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0. Introduction

The theory of modular spaces was initiated by Nakano [14] in 1950 in connection
with the theory of order spaces and rede8ned and generalized by Musielak and Orlicz
[13] in 1959. De8ning a norm, particular Banach spaces of functions can be consid-
ered. Metric 8xed theory for these Banach spaces of functions has been widely studied
(see, for instance, [15]). Another direction is based on considering an abstractly given
functional which controls the growth of the functions. Even though a metric is not
de8ned, many problems in 8xed point theory for nonexpansive mappings can be refor-
mulated in modular spaces (see, for instance, [8] and references therein). In this paper,
we study the existence of 8xed points for a more general class of mappings: uniformly
Lipschitzian mappings. Fixed point theorems for this class of mappings in Banach
spaces have been studied in [2,3] and in metric spaces in [11,12] (for further informa-
tion about this subject, see [1, Chapter VIII] and references therein). The main tool in
our approach is the coeAcient of normal structure Ñ(L�). We prove that under suitable
conditions a k-uniformly Lipschitzian mapping has a 8xed point if k ¡ ( Ñ(L�))−1=2.
In the last section we show a class of modular spaces where Ñ(L�)¡ 1 and so, the
above theorem can be successfully applied.
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1. Preliminaries

We start by recording a brief collection of basic concepts and facts of modular spaces
as formulated by Kozlowski. For more details the reader is refered to [7,8,10,13].
Let J be a nonempty set and K be a nontrivial �-algebra of subsets of J. Let P be

a �-ring of subsets of K, such that E ∩A∈P for any E ∈P and A∈K. Let us assume
that there exists an increasing sequence of sets Kn ∈P such that J=

⋃
Kn. In other

words, the family P plays the role of the �-ring of subsets of 8nite measure. By E
we denote the linear space of all simple functions with supports from P. By M we
will denote the space of all measurable functions, i.e. all functions f : J → R such
that there exists a sequence {gn}∈E; |gn| ≤ |f| and gn(!) → f(!) for all !∈J. By
1A we denote the characteristic function of the set A.

De�nition 1.1. A functional � : E× K → [0;∞] is called a function modular if
(P1) �(0; E)= 0 for any E ∈K,
(P2) �(f; E) ≤ �(g; E) whenever |f(!)| ≤ |g(!)| for any !∈J, f; g∈E and E ∈K,
(P3) �(f; :) : K → [0;∞] is a �-subadditive measure for every f∈E,
(P4) �(�; A) → 0 as � decreases to 0 for every A∈P, where �(�; A)= �(�1A; A),
(P5) if there exists �¿ 0 such that �(�; A)= 0, then �(�; A)= 0 for every �¿ 0,
(P6) for any �¿0 �(�; :) is order continuous on P, that is �(�; An)→0 if {An}∈P and

decreases to ∅.

The de8nition of � is then extended to f∈M by

�(f; E)= sup{�(g; E); g∈E; |g(!)| ≤ |f(!) |!∈J}:

A set E is said to be �-null if �(�; E)= 0 for every �¿ 0. For the sake of simplicity
we write �(f) instead of �(f;J).
It is easy to see that the functional � :M → [0;∞] is a modular because it satis8es

the following properties:
(i) �(f)= 0 iN f=0 �-a.e.
(ii) �(�f)= �(f) for every scalar � with |�|=1 and f∈M.
(iii) �(�f + �g) ≤ �(f) + �(g) if �+ �=1; � ≥ 0; � ≥ 0 and f; g∈M.
In addition, if the following property is satis8ed
(iii)′ �(�f + �g) ≤ ��(f) + ��(g) if � + �=1; � ≥ 0; � ≥ 0 and f; g∈M, we say

that � is a convex modular.
The modular � de8nes a corresponding modular space, i.e the vector space L� given by

L� = {f∈M; �(�f) → 0 as � → 0}:

