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INTRODUCTION

Let �M�d� a metric space. A mapping T � M → M is said to be asymp-
totically nonexpansive if there exists a sequence �kn� of real numbers with
limn→∞ kn = 1 such that

d�Tnx� Tny� ≤ knd�x� y�

for any x� y ∈ M and n ∈ �. In 1970 Goebel and Kirk [5] proved that
T has a fixed point whenever M is a convex bounded closed subset of a
Banach space X. Further generalizations of this result were proved by Yu
and Dai [14] when X is 2-uniformly rotund, by Mart́ınez Yañez [10] and
Xu [12] when X is k-uniformly rotund for some k ≥ 1� by Xu [13] when
X is nearly uniformly convex, and by Kim and Xu [9] when X has uniform
normal stucture. Some special studies on the theory of the fixed point for
asymptotically nonexpansive mappings were made by many other authors
(see, for example, [2, 11]).

The first fixed point results in modular function spaces were given by
Khamsi et al. [7]. Even though a metric is not defined, many problems
in metric fixed point theory can be reformulated in modular spaces. For
instance, fixed point theorems are proved in [6, 7] for nonexpansive map-
pings, in [3] for asymptotically regular mappings, and in [4] for uniformly
Lipschitzian mappings. In this paper we will prove the existence of fixed
points for asymptotically nonexpansive mappings in modular function
spaces when the modular ρ satisfies some convexity and �2-type properties.

Our results can be, in particular, applied to L1���µ�, showing that
asymptotically nonexpansive mappings have a fixed point when they are
defined on a convex subset of L1���µ� which is compact with respect to
the topology of local convergence in measure.

1. PRELIMINARIES

We start by reviewing some basic facts about modular spaces as formu-
lated by Kozłowski [8]. For more details the reader may consult [6, 7].

Let � be a nonempty set and � be a nontrivial σ-algebra of subsets
of �. Let � be a δ-ring of subsets of �, such that E ∩ A ∈ � for any
E ∈ � and A ∈ �. Let us assume that there exists an increasing sequence
of sets Kn ∈ � such that � = ⋃

Kn. By � we denote the linear space of all
simple functions with supports from � . By � we will denote the space of
all measurable functions, i.e., all functions f � � → � such that there exists
a sequence �gn� ∈ �, 
gn
 ≤ 
f 
, and gn�ω� → f �ω� for all ω ∈ �. By 1A
we denote the characteristic function of the set A.
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Definition 1.1. A functional ρ � � × � → �0�∞� is called a function
modular if:

(P1) ρ�0� E� = 0 for any E ∈ �,
(P2) ρ�f� E� ≤ ρ�g�E� whenever 
f �ω�
 ≤ 
g�ω�
 for any ω ∈ �, f� g ∈

�, and E ∈ �,
(P3) ρ�f� �� � � → �0�∞� is a σ-subadditive measure for every f ∈ �,
(P4) ρ�α�A� → 0 as α decreases to 0 for every A ∈ � , where

ρ�α�A� = ρ�α1A�A�,
(P5) if there exists α > 0 such that ρ�α�A� = 0, then ρ�β�A� = 0 for

every β > 0,
(P6) for any α > 0� ρ�α� �� is order continuous on � , that is,

ρ�α�An� → 0 if �An� ∈ � and decreases to �.

The definition of ρ is then extended to f ∈ � by

ρ�f� E� = sup�ρ�g�E�� g ∈ �� 
g�ω�
 ≤ 
f �ω�
 for every ω ∈ ���
For the sake of simplicity we write ρ�f � instead of ρ�f���.

Definition 1.2. A set E is said to be ρ-null if ρ�α�E� = 0 for every
α > 0. A property p�w� is said to hold ρ-almost everywhere �ρ-a.e.) if the
set �w ∈ ��p�w� does not hold� is ρ-null.

For example, we will say frequently fn → f ρ-a.e.

Definition 1.3. A modular function ρ is called σ-finite if there exists
an increasing sequence of sets Kn ∈ � such that 0 < ρ�Kn� < ∞ and
� = ⋃

Kn.
It is easy to see that the functional ρ � � → �0�∞� is modular and

satisfies the following properties:

(i) ρ�f � = 0 iff f = 0ρ-a.e.
(ii) ρ�αf � = ρ�f � for every scalar α with 
α
 = 1 and f ∈ �.

