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Abstract
Let C be a bounded, closed, convex subset of a uniformly convex metric space (M,d).
In this paper, we introduce the concept of asymptotic pointwise nonexpansive
semigroups of nonlinear mappings Tt : C → C, i.e., a family such that T0(x) = x,
Ts+t = Ts(Tt(x)), and d(Tt(x), Tt(y)) ≤ αt(x)d(x, y), where lim supt→∞ αt(x) ≤ 1 for every
x ∈ C. Then we investigate the existence of common fixed points for asymptotic
pointwise nonexpansive semigroups. The proof is based on the concept of types
extended to one parameter family of points.
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1 Introduction
The purpose of this paper is to prove the existence of common fixed points for semi-
groups of nonlinear mappings acting in metric spaces. Recently, Khamsi and Kozlowski
presented a series of fixed point results for pointwise contractions, asymptotic pointwise
contractions, pointwise nonexpansive and asymptotic pointwise nonexpansive mappings
acting in modular functions spaces [, ].
Let us recall that a family {Tt}t≥ of mappings forms a semigroup if T(x) = x, and Ts+t =

Ts ◦ Tt . Such a situation is quite typical in mathematics and applications. For instance, in
the theory of dynamical systems, the vector function space would define the state space,
and the mapping (t,x) → Tt(x) would represent the evolution function of a dynamical
system. The question about the existence of common fixed points, and about the structure
of the set of common fixed points, can be interpreted as a question whether there exist
points that are fixed during the state space transformation Tt at any given point of time t,
and if yes - what does the structure of a set of such points may look like. In the setting of
this paper, the state space is a nonlinear metric space.
The existence of common fixed points for families of contractions and nonexpansive

mappings in Banach spaces has been the subject of the intensive research since the early
s, as investigated by Belluce and Kirk [, ], Browder [], Bruck [], DeMarr [], and
Lim []. The asymptotic approach for finding common fixed points of semigroups of Lip-
schitzian (but not pointwise Lipschitzian) mappings has also been investigated, see, e.g.,
Tan and Xu []. It is worthwhile mentioning the recent studies on the special case, when
the parameter set for the semigroup is equal to {, , , , . . .}, and Tn = Tn, the nth iterate
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of an asymptotic pointwise nonexpansive mapping. Kirk and Xu [] proved the existence
of fixed points for asymptotic pointwise contractions and asymptotic pointwise nonex-
pansive mappings in Banach spaces, while Hussain and Khamsi [] extended this result
to metric spaces, and Khamsi and Kozlowski to modular function spaces [, ]. In the
context of modular function spaces, Khamsi discussed in [] the existence of nonlinear
semigroups in Musielak-Orlicz spaces and considered some applications to differential
equations.

2 Uniform convexity in metric spaces
Throughout this paper, (M,d) will stand for a metric space. Suppose that there exists a
family F of metric segments such that any two points x, y inM are endpoints of a unique
metric segment [x, y] ∈ F ([x, y] is an isometric image of the real line interval [,d(x, y)]).
We shall denote by ( – β)x⊕ βy the unique point z of [x, y], which satisfies

d(x, z) = βd(x, y) and d(z, y) = ( – β)d(x, y).

Such metric spaces are usually called convex metric spaces []. Moreover, if we have

d
(


p⊕ 


x,



p⊕ 


y
)

≤ 

d(x, y),

for all p, x, y inM, thenM is said to be a hyperbolic metric space (see []).
Obviously, normed linear spaces are hyperbolic spaces. As nonlinear examples, one can

consider the Hadamard manifolds [], the Hilbert open unit ball equipped with the hy-
perbolic metric [], and the CAT() spaces [–] (see Example .). We will say that a
subset C of a hyperbolic metric spaceM is convex if [x, y]⊂ C, whenever x, y are in C.

Definition . Let (M,d) be a hyperbolicmetric space.We say thatM is uniformly convex
(in short, UC) if for any a ∈M, for every r > , and for each ε > 

δ(r, ε) = inf

{
 –


r
d
(


x⊕ 


y,a

)
;d(x,a) ≤ r,d(y,a)≤ r,d(x, y) ≥ rε

}
> .

The definition of uniform convexity finds its origin in Banach spaces []. To the best
of our knowledge, the first attempt to generalize this concept to metric spaces was made
in []. The reader may also consult [, , ].
From now onwards we assume thatM is a hyperbolic metric space, and if (M,d) is uni-

formly convex, then for every s ≥ , ε > , there exists η(s, ε) >  depending on s and ε

such that

δ(r, ε) > η(s, ε) >  for any r > s.

