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Abstract

In this paper, we introduce and study the concept of one-local retract in modular
function spaces. In particular, we prove that any commutative family of
r-nonexpansive mappings defined on a nonempty, r-closed and r-bounded subset
of a modular function space has a common fixed point provided its convexity
structure of admissible subsets is compact and normal.
MSC: Primary 47H09; Secondary 46B20, 47H10.

Keywords: convexity structure, fixed point, modular function space, nonexpansive
mappings, normal structure, retract

Introduction
The purpose of this paper is to give an outline of a common fixed point theory for

nonexpansive mappings defined on some subsets of modular function spaces. These

spaces are natural generalizations of both function and sequence variants of many

important, from applications perspective, spaces like Lebesgue, Orlicz, Musielak-Orlicz,

Lorentz, Orlicz-Lorentz, Calderon-Lozanovskii spaces and many others. The current

paper operates within the framework of convex function modulars. The importance for

applications of nonexpansive mappings in modular function spaces consists in the rich-

ness of structure of modular function spaces, that-besides being Banach spaces (or

F-spaces in a more general settings)-are equipped with modular equivalents of norm

or metric notions, and also are equipped with almost everywhere convergence and

convergence in submeasure. In many cases, particularly in applications to integral

operators, approximation and fixed point results, modular type conditions are much

more natural as modular type assumptions can be more easily verified than their

metric or norm counterparts. There are also important results that can be proved only

using the apparatus of modular function spaces. From this perspective, the fixed point

theory in modular function spaces should be considered as complementary to the fixed

point theory in normed spaces and in metric spaces.

The theory of contractions and nonexpansive mappings defined on convex subsets of

Banach spaces has been well developed since the 1960s (see e.g. [1-6]), and generalized

to other metric spaces (see e.g. [7-9]), and modular function spaces (see e.g. [10-12]).

In this paper, we invesigate the structure of the fixed point set of r-nonexpansive
mappings. In particular, we introduce and investigate the concept of one-local retracts
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in the framework of modular function spaces. Then we show a common fixed point in

this setting.

Preliminaries
Let Ω be a nonempty set and ∑ be a nontrivial s-algebra of subsets of Ω. Let P be a

δ-ring of subsets of Ω, such that E ∩ A ∈ P for any E ∈ P and A Î ∑. Let us assume

that there exists an increasing sequence of sets Kn ∈ P such that Ω = ∪Kn. By ℰ we

denote the linear space of all simple functions with supports from P . By ℳ∞ we will

denote the space of all extended measurable functions, i.e. all functions f: Ω ® [-∞, ∞]

such that there exists a sequence{gn} ⊂ ℰ, |gn| ≤ | f | and gn(ω) ® f(ω) for all ω Î Ω

By 1A we denote the characteristic function of the set A.

Definition 2.1. Let r: ℳ∞ ® [0, ∞] be a notrivial, convex and even function. We say

that r is a regular convex function pseudomodular if:

(i) r(0) = 0;

(ii) r is monotone, i.e. |f(ω)| ≤ |g(ω)| for all ω Î Ω implies r(f) ≤ r(g), where f, g Î
ℳ∞;

(iii) r is orthogonally subadditive, i.e r(f1A∪B) ≤ r(f1A)+r(f1B) for any A, B Î ∑ such

that A ∩ B ≠ ∅, f Î ℳ;

(iv) r has the Fatou property, i.e. |fn(ω)|↑|f(ω)| for all ω Î Ω implies r(fn) ↑r(f),
where f Î ℳ∞;

(v) r is order continuous in ℰ, i.e. gn Î ℰ and |gn(ω)| ↓ 0 implies r(gn) ↓ 0.

Similarly as in the case of measure spaces, we we say that a set A Î ∑ is r-null if
r(g1A) = 0 for every g Î ℰ. We say that a property holds r-almost everywhere if the

exceptional set is r-null. As usual we identify any pair of measurable sets whose sym-

metric difference is r-null as well as any pair of measurable functions differing only on

a r-null set. With this in mind we define

M(�, �, P , ρ) = {f ∈ M∞; |f (ω)| < ∞ ρ − a.e}, (2:1)

where each f ∈ M(�, �, P , ρ) is actually an equivalence class of functions equal

r-a.e. rather than an individual function. Where no confusion exists we will write ℳ

instead of M(�, �, P , ρ) .

Definition 2.2. Let r be a regular function pseudomodular.

(1) We say that r is a regular convex function semimodular if r(af) = 0 for every a >

0 implies f = 0 r - a.e.;

(2) We say that r is a regular convex function modular if r(f) = 0 implies f = 0 r - a.e.;

The class of all nonzero regular convex function modulars defined on Ω will be

denoted by ℜ.