(iii) ρ�αf + βg� ≤ ρ�f � + ρ�g� if α + β = 1, α ≥ 0� β ≥ 0 and
f� g ∈ �.
In addition, if the following property is satisfied

(iii)’ ρ�αf + βg� ≤ αρ�f � + βρ�g� if α + β = 1� α ≥ 0� β ≥ 0 and
f� g ∈ �,

we say that ρ is convex modular.
The modular ρ defines a corresponding modular space, i.e., the vector

space Lρ given by

Lρ = �f ∈ ��ρ�λf � → 0 as λ → 0��
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When ρ is convex, the formula

�f�ρ = inf
{
α > 0�ρ

(
f

α

)
≤ 1

}

defines a norm in the modular space Lρ which is frequently called the
Luxemburg norm. We can also consider the space

Eρ = �f ∈ ��ρ�αf�An� → 0 as n → ∞ for every An ∈ �

that decreases to � and α > 0��
Definition 1.4. A function modular is said to satisfy the �2-condition if

sup
n≥1

ρ�2fn�Dk� → 0 as k → ∞ whenever �fn�n≥1 ⊂ ��Dk ∈ �

decreases to � and sup
n≥1

ρ�fn�Dk� → 0 as k → ∞�

We know from [8] that Eρ = Lρ when ρ satisfies the �2-condition.

Definition 1.5. A function modular is said to satisfy the �2-type condi-
tion if there exists K > 0 such that for any f ∈ Lρ we have ρ�2f � ≤ Kρ�f �.

In general, the �2-type condition and �2-condition are not equiva-
lent, even though it is obvious that the �2-type condition implies the
�2-condition on the modular space Lρ.

Definition 1.6. Let Lρ be a modular space.

(1) The sequence �fn�n ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if
ρ�fn − f � → 0 as n → ∞.

(2) The sequence �fn�n ⊂ Lρ is said to be ρ-a.e. convergent to f ∈ Lρ

if the set �ω ∈ �� fn�ω� �→ f �ω�� is ρ-null.
(3) The sequence �fn�n ⊂ Lρ is said to be ρ-Cauchy if ρ�fn − fm� →

0 as n and m go to ∞.
(4) A subset C of Lρ is called ρ-closed if the ρ-limit of a ρ-convergent

sequence of C always belongs to C.
(5) A subset C of Lρ is called ρ-a.e. closed if the ρ-a.e. limit of a

ρ-a.e. convergent sequence of C always belongs to C.
(6) A subset C of Lρ is called ρ-a.e. compact if every sequence in C

has a ρ-a.e. convergent subsequence in C.
(7) A subset C of Lρ is called ρ-bounded if

δρ�C� = sup�ρ�f − g�� f� g ∈ C� < ∞�

We recall two basic results (see [7]) in the theory of modular spaces.
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(i) If there exists a number α > 0 such that ρ�α�fn − f �� → 0� then
there exists a subsequence �gn�n of �fn�n such that gn → f ρ-a.e.

(ii) (Lebesgue’s Theorem) If fn� f ∈ �, fn → f ρ-a.e., and there
exists a function g ∈ Eρ such that 
fn
 ≤ 
g
 ρ-a.e. for all n� then �fn −
f�ρ → 0�

We know by [6, 7] that under the �2-condition the norm convergence and
modular convergence are equivalent, which implies that the norm and mod-
ular convergence are also the same when we deal with the �2-type condi-
tion. In the sequel we will assume that the modular function ρ is convex
and satisfies the �2-type condition.