Most of the results in this section may be found in [].

Remark . [, ]
(i) Let us observe that δ(r, ) = , and δ(r, ε) is an increasing function of ε for every

fixed r.
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(ii) For r ≤ r there holds

 –
r
r

(
 – δ

(
r, ε

r
r

))
≤ δ(r, ε).

(iii) If (M,d) is uniformly convex, then (M,d) is strictly convex, i.e., whenever

d
(


x⊕ 


y,a

)
= d(x,a) = d(y,a)

for any x, y,a ∈M, then we must have x = y.

Lemma . [, ] Assume that (M,d) is uniformly convex. Let {Cn} ⊂M be a sequence of
nonempty, nonincreasing, convex, bounded and closed sets. Let x ∈M be such that

 < d = lim
n→∞d(x,Cn) < ∞.

Let xn ∈ Cn be such that d(x,xn) → d. Then {xn} is a Cauchy sequence.

Recall that a hyperbolic metric space (M,d) is said to have the property (R) if any non-
increasing sequence of nonempty, convex, bounded and closed sets, has a nonempty in-
tersection [].
Our next result deals with the existence and the uniqueness of the best approximants

of convex, closed and bounded sets in a uniformly convex metric space. This result is of
interest by itself as uniform convexity implies the property (R), which reduces to reflexivity
in the linear case.

Theorem . [, ] Assume that (M,d) is complete and uniformly convex. Let C ⊂ M
be nonempty, convex and closed. Let x ∈ M be such that d(x,C) < ∞. Then there exists a
unique best approximant of x in C, i.e., there exists a unique x ∈ C such that

d(x,x) = d(x,C).

The following result gives the analogue of the well known theorem that states any uni-
formly convex Banach space is reflexive (see Theorem . in []).

Theorem . [, ] If (M,d) is complete and uniformly convex, then (M,d) has the prop-
erty (R).

Note that any hyperbolic metric space M, which satisfies the property (R), is complete.
The following technical lemma will be needed.

Lemma . [, ] Let (M,d) be uniformly convex. Assume that there exists R ∈ [, +∞)
such that

lim sup
n→∞

d(xn,a)≤ R, lim sup
n→∞

d(yn,a)≤ R, and lim
n→∞d

(
a,



xn ⊕ 


yn

)
= R.
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Then

lim
n→∞d(xn, yn) = .

Example . Let (X,d) be a metric space. A geodesic from x to y in X is a mapping c from
a closed interval [, l] ⊂ R to X such that c() = x, c(l) = y, and d(c(t), c(t′)) = |t – t′| for
all t, t′ ∈ [, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is called a
geodesic (or metric) segment joining x and y. The space (X,d) is said to be a geodesic space
if every two points of X are joined by a geodesic and X is said to be uniquely geodesic if
there is exactly one geodesic joining x and y for each x, y ∈ X, which we will be denoted by
[x, y], and called the segment joining x to y.
A geodesic triangle �(x,x,x) in a geodesic metric space (X,d), consisting of three

points x,x,x in X (the vertices of �) and a geodesic segment between each pair of ver-
tices (the edges of �). A comparison triangle for geodesic triangle �(x,x,x) in (X,d) is
a triangle �(x,x,x) := �(x̄, x̄, x̄) in R

 such that dR (x̄i, x̄j) = d(xi,xj) for i, j ∈ {, , }.
Such a triangle always exists (see []).
A geodesic metric space is said to be a CAT() space if all geodesic triangles of appro-

priate size satisfy the following CAT() comparison axiom:
Let� be a geodesic triangle inX, and let� ⊂R

 be a comparison triangle for�. Then�

is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points x̄, ȳ ∈ �,

d(x, y) ≤ d(x̄, ȳ).

CompleteCAT() spaces are often calledHadamard spaces (see []). If x, y, y are points
of a CAT() space, and y is the midpoint of the segment [y, y], which will be denoted by
y⊕y

 , then the CAT() inequality implies that

d
(
x,
y ⊕ y



)
≤ 


d(x, y) +



d(x, y) –



d(y, y).

This inequality is the (CN) inequality of Bruhat and Tits []. As for the Hilbert space, the
(CN) inequality implies that CAT() spaces are uniformly convex with

δ(r, ε) =  –
√
 –

ε


.

One may also find the modulus of uniform convexity via similar triangles.