Let us denote r(f, E) = r (f1E) for f Î ℳ, E Î ∑. It is easy to prove that r(f, E) is a
function pseudomodular in the sense of Def. 2.1.1 in [13] (more precisely, it is a func-

tion pseudomodular with the Fatou property). Therefore, we can use all results of the

standard theory of modular function spaces as per the framework defined by Kozlowski

in [13-15], see also Musielak [16] for the basics of the general modular theory.

Definition 2.3. [13-15] Let r be a convex function modular.

(a) A modular function space is the vector space Lr (Ω, ∑), or briefly Lr, defined by

Lρ = {f ∈ M;ρ(λf ) → 0 as λ → 0}.
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(b) The following formula defines a norm in Lr (frequently called Luxemburg norm):∥∥f∥∥
ρ
= inf{α > 0;ρ(f /α) ≤ 1}.

In the following theorem, we recall some of the properties of modular spaces that

will be used later on in this paper.

Theorem 2.1. [13-15]Let r Î ℜ.

(1) Lr, || f ||r is complete and the norm || · ||r is monotone w.r.t. the natural order in

ℳ.

(2) || fn ||r ® 0 if and only if r(afn) ® 0 for every a > 0.

(3) If r (afn) ® 0 for an a > 0 then there exists a subsequence {gn} of {fn} such that

gn ® 0 r - a.e.

(4) If {fn} converges uniformly to f on a set E ∈ P then r (a (fn - f), E) ® 0 for every

a > 0.

(5) Let fn ® f r - a.e. There exists a nondecreasing sequence of sets Hk ∈ P such that

Hk ↑ Ω and {fn} converges uniformly to f on every Hk (Egoroff Theorem).

(6) r(f) ≤ lim inf r(fn) whenever fn ® f r - a.e. (Note: this property is equivalent to the

Fatou Property).

(7) Defining L0ρ = {f ∈ Lρ ; ρ(f , ·) is order continuous} and

Eρ = {f ∈ Lρ ; λf ∈ L0ρ for every λ > 0} we have:

(a) Lρ ⊃ L0ρ ⊃ Eρ ,

(b) Er has the Lebesgue property, i.e. r (af, Dk) ® 0 for a > 0, f Î Er and Dk ↓ ∅.

(c) Er is the closure of ℰ (in the sense of || · ||r).

The following definition plays an important role in the theory of modular function

spaces.

Definition 2.4. Let r Î ℜ. We say that r has the Δ2-property if sup
n

ρ(2fn, Dk) → 0

whenever Dk ↓ ∅ and sup
n

ρ(fn, Dk) → 0 .

Theorem 2.2. Let r Î ℜ. The following conditions are equivalent:

(a) r has Δ2,

(b) L0ρ is a linear subspace of Lr,

(c) Lρ = L0ρ = Eρ ,

(d) if r (fn) ® 0 then r(2fn) ® 0,

(e) if r(afn) ® 0 for an a > 0 then || fn||r ® 0, i.e. the modular convergence is

equivalent to the norm convergence.

The following definition is crucial throughout this paper.

Definition 2.5. Let r Î ℜ.

(a) We say that {fn} is r-convergent to f and write fn ® 0 (r) if and only if r(fn - f) ® 0.

(b) A sequence {fn} where fn Î Lr is called r-Cauchy if r (fn - fm) ® 0 as n, m ® ∞.

(c) A set B ⊂ Lr is called r-closed if for any sequence of fn Î B, the convergence

fn ® f (r) implies that f belongs to B.

(d) A set B ⊂ Lr is called r-bounded if sup{r (f - g); f Î B, g Î B} <∞

(e) Let f Î Lr and C ⊂ Lr. The r-distance between f and C is defined as

dρ(f , C) = inf{ρ(f − g); g ∈ C}.
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Let us note that r-convergence does not necessarily imply r-Cauchy condition. Also,

fn ® f does not imply in general lfn ® lf, l > 1. Using Theorem 2.1 it is not difficult

to prove the following

Proposition 2.1. Let r Î ℜ.

(i) Lr is r-complete,

(ii) r-balls Br(x, r) = {y Î Lr ; r(x - y) ≤ r} are r-closed.
The following property plays in the theory of modular function spaces a role similar

to the reflexivity in Banach spaces (see e.g. [11]).

Definition 2.6. We say that Lr has property (R) if and only if every nonincreasing

sequence {Cn} of nonempty, r-bounded, r-closed, convex subsets of Lr has nonempty

intersection.

Throughout this paper we will need the following.

Definition 2.7. Let r Î ℜ and C ⊂ Lr be nonempty.