We can also consider the space E� = {f∈M; �(�f; An) → 0 as n → ∞ for every
An ∈K that decreases to ∅ and �¿ 0}.
A function modular is said to satisfy the O2-condition if supn≥1 �(2fn; Dk) → 0 as

k → ∞ whenever {fn}n≥1 ⊂M; Dk ∈K decreases to ∅ and supn≥1 �(fn; Dk) → 0 as
k → ∞. We know (see [10]) that E� =L� when � satis8es the O2-condition. When �
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is convex, the formula

‖f‖� = inf
{
�¿ 0; �

(
f
�

)
≤ 1

}

de8nes a norm in the modular space L� which is frequently called the Luxemburg
norm.

De�nition 1.2. (1) The sequence {fn}n ⊂L� is said to be �-convergent to f∈L� if
�(fn − f) → 0 as n → ∞,
(2) The sequence {fn}n ⊂L� is said to be �-a.e. convergent to f∈L� if the set

{!∈J;fn(!) 9 f(!)} is �-null.
(3) The sequence {fn}n ⊂L� is said to be �-Cauchy if �(fn − fm) → 0 as n and

m go to ∞,
(4) A subset C of L� is called �-closed if the �-limit of a �-convergent sequence

of C always belongs to C.
(5) A subset C of L� is called �-a.e. sequentially closed if the �-a.e. limit of a �-a.e.

convergent sequence of C always belongs to C.
(6) A subset C of L� is called �-a.e. sequentially compact if every sequence in C

has a �-a.e. convergent subsequence in C.
(7) A subset C of L� is called �-bounded if

��(C)= sup{�(f − g);f; g∈C}¡∞:

Let B be a bounded subset of L�. We de8ne the �-ball of center f∈L� and
radius r ¿ 0 by B(f; r)= {g∈L�; �(g − f) ≤ r}. We will denote r(f; B)= sup{�
(f − g); g∈B}; �(B)= sup{r(f; B); f∈B}; R(B)= inf{r(f; B); f∈B}. We de8ne
the admissible hull of B as the intersection of all �-ball containing B, i.e.

ad(B)=
⋂

{A: B⊂A⊂L�; where A is a �-ball}:

B is said admissible if ad(B)=B. We de8ne the normal structure coeAcient Ñ(L�) of
L� by

Ñ(L�)= sup {R(B)=�(B); B is admissible; �-bounded and

�-a:e: sequentially compact}:
The useful following proposition is easily seen:

Proposition 1.1. Let B be a �-bounded subset of L� and f∈L�. Then
(1) r(f; ad(B))= r(f; B).
(2) �(ad(B))= �(B).

We say that � satis8es the O2-type condition if there exists K ¿ 0 such that �(2f) ≤
K�(f) for all f∈L�. In general, O2-type condition and O2-condition are not equiv-
alent, even though it is obvious that O2-type condition implies O2-condition. Assume
that � is convex and satis8es the O2-type condition. We de8ne a growth function



270 T. Dominguez Benavides et al. / Nonlinear Analysis 46 (2001) 267–278

! by

!(t)= sup
{
�(tf)
�(f)

; 0¡�(f)¡∞
}

for all 0 ≤ t ¡∞:

The following properties of the growth function can be easily seen.

Lemma 1.1. Let � be a convex function modular satisfying the O2-type condition.
Then the growth function ! has the following properties:
(1) !(t)¡∞; ∀t ∈ [0;∞).
(2) ! : [0;∞) → [0;∞) is a convex; strictly increasing function. So; it is continuous.
(3) !(��) ≤ !(�)!(�);∀�; �∈ [0;∞).
(4) !−1(�)!−1(�) ≤ !−1(��);∀�; �∈ [0;∞); where !−1 is the function inverse

of !.

The following lemma shows that the growth function can be used to give an upper
bound for the norm of a function.

Lemma 1.2 (Dominguez Benavides et al. [4]). Let � be a convex function modular
satisfying the O2-type condition. Then

‖f‖� ≤ 1
!−1(1=�(f))

whenever f∈L�:

The following lemma can be found in [7].