Recall that τ :M →R+ is called a type if there exists {xn} inM such that

τ (x) = lim sup
n→∞

d(x,xn).

Theorem . [, ] Assume that (M,d) is complete and uniformly convex. Let C be any a
nonempty, closed, convex and bounded subset of M. Let τ be a type defined on C. Then any
minimizing sequence of τ is convergent. Its limit is independent of theminimizing sequence.
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3 Asymptotic Pointwise Nonexpansive Semigroups
Recall the definition of an asymptotic pointwise nonexpansive mapping defined in metric
spaces [, ]. For similar definition of asymptotic contractions, the reader may consult
[, ].

Definition . Let (M,d) be a metric space and C ⊂M be nonempty and closed. A map-
ping T : C → C is called an asymptotic pointwise mapping if there exists a sequence of
mappings αn : C → [,∞) such that

d
(
Tn(x),Tn(y)

) ≤ αn(x)d(x, y),

for any x, y ∈ C. If lim supn→∞ αn(x) ≤  for any x ∈ C, then T is called asymptotic point-
wise nonexpansive. A point x ∈ C is called a fixed point of T if T(x) = x. The set of fixed
points of T will be denoted by Fix(T).

This definition is now extended to a one parameter family of mappings.

Definition . A one-parameter family F = {Tt ; t ≥ } of mappings from C into itself is
said to be an asymptotic pointwise nonexpansive semigroup on C ifF satisfies the follow-
ing conditions:

(i) T(x) = x for x ∈ C;
(ii) Tt+s(x) = Tt(Ts(x)) for x ∈ C and t, s ∈ [,∞);
(iii) for each t ≥ , Tt is an asymptotic pointwise nonexpansive mapping, i.e., there

exists a function αt : C → [,∞) such that

d
(
Tt(x),Tt(y)

) ≤ αt(x)d(x, y), (.)

for all x, y ∈ C, such that lim supt→∞ αt(x)≤  for every x ∈ C, where

lim sup
t→∞

αt(x) = inf
M>

(
sup
t≥M

αt(x)
)
;

(iv) for each x ∈ C, the mapping t → Tt(x) is strong continuous.
For each t ≥ , let Fix(Tt) denote the set of its fixed points. Define then the set of all
common fixed points of F as the following intersection

Fix(F ) =
⋂
t≥

Fix(Tt).

Note that we may assume that αt(x) ≥  for any t ≥  and x ∈ C. Indeed set at(x) =
max(αt(x), ). Then one can easily show that

lim
t→∞at(x) =  ⇐⇒ lim sup

t→∞
αt(x) = .

Therefore, we will throughout this work assume that αt(x) ≥ , for any t ≥  and x ∈ C,
and lim supt→∞ αt(x) = limt→∞ αt(x) = .
The concept of type functionals is a powerful technical, tool which is used in the proofs

of many fixed point results. The definition of a type is based on a given sequence. In this
work, we generalize this definition to a one-parameter family of mappings.
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Definition . Let (M,d) be a hyperbolic metric space. Let C ⊂ M be convex and
bounded. A function τ : C → [,∞] is called a (d)-type (or shortly a type) if there exists a
one-parameter family {yt}t≥ of elements of C such that for any z ∈ C there holds

τ (z) = inf
M>

(
sup
t≥M

d(yt , z)
)
.

A sequence {zn} ⊂ C is called a minimizing sequence of τ if

lim
n→∞ τ (zn) = inf

{
τ (z); z ∈ C

}
.

A typical method of proof for the fixed point theorems in Banach andmetric spaces is to
construct a fixed point by finding an element, on which a specific type function attains its
minimum. To be able to proceed with this method, one has to know that such an element
indeed exists.
The next lemma is the generalization of the minimizing sequence property for types

defined by sequences in Lemma . in [] to the one-parameter case in modular function
spaces.

Lemma . Assume (M,d) is a uniformly convex hyperbolic metric space. Let C be a
nonempty, bounded, closed and convex subset of M. Let τ be a type defined by a one-
parameter family {ht}t≥ in C.

(i) If τ (z) = τ (z) = infz∈C τ (z), then z = z.
(ii) Moreover any minimizing sequence {zn} of τ is convergent.Moreover the limit of {zn}

is independent of the minimizing sequence.