(a) By the r-diameter of C, we will understand the number

δρ(C) = sup{ρ(f − g); f , g ∈ C}.

The subset C is said to be r-bounded whenever δr(C) < ∞.

(b) The quantity rr(f, C) = sup{r(f - g);g Î C} will be called the r-Chebyshev radius

of C with respect to f.

(c) The r-Chebyshev radius of C is defined by Rr(C) = inf {rr (f, C); f Î C}.

(d) The r-Chebyshev center of C is defined as the set

Cρ(C) = {f ∈ C; rρ(f , C) = Rρ(C)}.

Note that Rr(C) ≤ rr (f, C) ≤ δr(C) for all f Î C and observe that there is no reason,

in general, for Cρ (C) to be nonempty.

Let us finish this section with the modular definitions of r-nonexpansive mappings.

The definitions are straightforward generalizations of their norm and metric

equivalents.

Definition 2.8. Let r Î ℜ and C ⊂ Lr be nonempty and r-closed. A mapping T: C ® C

is called a r-nonexpansive mapping if

ρ(T(f ) − T(g)) ≤ ρ(f − g) for any f , g ∈ C.

A point f Î C is called a fixed point of T whenever T(f) = f. The set of fixed point of

T is denoted by Fix(T).

Penot compactness of admissible sets
The following definition is needed.

Definition 2.9. Let r Î ℜ and C ⊂ Lr be nonempty and r-bounded. We say that A

is an admissible subset of C if

A =
⋂
i∈I

Bρ(bi, ri) ∩ C,

where bi Î C, ri ≥ 0 and I is an arbitrary index set. By A(C) we denote the family of

all admissible subsets of C.

Note that if C is r-bounded, then C ∈ A(C) . In order to prove an analogue of Kirk’s

fixed point theorem [3], Penot [17] introduced the following definition.
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Definition 2.10. Let r Î ℜ and C ⊂ Lr be nonempty.

(1) We will say that A(C) is r-normal if for any nonempty A ∈ A(C) , which has

more than one point, we have Rr(A) < δr(A).

(2) We will say that A(C) is compact if for any family {Aα}α∈	 ⊂ A(C) we have⋂
α∈	

Aα 	= ∅,

provided that
⋂
α∈F

Aα 	= ∅ for any finite subset F of Γ.

Clearly if A(Lρ) is compact, then Lr has property (R). In [18], the authors discussed

the concept of uniform convexity in modular function spaces. In particular they proved

that uniform convexity implies the property (R). Next, we show that uniform convexity

implies compactness in the sense of Penot [17] of the family of convex sets. First, let

us recall the definition of uniform convexity in modular function spaces. For more on

this, the reader may consult [18].

Definition 2.11. Let r Î ℜ.

(i) Let r > 0, ε > 0. Define

D(r, ε) =
{
(f , g); f , g ∈ Lρ , ρ(f ) ≤ r, ρ(g) ≤ r, ρ

(
f − g
2

)
≥ εr

}
.

Let

δ(r, ε) = inf
{
1 − 1

r
ρ

(
f + g
2

)
; (f , g) ∈ D(r, ε)

}
, if D(r, ε) 	= ∅,

and δ(r, ε) = 1 if D(r, ε) = ∅. We say that r satisfies (UC) if for every r > 0, ε > 0, δ(r, ε) > 0.

Note, that for every r > 0, D(r, ε) ≠ ∅, for ε > 0 small enough.

(ii) We say that r satisfies (UUC) if for every s ≥ 0, ε > 0 there exists

η(s, ε) > 0

depending on s and ε such that

δ(r, ε) > η(s, ε) > 0 for r > s.

(iii) We say that r is Strictly Convex, (SC), if for every f, g Î Lr such that r(f) = r(g)
and

ρ

(
f + g
2

)
=

ρ(f ) + ρ(g)
2

there holds f = g.

Note that in [11], the authors proved that in Orlicz spaces over a finite, atomless

measure space, both conditions (UC) and (UUC) are equivalent. Typical examples of

Orlicz functions that do not satisfy the Δ2 condition but are uniformly convex are: �1

(t) = e|t|-|t|-1 and ϕ2(t) = et
2 − 1 . In these cases, the associated modular is (UUC).

It is shown in [18], that if r Î ℜ is (UUC), then for any nonempty, convex, and r-
closed C ⊂ Lr , and any f Î Lr such that d = dr (f, C) <∞, there exists a unique best

r-approximant of f in C, i.e. a unique g0 Î C such that
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ρ(f − g0) = dρ(f , C) = inf{ρ(f − g); g ∈ C}.