Lemma 1.3. Let � be a function modular satisfying the O2-condition and {fn}n be a
sequence in L� such that fn

�-a:e:→ f∈L� and there exists k ¿ 1 such that supn �(k(fn−
f))¡∞. Then;

lim inf
n→∞ �(fn − g)= lim inf

n→∞ �(fn − f) + �(f − g) for all g∈L�:

Lemma 1.4. Let � be a modular function satisfying the O2-type condition. Let B be
a �-a.e. sequentially closed and �-bounded subset of L�. Let {gn}n be a sequence in
B such that gn

�-a:e:→ g. Then;
(1) �(g) ≤ lim inf n→∞ �(gn).
(2) B(0; r) ∩ B is �-a.e. sequentially closed.
(3) ad(A) ∩ B is �-a.e. sequentially closed; for all A⊂L�.

Proof. Condition (1) is a straighforward consequence of Lemma 1.3 applied to the
sequence gn

�-a:e:→ g and the null function. Conditions (2) and (3) can be easily deduced
from (1).

2. Fixed point for uniformly Lipschitzian mappings

The following lemma is the key of our 8xed point result.



T. Dominguez Benavides et al. / Nonlinear Analysis 46 (2001) 267–278 271

Lemma 2.1. Let � be a modular function satisfying the O2-type condition and B a
�-bounded and �-a.e. sequentially compact subset of L�. Let {fn}n and {gn}n be
sequences in B. Then; there exists g∈ ⋂∞

n= 1 ad(gj; j ≥ n) ∩ B such that

lim sup
n→∞

�(g− fn) ≤ lim sup
j→∞

lim sup
n→∞

�(gj − fn)

Proof. Let {fn}n and {gn}n be sequences in B. We de8ne #(h)= lim supn→∞ �(h−fn)
for all h∈B. Since B is �-sequentially compact and �-bounded, there exist a sub-
sequence {g$(n)}n ⊂{gn}n such that g$(n)

�-a:e:→ g and a subsequence {f (n)}n ⊂{fn}n
such that limn→∞ �(f (n) − g)= lim supn→∞ �(fn − g) and f (n)

�-a:e:→ f∈B. Since
g$(n) ∈ ad(gj; j ≥ n)∩B which is �-a.e. sequentially closed (by property (3) of Lemma

1.4) and g$(n)
�-a:e:→ g; we obtain g∈ ad(gj; j ≥ n) ∩ B for all n ≥ 1. We will see that

#(g) ≤ lim supj→∞ #(gj). Indeed, from Lemma 2.3 we have #(gj)= lim supn→∞ �(fn−
gj) ≥ lim inf n→∞ �(f (n) − gj)= lim inf n→∞ �(f (n) − f) + �(f − gj). Thus, again
using Lemma 2.3, we obtain

lim sup
j→∞

#(gj) ≥ lim inf
n→∞ �(f (n) − f) + lim sup

j→∞
�(f − gj)

≥ lim inf
n→∞ �(f (n) − f) + lim inf

j→∞
�(f − g$( j))

= lim inf
n→∞ �(f (n) − f) + lim inf

j→∞
�(g$( j) − g) + �(f − g):

On the other hand, #(g)= lim supn→∞ �(fn − g)= lim inf n→∞ �(f (n) − g)=
lim inf n→∞ �(f (n) − f) + �(f − g). Therefore, #(g) ≤ lim supj→∞ #(gj).

The following lemma is inspired on [2] where a similar lemma is proved in rePexive
Banach spaces (see also [12, Lemma 6] for a version in metric spaces with additional
properties).

Lemma 2.2. Let � be a function modular satisfying the O2-type condition and B an
be admissible; �-a.e. sequentially compact and �-bounded subset of L�. Let {fn} be
a sequence in B and c a constant such that c¿ Ñ (L�). Then there exists f∈B such
that
(1) lim supn→∞ �(f − fn) ≤ c�({fn}n).
(2) �(f − g) ≤ lim supn→∞ �(fn − g) for all g∈B.