Proof First let us prove (i). Let z, z ∈ C such that τ (z) = τ (z) = infz∈C τ (z). Assume that
infz∈C τ (z) = . Since

d(z, z) ≤ d(z, yt) + d(yt , z)

for any t ≥ , we get

d(z, z) ≤ sup
t≥M

d(z, yt) + sup
t≥M

d(yt , z)

for anyM > . Since

τ (z) = inf
M>

(
sup
t≥M

d(z, yt)
)
= lim

M→∞ sup
t≥M

d(z, yt),

for any z ∈ C, we get d(z, z) ≤ τ (z) + τ (z) = , which implies z = z. Therefore, let us
assume infz∈C τ (z) > . Assume that z = z. Set

R = inf
z∈C τ (z) and ε =

d(z, z)
R

.

Let ν ∈ (,R). Then d(z, z) = Rε ≥ (R + ν)ε. Using the definition of τ , we deduce that
there existsMν >  such that

sup
t≥Mν

d(z, yt)≤ τ (z) + ν = R + ν and sup
t≥Mν

d(z, yt)≤ τ (z) + ν = R + ν.

http://www.fixedpointtheoryandapplications.com/content/2013/1/230


Al-Mezel and Khamsi Fixed Point Theory and Applications 2013, 2013:230 Page 7 of 12
http://www.fixedpointtheoryandapplications.com/content/2013/1/230

Since (M,d) is uniformly convex, there exists η(R, ε) >  such that

δ(R + ν, ε) ≥ η(R, ε)

for any ν ∈ (,R). So, for any t ≥ Mν , we have

d
(
z ⊕ z


, yt

)
≤ (R + ν)

(
 – δ(R + ν, ε)

) ≤ (R + ν)
(
 – η(R, ε)

)
.

Hence

τ

(
z ⊕ z



)
≤ sup

t≥Mν

d
(
z ⊕ z


, yt

)
≤ (R + ν)

(
 – η(R, ε)

)
.

Since C is convex, we get

R ≤ τ

(
z ⊕ z



)
≤ (R + ν)

(
 – η(R, ε)

)
.

If we let ν → , we will get

R ≤ R
(
 – η(R, ε)

)
.

Contradiction. Therefore, we must have z = z.
Next, we prove (ii). Set R = infz∈C τ (z). For any n≥ , set

Kn = conv{yt ; t ≥ n},

where conv(A) is the intersection of all closed convex subset of C, which contains A ⊂ C.
Since C is itself closed and convex, we get Kn ⊂ C for any n ≥ . Property (R) will then
imply

⋂
Kn = ∅. Let x ∈ ⋂

Kn. Let z ∈ C and ε > . By definition of τ (z), there existsMε > 
such that supt≥Mε

d(z, yt) ≤ τ (z) + ε. Let n ≥ Mε . Then for any t ≥ n, we have d(z, yt) ≤
τ (z) + ε, i.e., yt ∈ B(z, τ (z) + ε). Since the closed ball B(z, τ (z) + ε) is closed and convex, we
get Kn ⊂ B(z, τ (z) + ε). Hence x ∈ B(z, τ (z) + ε), i.e.,

d(z,x) ≤ τ (z) + ε.

Since ε was taken arbitrarily greater than , we get d(z,x) ≤ τ (z), for any z ∈ C. Assume
that R = . Let {zn} be a minimizing sequence. Then we have limn→∞ τ (zn) = R = . But we
just proved that d(zn,x) ≤ τ (zn), for any n ≥ . Hence {zn} is convergent to x. Note that x
is independent of the minimizing sequence. Next, we assume that R = infz∈C τ (z) > . Let
{zn} be a minimizing sequence. Assume that {zn} is not Cauchy. For any n≥ , set

rn = sup
i,j≥n

d(zi, zj).

The sequence {rn} is decreasing, and since {zn} is not Cauchy, we get

inf
n≥

rn = r > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/230
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Set ε = r
R > . Let ν ∈ (,R). Since limn→∞ τ (zn) = R, there exists n ≥  such that for any

n≥ , we have τ (zn)≤ R + ν
 . Let n≥ n. Then there exists in, jn ≥  such that

d(zin , zjn ) > rn –
r


≥ r

= Rε > (R + ν)ε.

Using the definition of τ , we deduce the existence ofM >  such that

sup
t≥M

d(zin , yt) ≤ τ (zin ) +
ν


≤ R + ν,

and

sup
t≥M

d(zjn , yt)≤ τ (zjn ) +
ν


≤ R + ν.