Moreover it is also shown in [18] that if r Î ℜ is (UUC), then for any nonincreasing

sequence {Cn} of nonempty, convex, and r-closed subsets of Lr, we have ∩n ≥ 1Cn ≠ ∅,

provided there exists f Î Lr such that sup
n≥1

dρ(f , Cn) < ∞. The authors in [18] did not

show that such conclusion is still valid for any decreasing family. A property useful to

get the compactness of the admissible subsets.

Theorem 2.3. Let r Î ℜ. Assume r Î ℜ is (UUC). Let {Ca}aÎΓ be a decreasing

family of nonempty, convex, r-closed subsets of Lr, where (Γ,≺) is upward directed.

Assume that there exists f Î Lr such that sup
α∈	

dρ(f , Cα) < ∞ . Then, ∩aÎΓCa ≠ ∅.

Proof. Set d = sup
α∈	

dρ(f , Cα) . Without loss of generality, we may assume d > 0. For

Any n ≥ 1, there exists an Î Γ such that

d
(
1 − 1

n

)
< dρ(f , Cαn) ≤ d.

Since (Γ,≺) is upward directed, we may assume an ≺ an+1. In particular we have

Cαn+1 ⊂ Cαn for any n ≥ 1. Since r is (UUC), we get C0 = ∩n≥1Cαn 	= ∅ . Clearly C0 is

r-closed and

dρ(f , C0) = sup
n≥1

dρ(f , Cαn) = d.

Again using the property (UUC) satisfied by r, there exists g0 Î C0 unique such that

dr(f, C0) = r (f - g0). Let us prove that g0 Î Ca for any a Î Γ. Fix a Î Γ. If for some n

≥ 1 we have a ≺ an, then obviously we have g0 ∈ Cαn ⊂ Cα .

Therefore let us assume that a⊀ an, for any n ≥ 1. Since Γ is upward directed, there

exists bn Î Γ such that an≺ bn and a ≺ bn for any n ≥ 1. We can also assume that bn
≺ bn+1 for any n ≥ 1. Again we have C1 = ∩n≥1Cβn 	= ∅ . Since Cβn ⊂ Cαn , for any n ≥

1, we get C1 ⊂ C0. Moreover we have

d = dρ(f , C0) ≤ dρ(f , C1) = sup
n≥1

dρ(f , Cβn) ≤ d.

Hence, dr(f, C1) = d which implies the existence of a unique point g1 Î C1 such that

dr(f, C1) = r(f - g1) = d. Since r is uniformly convex, it must be (SC). Hence, g0 = g1.

In particular, we have g0 ∈ Cβn , for any n ≥ 1. Since a ≺ bn, we get Cβn ⊂ Cα , for any

n ≥ 1, which implies g0 Î Ca. Since a was taking arbitrary in Γ, we get g0 Î ∩aÎΓ Ca,

which implies ∩aÎΓ Ca ≠ ∅. □
Since r is convex, r-closed balls are convex. Theorem 2.3 implies the following.

Corollary 2.1. Let r Î ℜ and C ⊂ Lr be nonempty, convex, r-closed, and r-bounded.
Assume r is (UUC). Then A(C) is compact.

Remark 2.1. Note that under the above assumptions, A(C) is r-normal. Indeed let

A ∈ A(C) nonempty and not reduced to one point. Let f, g Î A such that f ≠ g. Then

ρ(
f − g
2

) > 0 . Since r is (UUC), there exists h > 0 such that for any h Î A, we have
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ρ

(
h − f + g

2

)
≤ (1 − η)δρ(A).

Hence, rρ

(
f + g
2

,A
)

≤ (1 − η)δρ(A) , which implies Rr(A) < δr(A).

Finally, we state Penot’s formulation of Kirk’s fixed point theorem in modular func-

tion spaces. For the sake of completeness we will give its proof.

Theorem 2.4. Let r Î ℜ and C ⊂ Lr be nonempty, r-closed, and r-bounded. Assume

that A(C) is compact and r-normal. Then any r-nonexpansive T: C ® C has a fixed

point.

Proof. Since C is r-bounded, then we have C ∈ A(C) . Since A(C) is compact, the

family F = {A ∈ A(C);T(A) ⊂ A} has a minimal element K. Set

K0 =
(∩{A;A ∈ A(C) and T(K) ⊂ A}) ∩ K.