Proof. Let {fn}n be a sequence of B. Denote Am = ad(fj: j ≥ m)⊂B and A=⋂∞
m= 1 Am. Since B is �-a.e. sequentially compact, there exists a subsequence of

{fn}n �-a.e. convergent, say to h. It is clear that h∈A and so A �= ∅. Furthermore,
from Proposition 1.1(2), we have �(An) ≤ �({fn}n). On the other hand, for any f∈A
and g∈B we have �(g−f) ≤ r(g; A) ≤ r(g; An)= r(g; {fj: j ≥ n})= supj≥n �(g−fj).
Therefore, �(g − f) ≤ lim supn→∞ �(g − fn) and (2) holds for any f∈A. We will
prove that there exists f∈A satisfying (1). Without loss of generality we may assume
that �({fn}n)¿ 0. Choose (¿ 0 such that Ñ(L�)�({fn}n)+( ≤ c�({fn}n). By de8ni-
tion of R(An), there exists gn ∈An such that r(gn; An)¡R(An)+ ( ≤ Ñ(L�)�(An)+ ( ≤
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Ñ(L�)�({fn}n) + ( ≤ c�({fn}n). Since r(gn; An)= r(gn; {fj}j≥n)= supj≥n �(gn − fj);
we have

lim sup
j→∞

�(gn − fj) ≤ c�({fn}n): (A)

Using Lemma 2.5, there exists f∈ ⋂∞
n= 1 ad(gi; i ≥ n) such that

lim sup
j→∞

�(f − fj) ≤ lim sup
n→∞

lim sup
j→∞

�(gn − fj): (B)

We will check that f∈A. Indeed, for all i; n integers such that i ≥ n we have
gi ∈Ai ⊂An. Thus, {gi}i≥n ⊂An which implies ad(gi; i ≥ n)⊂An and f∈A. Using
(B) and (A) it is clear that lim supj→∞ �(f − fj) ≤ c�({fn}n).

Theorem 2.1. Let � be a convex function modular satisfying the O2-condition and
B an admissible; �-a.e. sequentially compact and �-bounded subset of L�. Suppose
that Ñ(L�)¡ 1 and let T :B → B be a k-uniformly Lipschitzian mapping satisfying
k ¡ ( Ñ(L�))−1=2. Then; T has a 7xed point.

Proof. We can assume that k ¿ 1; otherwise T will be nonexpansive and the ex-
istence of a 8xed point is a consequence of [8, Theorem 3.5]. Choose a constant
c; Ñ(L�)¡c¡ 1 such that 1¡k ¡c−1=2. Fix f0 ∈B. By Lemma 2.6, we can induc-
tively construct a sequence {fj}j≥0 ⊂B such that for each j ≥ 0
(1) lim supn→∞ �(Tn(fj)− fj+1) ≤ c�({Tn(fj)}n).
(2) �(fj+1 − g) ≤ lim supn→∞ �(Tn(fj)− g) for all g∈B.
Denote Dj = lim supn→∞ �(Tn(fj)− fj+1) and h= ck2 ¡ 1. For n ≥ m ≥ 0; we have

�(Tmfj − Tnfj)≤ k�(fj − Tn−mfj)

≤ k lim sup
i→∞

�(T ifj−1 − Tn−mfj)

≤ k2 lim sup
i→∞

�(T i−(n−m)fj−1 − fj)

≤ k2Dj−1:

Since Dj = lim supn→∞ �(Tn(fj)−fj+1) ≤ c�({Tn(fj)}n); we obtain Dj ≤ ck2Dj−1 =
hDj−1. Thus, Dj ≤ hjD0 and we have

�(fj+1 − fj)≤!(2)(�(fj+1 − Tnfj) + �(fj − Tnfj))

≤!(2)(�(fj+1 − Tnfj) + lim sup
m→∞

�(Tmfj−1 − Tnfj))