Hence

d
(
zin ⊕ zjn


, yt

)
≤ (R + ν)

(
 – δ(R + ν, ε)

)
,

for any t ≥ M. Since (M,d) is uniformly convex, there exists η(R, ε) >  such that δ(R +
ν, ε) ≥ η(R, ε), for any ν > . Hence

d
(
zin ⊕ zjn


, yt

)
≤ (R + ν)

(
 – η(R, ε)

)
,

for any t ≥ M. So

τ

(
zin ⊕ zjn



)
≤ sup

t≥M
d
(
zjn ⊕ zjn


, yt

)
≤ (R + ν)

(
 – η(R, ε)

)
.

Using the definition of R, we get

R ≤ (R + ν)
(
 – η(R, ε)

)
,

for any ν ∈ (,R). If we let ν → , we get R ≤ R( – η(R, ε)). This contradiction implies
that {zn} is Cauchy. Since M is complete, we deduce that {zn} is convergent as claimed.
In order to finish the proof of (ii), let us show that the limit of {zn} is independent of the
minimizing sequence. Indeed let {wn} be another minimizing sequence of τ . The previous
proof will show that {wn} is also convergent. In order to prove that the limits of {zn} and
{wn} are equal, let us show that limn→∞ d(zn,wn) = . Assume not, i.e., limn→∞ d(zn,wn) =
.Without loss of generality we may assume that there exists r >  such that d(zn,wn) ≥ r,
for any n ≥ . Set ε = r

R > . Let ν ∈ (,R). Since limn→∞ τ (zn) = limn→∞ τ (wn) = R, there
exists n ≥  such that for any n≥ n, we have τ (zn) ≤ R+ ν

 , and τ (wn) ≤ R+ ν
 . Fixn≥ n.

Then

d(zn,wn) ≥ r = Rε > (R + ν)ε.

Using the definition of τ , we deduce the existence ofM >  such that

sup
t≥M

d(zn, yt) ≤ τ (zn) +
ν


≤ R + ν,

http://www.fixedpointtheoryandapplications.com/content/2013/1/230
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and

sup
t≥M

d(wn, yt) ≤ τ (wn) +
ν


≤ R + ν.

Hence

d
(
zn ⊕wn


, yt

)
≤ (R + ν)

(
 – δ(R + ν, ε)

)
,

for any t ≥ M. Since (M,d) is uniformly convex, there exists η(R, ε) >  such that δ(R +
ν, ε) ≥ η(R, ε) for any ν > . Hence

d
(
zn ⊕wn


, yt

)
≤ (R + ν)

(
 – η(R, ε)

)
,

for any t ≥ M. So

τ

(
zn ⊕wn



)
≤ sup

t≥M
d
(
zn ⊕wn


, yt

)
≤ (R + ν)

(
 – η(R, ε)

)
.

Using the definition of R, we get

R ≤ (R + ν)
(
 – η(R, ε)

)

for any ν ∈ (,R). If we let ν → , we get R ≤ R( –η(R, ε)). This contradiction implies that
limn→∞ d(zn,wn) = , which completes the proof. �

4 Main result
Using the Lemma ., we are ready to prove the main fixed point result for asymptotic
pointwise nonexpansive semigroup in metric spaces.

Theorem . Let (M,d) be a uniformly convex metric space. Let C be a closed bounded
convex nonempty subset of M. Let F = {Tt ; t ≥ } be an asymptotically pointwise nonex-
pansive semigroup on C. Then F has a common fixed point and the set Fix(F ) of common
fixed points is closed and convex.

Proof Let us fix x ∈ C and define the type function τ on C by

τ (z) = inf
M>

(
sup
t≥M

d
(
Tt(x), z

))
.

Since C is bounded, we get τ (z) < +∞, for any z ∈ C. Hence τ = inf{τ (z); z ∈ C} exists. For
any n≥ , there exists zn ∈ C, such that

τ ≤ τ (zn) < τ +

n
.

Therefore, limn→∞ τ (zn) = τ, i.e., {zn} is aminimizing sequence for τ . By using Lemma .,
there exists z ∈ C such that {zn} converges to z. Let us now prove that z ∈ Fix(F ). Note

http://www.fixedpointtheoryandapplications.com/content/2013/1/230
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that

d
(
Ts+t(x),Ts(w)

) ≤ αs(w)d
(
Tt(x),w

)

for s, t >  and w ∈ C. Using the definition of τ , we get

τ
(
Ts(w)

) ≤ sup
t+s≥M

d
(
Ts+t(x),Ts(w)

) ≤ αs(w) sup
t≥M–s

d
(
Tt(x),w

)
,

for anyM > s, which implies that

τ
(
Ts(w)

) ≤ αs(h)τ (w). (.)