Note that T(K) ⊂ K0. This implies that K0 is nonempty and belongs to A(C) . More-

over since K0 ⊂ K, we get T(K0) ⊂ T(K) ⊂ K0. Hence K0 Î ℱ. The minimality of K

implies that K = K0. Next let f Î K. By definition of the r-Chebyshev radius rr(f, K),

we have K ⊂ Br(f, rr(f, K)). Since T is r-nonexpansive, we have T(K) ⊂ Br(T(f), rr(f,

K)). The definition of K0 implies K0 ⊂ Br(T(f), rr(f, K)). Since K = K0, we get K ⊂ Br

(T (f), rr(f, K)), which implies rr(T(f), K) ≤ rr(f, K). Fix f Î K and set r = rr (f, K). We

have

K1 = {g ∈ K; rρ(g, K) ≤ r} =
⋂
h∈K

Bρ(h, r) ∩ K.

Clearly, we have T(K1) ⊂ K1 and K1 ∈ A(C) . Since K is minimal, we get K = K1

which implies that the r-Chebyshev radius rr(f, K) is constant. In particular, we have

rr(f, K) = δr (K), for any f Î K. Since A(C) is r-normal, we conclude that K does not

have more than one point. Therefore, K = {f} which forces T (f) = f. □
In the next section, we investigate the structure of the fixed point set of r-nonexpan-

sive mappings.

One-local retract subsets in modular function spaces
Let r Î ℜ and C ⊂ Lr be nonempty. A nonempty subset D of C is said to be a one-

local retract of C if for every family {Bi; i Î I} of r-balls centered in D such that C ∩
(∩iÎI Bi) ≠ ∅, it is the case that D ∩ (∩iÎI Bi) ≠ ∅. It is immediate that each r-nonex-
pansive retract of Lr is a one-local retract (but not conversely). Recall that D ⊂ C is a

r-nonexpansive retract of C if there exists a r-nonexpansive map R: C ® D such that

R(f) = f, for every f Î D.

The following result will shed some light on the interest generated around this

concept.

Theorem 2.5. Let r Î ℜ and C ⊂ Lr be nonempty, r-closed, and r-bounded. Assume

that A(C) is compact and r-normal. Then for any r-nonexpansive mapping T: C ® C,

the fixed point set Fix(T) is a nonempty one-local retract of C.

Proof. Theorem 2.4 shows that Fix(T) is nonempty. Let us complete the proof by

showing it is a one-local retract of C. Let {Br(fi, ri)}iÎI be any family of r-closed balls

such that fi Î Fix(T), for any i Î I, and
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C0 = C ∩
(⋂

i∈I
Bρ(fi, ri)

)
	= ∅.

Let us prove that Fix (T) ∩ (∩iÎI Br(fi, ri)) ≠ ∅. Since {fi}iÎI ⊂ Fix(T), and T is r-non-
expansive, then T(C0) ⊂ C0. Clearly, C0 ∈ A(C) and is nonempty. Then we have

A(C0) ⊂ A(C) . Therefore, A(C0) is compact and r-normal. Theorem 2.4 will imply

that T has a fixed point in C0 which will imply

Fix(T) ∩
(⋂

i∈I
Bρ(fi, ri)

)
	= ∅.

□
This result gives some information to the structure of the fixed point set. To the best

of our knowledge this is the first attempt done in modular function spaces. Next we

discuss some properties of one-local retract subsets.

Theorem 2.6. Let r Î ℜ and C ⊂ Lr be nonempty. Let D be a nonempty subset of C.

The following are equivalent.

(i) D is a one-local retract of C.

(ii) D is a r-nonexpansive retract of D ∪ {f}, for every f Î C.

Proof. let us prove (i) ⇒ (ii). Let f Î C. We may assume that f ∉ D. In order to con-

struct a r-nonexpansive retract R: D ∪ {f} ® D, we only need to find R(f) Î D such

that

ρ(R(f ) − g) ≤ ρ(f − g), for every g ∈ D.

Since f Î ∩gÎD Br(g, r(f-g)) and f Î C, then

C ∩
⎛
⎝⋂

g∈D
Bρ(g, ρ(f − g))

⎞
⎠ 	= ∅.

Since D is a one-local retract of C, we get

D0 = D ∩
⎛
⎝⋂

g∈D
Bρ(g, ρ(f − g))

⎞
⎠ 	= ∅.

Any point in D0 will work as R(f).

Next, we prove that (ii) ⇒ (i). In order to prove that D is a one-local retract of C, let

{Br(fi, ri)}iÎI be any family of r-closed balls such that fi Î D, for any i Î I, and

C0 = C ∩
(⋂

i∈I
Bρ(fi, ri)

)
	= ∅.

