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1. Introduction

Let (M,d) be a metric space. A mapping T : M → M is said to be quasicontraction if there
exists k < 1 such that

d
(
T(x), T(y)

) ≤ kmax
(
d(x, y); d

(
x, T(x)

)
; d

(
y, T(y)

)
; d

(
x, T(y)

)
; d

(
y, T(x)

))
, (1.1)

for any x, y ∈ M. In 1974, Ćirić [1] introduced these mappings and proved an existence fixed
point result very similar to the original Banach contraction fixed point theorem. Recently, the
authors [2] tried to extend their ideas to modular spaces. Though their conclusions are very
similar to Ćirić’s results proved inmetric spaces, theywere unable to escape theΔ2-condition.
They also asked whether Ćirić’s results may be proved in the modular setting without the
very restrictive Δ2-condition. In this work, we give a proof in the affirmative.

Recall that modular spaces were initiated by Nakano in 1950 [3] in connection with
the theory of order spaces and redefined and generalized by Luxemburg [4–13] and Orlicz in
1959. These spaces were developed following the successful theory of Orlicz spaces, which
replaces the particular, integral form of the nonlinear functional, which controls the growth
of members of the space, by an abstractly given functional with some good properties.
The monographic exposition of the theory of Orlicz spaces may be found in the book of
Krasnosel’skii and Rutickii [14]. For a current review of the theory of Musielak-Orlicz spaces
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and modular spaces, the reader is referred to the books of Musielak and Orlicz [15] and
Kozłowski [16].

For more information on fixed point theory in modular spaces, the reader is advised
to consult [16–19], and the references therein.

2. Preliminaries

Let X be a vector space over R (or C). A functional ρ : X → [0,∞] is called a modular, if for
arbitrary f and g, elements ofX, there hold the following:

(1) ρ(f) = 0 if and only if f = 0;

(2) ρ(αf) = ρ(f)whenever |α| = 1;

(3) ρ(αf + βg) ≤ ρ(f) + ρ(g)whenever α, β ≥ 0 and α + β = 1.

If we replace (3) by

(3′) ρ(αf + βg) ≤ αρ(f) + βρ(g)whenever α, β ≥ 0 and α + β = 1,

then the modular ρ is called convex. If ρ is a modular in X, then the set defined by

Xρ =
{
h ∈ X; lim

λ→0
ρ(λh) = 0

}
(2.1)

is called a modular space. Xρ is a vector subspace of X.

Definition 2.1. A function modular is said to satisfy theΔ2-type condition if there existsK > 0
such that for any f ∈ Xρ one has ρ(2f) ≤ Kρ(f).

Definition 2.2. Let (X, ρ) be a modular space.

(1) The sequence {fn}n ⊂ Xρ is said to be ρ-convergent to f ∈ Xρ if

ρ(fn − f) −→ 0, (2.2)

as n → ∞.

(2) The sequence {fn}n ⊂ Xρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n and m go
to∞.

(3) A subset C of Xρ is called ρ-closed if the ρ-limit of a ρ-convergent sequence of C
always belongs to C.

(4) A subsetC ofXρ is called ρ-complete if any ρ-Cauchy sequence inC is ρ-convergent
and its ρ-limit is in C.

(5) A subset C ofXρ is called ρ-bounded if

δρ(C) = sup
{
ρ(f − g); f, g ∈ C

}
< ∞. (2.3)

The above definitions are independent of any Δ2-type conditions. In fact it is well
known in the literature that many characterizations of Δ2-condition involving (2)–(4) and
vector topologies defined on Xρ.

The following property is crucial throughout this paper.
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Definition 2.3. The modular ρ has the Fatou property if and only ρ(f) ≤ lim infn→∞ρ(fn)
whenever {fn} ρ-converges to f .

Note that ρ has the Fatou property if and only if the ρ-ballBρ(f, r) = {g ∈ Xρ; ρ(f−g) ≤
r} is ρ-closed, for any f ∈ Xρ and r ≥ 0.