≤!(2)(�(fj+1 − Tnfj) + k lim sup
m→∞

�(Tm−nfj−1 − fj))

≤!(2)(�(fj+1 − Tnfj) + kDj−1):

Taking lim sup as n → ∞; we obtain

�(fj+1 − fj)≤!(2)(Dj + kDj−1)
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≤!(2)(hj + khj−1)D0

≤!(2)(h+ k)hj−1D0

≤ Ahj; where A=!(2)
h+ k
h

D0:

Hence, there exists an integer N and some �¡ 1 such that for j¿N we have
�(fj+1−fj) ≤ �j; which implies 1=�j ≤ 1=�(fj+1−fj). Using properties (2) and (3)
of Lemma 1.1 we obtain

!−1
(

1
�j

)
≤ !−1

(
1

�(fj+1 − fj)

)

and (
!−1

(
1
�

))j

≤ !−1
(

1
�(fj+1 − fj)

)
:

Therefore, by Lemma 2.2 we have

‖fj+1 − fj‖� ≤ 1

!−1

(
1

�(fj+1 − fj)

) ≤ 1(
!−1

(
1
�

))j :

Hence {fj} is a Cauchy sequence in (L�; ‖ : ‖�); there exists f∈L� such that ‖fj −
f‖� → 0, because (L�; ‖ : ‖�) is complete. Since under O2-condition norm-convergence
and modular-convergence are identical, {fj} is modular convergent to f. Thus, there
exists a subsequence of {fj}j �-a.e. convergent to f [1, Theorem 1] and f belongs
to B because B is �-a.e. sequentially closed. We will prove that f is a 8xed point of
T . Indeed,

�(f − Tf)≤!(3)(�(f − fj+1) + �(fj+1 − Tnfj) + �(Tnfj − Tf))

≤!(3)(�(f − fj+1) + �(fj+1 − Tnfj) + k�(Tn−1fj − f))

≤!(3)g(�(f − fj+1) + �(fj+1 − Tnfj)

+ k!(2)(�(Tn−1fj − fj+1) + �(fj+1 − f))g):

Taking limsup as n → ∞; we have

�(f − Tf) ≤ !(3)(�(f − fj+1) + Dj + k!(2)(Dj + �(fj+1 − f))):

Now, taking lim as j → ∞; we obtain �(f − Tf)= 0; i.e. T (f)=f.

3. Uniformly convex modular spaces

Our goal in this section is to give some classes of modular funtions spaces such
that Ñ(L�)¡ 1. We begin by recalling the de8nitions of �-modulus of uniform
convexity [9].
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For any ( and any r ¿ 0, the �-modulus of uniform convexity is de8ned by

��(r; () = inf
{
1− 1

r
�
(
f + g
2

)
; �(f) ≤ r; �(g) ≤ r; �

(
f − g
2

)
≥ r(

}

= inf
{
1− 1

r
�
(
f +

h
2

)
; �(f) ≤ r; �(f + h) ≤ r; �

(
h
2

)
≥ r(

}
:

This following lemma gives a relationship between Ñ(L�) and the �-modulus of uni-
form convexity.

Lemma 3.1. Let � be a convex function modular satisfying O2-condition. Then;

Ñ (L�) ≤ 1− inf
d¿0

��(d; +) for all +∈
(
0;

1
!(2)

)
:

Proof. Let B be an admissible, �-bounded and �-a.e. sequentially compact subset of
L�. We know that B is a convex set because it is an intersection of �-balls which
are convex, as a consequence of the convexity of �. Denote d= �(B) and r=R(B).
Let (∈ (0; 1). There exist f; g∈B such that �(f− g) ≥ (�(B). Hence �((f− g)=2) ≥
�(f − g)=!(2) ≥ (d− ()=!(2). Let h∈B. We know that �(h− f) ≤ d, �(h− g) ≤ d
and �((h− f)− (h− g)=2) ≥ d(=!(2). By de8nition of ��(d; (=!(2)); we have