Let us prove that D ∩ (∩iÎI Br(fi, ri)) = ∅. Let f Î C0. If f Î D, we have nothing to

prove. Assume otherwise that f ∉ D. Property (ii) implies the existence of a r-nonex-
pansive retract R: D ∪ {f} ® C. It is easy to check that R(f) Î D ∩ (∩iÎI Br(fi, ri)) = ∅,

which completes the proof of our theorem. □
The following technical lemma will be useful for the next results.
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Lemma 2.1. Let r Î ℜ and C ⊂ Lr be nonempty, and r-bounded. Let D be a none-

mpty one-local retract of C. Set coC(D) = C ∩ (∩{A;A ∈ A(C) and D ⊂ A}). Then

(i) rr(f, D) = rr(f, coC(D)), for any f Î C;

(ii) Rr(coC(D)) = Rr(D);

(iii) δr(coC(D)) = δr(D).

Proof. Let us first prove (i). Fix f Î C. Since D ⊂ coC(D), we get rr(f, D) ≤ rr(f, coC
(D)). Set r = rr(f, D). We have D ⊂ Bρ(f , r) ∈ A(C) . The definition of coC(D) implies

coC(D) ⊂ Br(f, r). Hence rr(f, coC(D)) ≤ r = rr(f, D), which implies rr(f, D) = rr(f, coC
(D)).

Next, we prove (ii). Let f Î D. We have f Î coC(D). Using (i), we get rr(f, D) = rr(f,

coC(D)) ≥ Rr(coC(D)). Hence, Rr(D) ≥ Rr(coC(D)). Next, let f Î coC(D) and set r = rr(f,

coC(D)). We have D ⊂ coC(D) ⊂ Br(f, r). Hence, f Î ∩gÎDBr(g, r). Hence, C ∩ (∩gÎ DBr

(g, r)) = ∅. Since D is a one-local retract of C, we get D0 = D ∩ (∩gÎ DBr(g, r)) = ∅.

Let g Î D0. Then it is easy to see that rr(g, D) ≤ r. Hence, Rr(D) ≤ r. Since f was arbi-

trary taken in coC(D), we get Rr(D) ≤ Rr(coC(D)), which implies Rr(D) = Rr(coC(D)).

Finally, let us prove (iii). Since D ⊂ coC(D), we get δr(D) ≤ δr(coC(D)). Next set d =

δr(D). Then, for any f Î D, we have D ⊂ Br(f, d). Hence coC(D) ⊂ Br(f, d). This implies

f ∈ ∩g∈coC(D))Bρ(g, d) . Sice f was taken arbitrary in D, we get D ⊂ ∩g∈coC(D))Bρ(g, d) .

The definition of coC(D) implies coC(D) ⊂ ∩g∈coC(D))Bρ(g, d) . So for any f, g Î coC(D),

we have r(f - g) ≤ d. Hence δr(coC(D)) ≤ d = δr(D), which implies δr (D) = δr (coC(D)).

□
As an application of this lemma we get the following result.

Theorem 2.7. Let r Î ℜ and C ⊂ Lr be nonempty, r-closed, and r-bounded. Assume

that A(C) is compact and r-normal. If D is a nonempty one-local retract of C, then

A(D) is compact and r-normal.

Proof. Using the definition of one-local retract, it is easy to see that A(D) is com-

pact. Let us show that A(D) is r-normal. Let A0 ∈ A(D) nonempty and not reduced

to one point. Set coC(A0) = C ∩ (∩{A;A ∈ A(C) and A0 ⊂ A}). Then from the Lemma

2.1, we get

Rρ(coC(A0)) = Rρ(A0), and δρ(coC(A0)) = δρ(A0).

Since coC(A0) ∈ A(C), then we must have Rr(coC(A0)) < δr(coC(A0)) because A(C)

is r-normal. Therefore, we have Rr(A0) < δr(A0), which completes the proof of our

claim. □
The next result is amazing and has found many applications in metric spaces. Most

of the ideas in its proof go back to Baillon’s work [8].

Theorem 2.8. Let r Î ℜ and C ⊂ Lr be nonempty, r-closed, and r-bounded. Assume

that A(C) is compact and r-normal. Let (Cb)bÎΓ be a decreasing family of one-local

retracts of C, where (Γ, ≺) is totally ordered. Then ∩bÎΓCb is not empty and is a one-

local retract of C.

Proof. First, let us prove that ∩bÎΓCb is not empty. Consider the family

F =

⎧⎨
⎩

∏
β∈	

Aβ ;Aβ ∈ A(Cβ) and (Aβ) is decreasing

⎫⎬
⎭ .
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ℱ is not empty since
∏
β∈	

Cβ ∈ F . ℱ will be ordered by inclusion, i.e.,∏
β∈	

Aβ ⊂ ∏
β∈	

Bβ if and only if Ab ⊂ Bb for any b Î Γ. From Theorem 2.7, we know

that A(Cβ) is compact, for every b Î Γ. Therefore, ℱ satisfies the hypothesis of Zorn’s

lemma. Hence for every D Îℱ, there exists a minimal element A Îℱ such that A ⊂ D.