Example 2.4. As a classical example, we consider the Orlicz’ modular defined for every
measurable real function f by the formula

ρ(f) =
∫

R

ϕ
(∣∣f(t)

∣
∣)dm(t), (2.4)

where m denotes the Lebesgue measure in R and ϕ : R → [0,∞) is continuous, ϕ(0) = 0
and ϕ(t) → ∞ as t → ∞. The modular space induced by the Orlicz’ modular ρϕ is called
the Orlicz space Lϕ. If we take ϕ(x) = ex − 1, then ρϕ does not satisfy the Δ2-condition. The
ρϕ-balls Bρϕ(f, r) are ρϕ-closed, and Lϕ is ρϕ-complete. For more on this example, the reader
may consult [16, 20].

3. A fixed point theorem

Similarly to Ćirić definition, we introduce the concept of quasicontractions inmodular spaces.

Definition 3.1. Let (X, ρ) be a modular space. Let C be a nonempty subset ofXρ. The self-map
T : C → C is said to be quasicontraction if there exists k < 1 such that

ρ
(
T(x) − T(y)

) ≤ kmax
(
ρ(x − y); ρ

(
x − T(x)

)
; ρ

(
y − T(y)

)
; ρ

(
x − T(y)

)
; ρ

(
y − T(x)

))
,

(3.1)

for any x, y ∈ C.

In the sequel, we prove an existence fixed point theorem for such mappings. First, let
T and C as in the above definition. For any x ∈ C, define the orbit

O(x) =
{
x, T(x), T2(x), . . .

}
, (3.2)

and its ρ-diameter by

δρ(x) = diam
(O(x)

)
= sup

{
ρ
(
Tn(x) − Tm(x)

)
; n,m ∈ N

}
. (3.3)

Lemma 3.2. Let (X, ρ) be a modular space. Let C be a nonempty subset of Xρ and T : C → C be
quasicontraction. Let x ∈ C such that δρ(x) < ∞. Then for any n ≥ 1, one has

δρ
(
Tn(x)

) ≤ knδρ(x) , (3.4)

where k is the constant associated with the quasicontraction definition of T . Moreover, one has

ρ
(
Tn(x) − Tn+m(x)

) ≤ knδρ(x), (3.5)

for any n ≥ 1 and m ∈ N.
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Proof. Let n,m ≥ 1, we have

ρ
(
Tn(x) − Tm(y)

) ≤ kmax
(
ρ(Tn−1(x) − Tm−1(y)

)
; ρ

(
Tn−1(x) − Tn(x)

)
; ρ
(
Tm(y) − Tm−1(y)

)
;

ρ
(
Tn−1(x) − Tm(y)

)
; ρ

(
Tn(x) − Tm−1(y)

))
,

(3.6)

for any x, y ∈ C. This obviously implies the following:

δρ
(
Tn(x)

) ≤ kδρ
(
Tn−1(x)

)
, (3.7)

for any n ≥ 1. Hence for any n ≥ 1, we have

δρ
(
Tn(x)

) ≤ knδρ(x) . (3.8)

Moreover for any n ≥ 1 and m ∈ N, we have

ρ
(
Tn(x) − Tn+m(x)

) ≤ δρ
(
Tn(x)

) ≤ knδρ(x) . (3.9)

The next lemma will be helpful to prove the main result of this paper.

Lemma 3.3. Let (X, ρ) be a modular space such that ρ satisfies the Fatou property. Let C be a ρ-
complete nonempty subset of Xρ and let T : C → C be quasicontraction. Let x ∈ C such that
δρ(x) < ∞. Then {Tn(x)} ρ-converges to ω ∈ C. Moreover, one has

ρ
(
Tn(x) −ω

) ≤ knδρ(x), (3.10)

for any n ≥ 1.