�
(
h− f + g

2

)
= �

(
(h− f) + (h− g)

2

)

≤ d
(
1− ��

(
d;

(
!(2)

))

for all h∈B. Thus,

r
d
≤ 1− ��

(
d;

(
!(2)

)
:

Therefore,

Ñ (L�)≤ sup
d¿0

(
1− ��

(
d;

(
!(2)

))

≤ 1− inf
d¿0

��

(
d;

(
!(2)

)
:

Let R :R → R+ is said to be an N -function if R is a convex symmetric function which
satis8es
1. R(0)= 0
2. R is strictly increasing on [0;∞)
3. limu→0 R(u)=u=0 and limu→∞R(u)=u=∞.
Let (G;K; .) be a measure space, . being 8nite and atomless. Consider the space
L0(G) consisting of all measurable real-valued functions on G, and de8ne the Orlicz
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function modular �(f; B)=
∫
t ∈ B R(f(t)) d.(t) for every f∈L0(G) and B∈K. The

modular function space L� is the Orlicz space de8ned by

L� = {f∈L0(G); �(�f)¡∞ for some �¿ 0}:
If R satis8es the O2-condition at zero and at in8nity i.e. lim supu→0 R(2u)=R(u)¡∞
and lim supu→∞R(2u)=R(u)¡∞; the convex Orlicz modular associated to R satis8es
the O2-type condition. We recall that the function R is said to be uniformly convex
[8] if for all (¿ 0 there exists �(()∈ (0; 1) such that

0 ≤ u and v ≤ (u implies R
(
u+ v
2

)
≤ (1− �(())

R(u) + R(v)
2

:

(Some equivalent de8nitions can be found in [6].)
The following lemma connects the uniform convexity of R and the �-modulus of

uniform convexity of the modular.

Lemma 3.2. Let R be a uniformly convex; N-function satisfying the O2-condition at
zero and at in7nity and � the Orlicz function modular associated to R. Then there
exists (0 ∈ (0; 1); such that for every (∈ ((0; 1) there exists +(()∈ (0; 1=!(2)) with
inf r¿0 ��(r; +(())¿ 0:

Proof. We can 8nd (0 ∈ (0; 1) such that (1− ()=2(¡ 1=!(2) for all (∈ ((0; 1); Choose
(∈ ((0; 1). By de8nition of uniform convexity, there exists �(()∈ (0; 1) such that

0 ≤ u and v ≤ (u implies R
(
u+ v
2

)
≤ (1− �(())

R(u) + R(v)
2

:

Choose +(()¿ 0 such that (1− ()=2(¡+(()¡ 1=!(2). Let r be a positive number and
consider functions f; g∈L� such that �(f) ≤ r; �(f + g) ≤ r and �(h=2) ≥ r+(().
We consider the following sets:

G1 = {t ∈G=0 ≤ f(t); f(t)¡((f(t) + h(t))};
G2 = {t ∈G=0 ≤ f(t); f(t) + h(t)¡(f(t)};
G3 = {t ∈G=f(t)¡ 0; ((f(t) + h(t)) ≤ f(t)};
G4 = {t ∈G=f(t)¡ 0; (f(t) ≤ f(t) + h(t)}:

We have

�
(
f +

h
2

)
=

∫
G\ i= 4

i= 1 Gi

R
(
f(t) +

h(t)
2

)
dt +

∫
i= 4
i= 1 Gi

R
(
f(t) +

h(t)
2

)
dt:

Using the de8nition of the uniform convexity for the function R on G1; G2; G3 and G4

we obtain

R
(
f(t) + (f(t) + h(t))

2

)
≤ (1− �(())

