete.

Note that Kijima and Takahashi [8] proved a similar conclusion provided
M is a compact metric space and A(M) is normal.
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