We claim that if A =
∏
β∈	

Aβ is minimal, then there exists b0 Î Γ such that δ(Ab) = 0

for every b ≻ b0. Assume not, i.e., δ(Ab) > 0 for every b Î Γ. Fix b Î Γ. For every K ⊂
C, set

coβ(K) =
⋂
f∈Cβ

Bρ(f , rρ(f , K)).

Consider A′ =
∏
α∈	

A′
α where

{
A′

α = coβ(Aβ) ∩ Aα if α ≤ β

A′
α = Aα if α ≥ β .

The family (A′
α≥β) is decreasing since A Îℱ. Let a ≤ g ≤ b. Then A′

γ ⊂ A′
α since Ag

⊂ Aa and Ab = cob (Ab) ∩ Ab. Hence the family (A′
α) is decreasing. On the other hand

if a ≺ b, then coβ(Aβ) ∩ Aα ∈ A(Cα)since Cb ⊂ Ca. Hence A′
α ∈ A(Cα). Therefore, we

have A’ Î ℱ. Since A is minimal, then A = A’. Hence

Aα = coβ(Aβ) ∩ Aα , for every α ≺ β .

Let f Î Cb and a ≺ b. Since Ab ⊂ Aa, then rr(f, Ab) ≤ rr(f, Aa). Because

coβ(Aβ) = ∩g∈Cβ
Bρ(g, rρ(g, Aβ)) , then we have cob(Ab) ⊂ Br(g, rr(g, Ab)) which implies

rr(g, Ab) ≤ rr(g, Aa). Since Aa ⊂ cob(Ab), then

rρ(g, Aβ) ≤ rρ(g, Aα) ≤ rρ(g, coβ(Aβ)) ≤ rρ(g, Aβ).

Therefore, we have rr(g, Aa) ≤ rr(g, Ab) for every g Î Cb. Using the definition of the

r-Chebyshev radius Rr, we get

Rρ(Aα) ≤ Rρ(Aβ).

Let f Î Aa and set s = rr(f, Aa). Then f Î cob(Ab) since Aa ⊂ cob(Ab). Hence,

f ∈ (∩g∈Aβ
Bρ(g, s)) ∩ coβ(Aβ) . Since Cb is a one-local retract of C, then

Sβ = Cβ ∩ (∩g∈Aβ
Bρ(g, s)) ∩ coβ(Aβ) 	= ∅.

Since Ab = Cb ∩ cob(Ab), then we have

Sβ = Aβ ∩
⎛
⎝ ⋂

g∈Aβ

Bρ(g, s)

⎞
⎠ .

Let h Î Sb, then
h ∈ ⋂

g∈Aβ

Bρ(g, s) . Hence, rr(h, Ab) ≤ s which implies Rr(Ab) ≤ s = rr

(f, Aa), for every f Î Aa. Hence Rr(Ab) ≤ Rr(Aa). Therefore we have
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Rρ(Aβ) = Rρ(Aα), for every a, β ∈ 	.

Since δr(Ab) > 0 for every b Î Γ. Set A′′
β to be the r-Chebyshev center of Ab, i.e.,

A′′
β = Cρ(Aβ) , for every b Î Γ. Since Rr(Ab) = Rr(Aa), for every a, b Î Γ, then the

family (A′′
β) is decreasing. Indeed, let a≺ b and f ∈ A′′

β . Then we have rr(f, Ab) = Rr

(Ab). Since we proved that rr(g, Ab) = rr(g, Aa), for every g Î Cb, then

rρ(f , Aα) = rρ(f , Aβ) = Rρ(Aβ) = Rρ(Aα),

which implies that f ∈ A′′
α . Therefore, we have A′′ =

∏
β∈	

A′′
β ∈ F . Since A’’ ⊂ A and

A is minimal, we get A = A’’. Therefore, we have Cρ(Aβ) = Aβ for every b Î Γ. This

contradicts the fact that A(Cβ) is normal for every b Î Γ. Hence there exists b0 Î Γ

such that

δ(Aβ) = 0, for every β � β0.

The proof of our claim is therefore complete. Then we have Ab = {f }, for every b ≻
b0. This clearly implies that f Î ∩bÎΓ Cb ≠ ∅. In order to complete the proof, we need

to show that S = ∩bÎΓ Cb is a one-local retract of C. Let (Bi)iÎI be a family of r-balls
centered in S such that ∩iÎI Bi ≠ ∅. Set Db = (∩iÎI Bi) ∩ Cb, for any b Î Γ. Since Cb is

a one-local retract of C, and the family (Bi) is centered in Cb, then Db is not empty

and Dβ ∈ A(Cβ) . Therefore, D =
∏
β∈	

Dβ ∈ F . Let A =
∏
β∈	

Aβ ⊂ D be a minimal ele-

ment of ℱ. The above proof shows that

∅ 	=
⋂
β∈	

Aβ ⊂
⋂
β∈	

Dβ .