R(f(t)) + R(f(t) + h(t))
2
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for every t ∈ ⋃i= 4
i= 1 Gi. Hence, using the convexity of R in G \⋃i= 4

i= 1 Gi we have∫
G
R
(
f(t) +

h(t)
2

)
dt ≤

∫
G\ i= 4

i= 1 Gi

R
(
f(t) +

h(t)
2

)
dt

+(1− �(())
∫

i= 4
i= 1 Gi

R(f(t)) + R(f(t) + h(t))
2

dt

≤
∫
G\ i= 4

i= 1 Gi

R(f(t)) + R(f(t) + h(t))
2

dt

+(1− �(())
∫

i= 4
i= 1 Gi

R(f(t)) + R(f(t) + h(t))
2

dt

=
∫
G

R(f(t)) + R(f(t) + h(t))
2

dt

− �(()
∫

i= 4
i= 1 Gi

R(f(t)) + R(f(t) + h(t))
2

dt

≤ r − �(()
∫

i= 4
i= 1 Gi

R
(
h(t)
2

)
dt; (I)

where the last inequality is again a consequence of the convexity and symmetry of R,
because

R
(
h(t)
2

)
= R

(
(f(t) + h(t))− f(t)

2

)

≤ R(f(t) + h(t)) + R(−f(t))
2

=
R(f(t) + h(t)) + R(f(t))

2
:

We claim that

R
(
h(t)
2

)
≤ 1− (

2(
R(f(t)) (II)

for every t ∈G \⋃i= 4
i= 1 Gi. To prove this inequality we will consider two cases:

Case 1: Assume f(t) ≥ 0. Since t ∈G \⋃i= 4
i= 1 Gi we have

−1− (
2(

f(t) ≤ h(t)
2

≤ 1− (
2(

f(t):

Therefore, by the symmetry and convexity of R; we obtain

R
(
h(t)
2

)
=R

(∣∣∣∣h(t)2
∣∣∣∣
)

≤ R
(
1− (
2(

f(t)
)

≤ 1− (
2(

R(f(t)):
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Case 2: Assume f(t)¡ 0. Since t ∈G \⋃i= 4
i= 1 Gi we have

− (− 1
2(

f(t)¡
h(t)
2

¡
(− 1
2(

f(t)

and we obtain

R
(
h(t)
2

)
=R

(∣∣∣∣h(t)2
∣∣∣∣
)

¡
1− (
2(

R(f)

as above.
Thus we proved the inequality (II). Hence,∫

G\ i= 4
i= 1 Gi

R
(
h(t)
2

)
dt ≤ 1− (

2(

∫
G\ i= 4

i= 1 Gi

R(f(t)) dt

≤ 1− (
2(

r

and we obtain∫
i= 4
i= 1 Gi

R
(
h(t)
2

)
dt =

∫
G
R
(
h(t)
2

)
dt −

∫
G\ i= 4

i= 1 Gi

R
(
h(t)
2

)
dt

≥ r+(()− 1− (
2(

r: (III)

From inequalities (I) and (III) we obtain

�
(
f +

h
2

)
≤ r

(
1− �(()

(
+(()− 1− (

2(

))

and

�(()
(
+(()− 1− (

2(

)
≤ 1− �

(
f + h

2

)
r

:

Thus

�(()
(
+(()− 1− (

2(

)
≤ ��(r; +(()) for every r ¿ 0

and therefore

inf
r¿0

��(r; +(()) ≥ �(()
(
+(()− 1− (

2(

)
¿ 0:

Using Lemmas 3.1 and 3.2 we obtain the following corollary:

Corollary 3.1. Let R be a uniformly convex N-function satisfying the O2-condition
at zero and at in7nity. Then the modular function space L� associated to R satis7es
Ñ (L�)¡ 1.

Remark 3.1. It is not diAcult to 8nd examples of functions satisfying the conditions in
the above corollary. Besides R(t)= |t|p for p¿ 1 we can obtain some other examples
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using the following result [5]: R is uniformly convex if lim supt→0 R
′(at)=R′(t)¡ 1 and

lim supt→∞R′(at)=R′(t)¡ 1 for every a∈ (0; 1). It is easy to check that R(t)= t2 −
log(1 + t2) satis8es these conditions.
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