Proof. From the previous lemma, we know that {Tn(x)} is ρ-Cauchy. Since C is ρ-complete,
then there exists ω ∈ C such that {Tn(x)} ρ-converges to ω. Since

ρ
(
Tn(x) − Tn+m(x)

) ≤ knδρ(x), (3.11)

for any n ≥ 1, m ∈ N, and ρ satisfies the Fatou property, we let m → ∞ to get

ρ
(
Tn(x) −ω

) ≤ knδρ(x) . (3.12)

Next, we prove that ω is in fact a fixed point of T and it is unique provided some extra
assumptions.

Theorem 3.4. Let C, T , and x be as in the previous Lemma. Assume ρ(ω − T(ω)) < ∞ and ρ(x −
T(ω)) < ∞. Then, the ρ-limit ω of {Tn(x)} is a fixed point of T , that is, T(ω) = ω. Moreover, if ω∗

is any fixed point of T in C such that ρ(ω −ω∗) < ∞, then one has ω = ω∗.



M. A. Khamsi 5

Proof. We have

ρ
(
T(x) − T(ω)

) ≤ kmax
(
ρ(x −ω); ρ

(
x − T(x)

)
; ρ

(
T(ω) −ω

)
; ρ

(
T(x) −ω

)
; ρ

(
x − T(ω)

))
.

(3.13)

From the previous results, we get

ρ
(
T(x) − T(ω)

) ≤ kmax
(
δρ(x); ρ

(
ω − T(ω)

)
; ρ

(
x − T(ω)

))
. (3.14)

Assume that for n ≥ 1, we have

ρ
(
Tn(x) − T(ω)

) ≤ max
(
knδρ(x); kρ

(
ω − T(ω)

)
; knρ

(
x − T(ω)

))
. (3.15)

Then,

ρ
(
Tn+1(x) − T(ω)

) ≤ kmax
(
ρ
(
Tn(x) −ω

)
; ρ

(
Tn(x) − Tn+1(x)

)
; ρ
(
ω − T(ω)

)
;

ρ
(
Tn+1(x) −ω

)
; ρ

(
Tn(x) − T(ω)

))
.

(3.16)

Hence,

ρ
(
Tn+1(x) − T(ω)

) ≤ kmax
(
knδρ(x); ρ

(
ω − T(ω)

)
; ρ

(
Tn(x) − T(ω)

))
. (3.17)

Using our previous assumption, we get

ρ
(
Tn+1(x) − T(ω)

) ≤ max
(
kn+1δρ(x); kρ

(
ω − T(ω)

)
; kn+1ρ(x − T(ω)

))
. (3.18)

So by induction, we have

ρ
(
Tn(x) − T(ω)

) ≤ max
(
knδρ(x); kρ

(
ω − T(ω)

)
; knρ

(
x − T(ω)

))
, (3.19)

for any n ≥ 1. Therefore, we have

lim sup
n→∞

ρ
(
Tn(x) − T(ω)

) ≤ kρ
(
ω − T(ω)

)
. (3.20)

Using the Fatou property satisfied by ρ,we get

ρ
(
ω − T(ω)

) ≤ lim inf
n→∞

ρ
(
Tn(x) − T(ω)

) ≤ kρ
(
ω − T(ω)

)
. (3.21)

Since k < 1, we get ρ(ω − T(ω)) = 0 or T(ω) = ω. Let ω∗ be another fixed point of T such that
ρ(ω −ω∗) < ∞. Then, we have

ρ
(
ω −ω∗) = ρ

(
T(ω) − T

(
ω∗)) ≤ kρ

(
ω −ω∗) (3.22)

which implies ρ(ω −ω∗) = 0 or ω = ω∗. This completes the proof of our theorem.

Remark 3.5. In [20], the authors initiated the theory of fixed point theory in modular function
spaces. In that paper, an example is given of a contraction for the modular ρ which fails to be
even nonexpansive for the associated norm. In fact, an extensive discussion is given about the
importance of relaxing the Δ2-condition and the reasons behind. Therefore, the importance
of this work is in dropping this condition from the work of the authors in [2].
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