Since lim sups→∞ αs(z) ≤ , there exists s >  such that for any s ≥ s, we have αs(z) <
 + . Repeating this argument, one will find s > s +  such that for any s ≥ s, we have
αs(z) < + 

 . By induction, wewill construct a sequence {sn} of positive numbers such that
sn+ < sn + 

n , and for any s≥ sn, we have αs(zn) <  + 
n . Let us fix t ≥ . Then the inequality

(.) will imply that

τ
(
Tsn+t(zn)

) ≤ αsn+t(zn)τ (zn) ≤
(
 +


n

)
τ (zn)

for any n≥ . In particular we get {Tsn+t(zn)} is a minimizing sequence of τ . Therefore, the
technical Lemma . will imply that {Tsn+t(zn)} converges to z, for any t ≥ . In particular,
{Tsn (zn)} converges to z. Since

d
(
Tsn+t(zn),Tt(z)

) ≤ αt(z)d
(
Tsn (zn), z

)
,

we get {Tsn+t(zn)} converges to Tt(z). Finally, using

d
(
Tt(z), z

) ≤ d
(
Tt(z),Tsn+t(zn)

)
+ d

(
Tsn+t(zn), z

)
,

we getTt(z) = z. Since t was arbitrarily positive, we get z ∈ Fix(F ), i.e., Fix(F ) is nonempty.
Next, let us prove that Fix(F ) is closed. Let {zn} be in Fix(F ), which converges to z. Since

d
(
Ts(zn),Ts(z)

) ≤ αs(z)d(zn, z),

for any n ≥  and s > , we get {Ts(zn)} is convergent, and its limit is Ts(z). Since zn ∈
Fix(F ), we get {Ts(zn)} = {zn}. In other words, {zn} converges to Ts(z) and z. The unique-
ness of the limit, will then imply Ts(z) = z, for any s≥ , i.e., z ∈ Fix(F ). Therefore, Fix(F )
is closed. Let us finish the proof of Theorem . by showing that Fix(F ) is convex. It is
sufficient to show that

z =
z ⊕ z


∈ Fix(F )

for any z, z ∈ Fix(F ). Without loss of generality, we assume that z = z. Let s > . We
have

d
(
z,Ts(z)

)
= d

(
Ts(z),Ts(z)

) ≤ αs(z)d(z, z)

http://www.fixedpointtheoryandapplications.com/content/2013/1/230
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and

d
(
z,Ts(z)

)
= d

(
Ts(z),Ts(z)

) ≤ αs(z)d(z, z).

Since d(z, z) = d(z, z) = d(z,z)
 , and

d(z, z) ≤ d
(
z,Ts(z)

)
+ d

(
z,Ts(z)

) ≤ αs(z)d(z, z),

we conclude that

lim
s→∞d

(
z,Ts(z)

)
= lim

s→∞d
(
z,Ts(z)

)
=
d(z, z)


.

Similarly, we have

d
(
z,

z⊕ Ts(z)


)
≤ 


d(z, z) +



d
(
z,Ts(z)

)
,

and

d
(
z,

z⊕ Ts(z)


)
≤ 


d(z, z) +



d
(
z,Ts(z)

)
.

Since

d(z, z) ≤ d
(
z,

z⊕ Ts(z)


)
+ d

(
z,

z⊕ Ts(z)


)
,

we conclude that

lim
s→∞d

(
z,

z⊕ Ts(z)


)
= lim

s→∞d
(
z,

z⊕ Ts(z)


)
=
d(z, z)


.

Therefore, we have

lim
s→∞d

(
z,Ts(z)

)
= lim

s→∞d
(
z,

z⊕ Ts(z)


)
=
d(z, z)


.

Lemma . will then imply that

lim
s→∞d

(
z,Ts(z)

)
= .

Hence lims→∞ d(z,Ts+t(z)) =  for any t ≥ . Since

d
(
Tt(z),Ts+t(z)

) ≤ αt(z)d
(
z,Ts(z)

)
,

we get lims→∞ d(Tt(z),Ts+t(z)) = . Finally, using the inequality

d
(
z,Tt(z)

) ≤ d
(
z,Ts+t(z)

)
+ d

(
Tt(z),Ts+t(z)

)
,

and letting s → ∞, we get Tt(z) = z for any t ≥ , i.e., z ∈ Fix(F ). �
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