The proof of Theorem 2.8 is therefore complete. □
The next theorem will be useful to prove the main result of the next section.

Theorem 2.9. Let r Î ℜ and C ⊂ Lr be nonempty, r-closed, and r-bounded.
Assume that A(C) is compact and r-normal. Let (Cb)bÎΓ be a family of one-local

retracts of C such that for any finite subset I of Γ, ∩b Î Γ Cb is not empty and is a

one-local retract of C. Then ∩b Î Γ Cb is not empty and is a one-local retract of C.

Proof. Consider the family ℱ of subsets I ⊂ Γ such that for any finite subset J ⊂ Γ

(empty or not), we have ∩aÎI∪JCa is a nonempty one-local retract of C. Note that ℱ is

not empty since any finite subset of Γ is in ℱ. Using Theorem 2.8, we can show that ℱ

satisfies the hypothesis of Zorn’s lemma. Hence ℱ has a maximal element I ⊂ Γ.

Assume I ≠ Γ. Let a Î Γ \ I. Obviously we have I ∪ {a}Î ℱ. This is a clear contradic-

tion with the maximality of I. Therefore we have I = Γ Î ℱ, i.e., ∩bÎΓ Cb is not empty

and is a one-local retract of C.

□

Common fixed point result
In the previous section, we showed that under suitable conditions, any r-nonexpansive
mapping has a fixed point. In this section we will discuss the existence of a fixed point

common to a family of a commutative r-nonexpansive mappings. First we will need to

discuss the case of finite families.
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Theorem 2.10. Let r Î ℜ and C ⊂ Lr be nonempty, r-closed, and r-bounded.
Assume that A(C) is compact and r-normal. Then for any finite family ℱ = {T1, T2,...

Tn} of commutative r-nonexpansive mappings defined on C has a common fixed point,

i.e., Fix (T1) ∩ ··· ∩ Fix(Tn) ≠ ∅. Moreover, the set of common fixed point set, denoted

Fix(ℱ) = Fix(T1)) ∩ ··· ∩ Fix(Tn), is a one local retract of C.

Proof. Let us first prove Theorem 2.10 for two mappings T1 and T2. Using Theorem

2.5, we know that Fix(T1) is a nonempty one-local retract of C. Since T1 and T2 are

commutative, then T2(Fix(T1)) ⊂ Fix(T1). Theorems 2.4 and 2.7 show that the restric-

tion of T2 to Fix(T1) has a fixed point. Again Theorem 2.5 will imply that the common

fixed point set Fix(T1) ∩ Fix(T2) is a nonempty one-local retract of C. Using the same

argument will show that the conclusion of Theorem 2.10 is valid for any finite number

of mappings. □
Next we prove the main result of this section.

Theorem 2.11. Let r Î ℜ and C ⊂ Lr be nonempty, r-closed, and r-bounded.
Assume that A(C) is compact and r-normal. Then for any family ℱ = {Ti; iÎI}of com-

mutative r-nonexpansive mappings defined on C has a common fixed point, i.e., ∩iÎI Fix
(Ti) ≠ ∅. Moreover the set of common fixed point set, denoted Fix(ℱ) = ∩iÎI Fix(Ti), is a

one-local retract of C.

Proof. Let Γ = {b; b is a nonempty finite subset of I}. Theorem 2.10 implies that for

every b Î Γ, the set Fb of common fixed point set of the mappings Ti, i Î b, is a none-

mpty one-local retract of C. Clearly the family (Fb)bÎΓ is decreasing and satisfies the

assumptions of Theorem 2.9. Therefore, we have ∩bÎΓFb is nonempty and is a one-

local retract of C. The proof of Theorem 2.11 is complete.

□
Using Corollary 2.1 and Remark 2.1 we get the following result.

Corollary 2.2. Let r Î ℜ and C ⊂ Lr be nonempty, convex, r-closed, andr-bounded.
Assume r is (UUC). Then for any family ℱ = {Ti; iÎI} of commutative r-nonexpansive
mappings defined on C has a common fixed point, i.e., ∩iÎI Fix(Ti) ≠ ∅. Moreover the

set of common fixed point set, denoted Fix(ℱ) = ∩iÎI Fix(Ti), is a one-local retract of C.
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