Definition 1.7. Let ρ be as above. We define a growth function ω by

ω�t� = sup
{ρ�tf �
ρ�f � � f ∈ Lρ\�0�

}
for all 0 ≤ t < ∞�

We have the following:

Lemma 1.1 [3]. Let ρ be as above. Then the growth function ω has the
following properties:

(1) ω�t� < ∞, ∀t ∈ �0�∞�
(2) ω � �0�∞� → �0�∞� is a convex, strictly increasing function. So, it

is continuous.
(3) ω�αβ� ≤ ω�α�ω�β�� ∀α�β ∈ �0�∞�.
(4) ω−1�α�ω−1�β� ≤ ω−1�αβ�� ∀α�β ∈ �0�∞�� where ω−1 is the func-

tion inverse of ω.

The following lemma shows that the growth function can be used to give
an upper bound for the norm of a function.

Lemma 1.2 [3]. Let ρ be a convex function modular satisfying the
�2-type condition. Then

�f�ρ ≤ 1
ω−1

(
1/ρ�f �) whenever f ∈ Lρ�

The next lemma will be of major interest throughout this work.

Lemma 1.3 [6]. Let ρ be a function modular satisfying the �2-condition
and �fn�n be a sequence in Lρ such that fn

ρ−a�e−→ f ∈ Lρ and there exists
k > 1 such that supn ρ�k�fn − f �� < ∞. Then,

lim inf
n→∞ ρ�fn − g� = lim inf

n→∞ ρ�fn − f � + ρ�f − g� for all g ∈ Lρ�

Moreover, we have

ρ�f � ≤ lim inf
n→∞ ρ�fn��
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2. AN EQUIVALENT TOPOLOGY

The concept of ρ-a.e. closed, compact sets has been studied extensively
in the sequential case. One of the problems that many authors have found
hard to circumvent is whether these notions are related to a topology. In
this section we will discuss this problem. In particular, we will construct
a topology τ for which the ρ-a.e. compactness is equivalent to the usual
compactness for τ� This is crucial when we try to use Zorn’s lemma.

From now on, we assume that the modular function ρ is, in addition,
σ-finite. Set

d�f� g� =
∞∑
k=1

1
2k

1
ρ
(
1Kk

)ρ( 
f − g

1 + 
f − g
1Kk

)
for any f� g ∈ Lρ�

Some basic properties satisfied by d are discussed in the following
proposition.

Proposition 2.1. The functional d satisfies the following:

(1) d�f� g� = 0 if and only if f = g ρ-a.e.;
(2) d�f� g� = d�g� f �;
(3) d�f� g� ≤ ω�2�

2

(
d�f� h� + d�h� g�);

for any f� g, and h in Lρ.

Proof. Parts (1) and (2) are obvious. To prove (3) we only need to recall
the inequality


a+ b

1 + 
a+ b
 ≤


a

1 + 
a
 +


b

1 + 
b


for all positive numbers a� b and use the definition of the growth
function ω.

Remark 2�1. The functional d is not a distance because of (3). But there
are many mathematical objects which fails the triangle inequality but are
very useful tools. That is the case with d�

In the next proposition, we discuss the relationship between ρ-a.e. con-
vergence and the convergence for the functional d�

Proposition 2.2. Let ρ be a convex, σ-finite modular satisfying the
�2-type condition and �fn�n be a sequence of measurable functions. If �fn�n
is ρ-a.e. convergent to f , then

lim
n→∞d�fn� f � = 0�

Moreover, if

lim
n→∞d�fn� f � = 0�

then there exists a subsequence �fnk�k which converges ρ-a.e. to f�
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Proof. Assume that �fn�n ρ-a.e. converges to f . We will show that
limn→∞ d�fn� f � = 0. Let ε > 0 and choose N ∈ � such that

∑∞
k=N+1

1
2k <

ε. We have

lim
n→∞d�fn� f � ≤ lim

n→∞

N∑
k=1

1
2k

1
ρ
(
1Kk

)ρ( 
fn − f 

1 + 
fn − f 
1Kk

)
+ ε

=
N∑
k=1

lim
n→∞

1
2k

1
ρ
(
1Kk

)ρ( 
fn − f 

1 + 
fn − f 
1Kk

)
+ ε�

Since


fn − f 

1 + 
fn − f 
1Kk

ρ−a�e−→ 0 as n → ∞

for any k ∈ � and �
fn − f 
/�1 + 
fn − f 
��1Kk
≤ 1Kk

, from Lebesgue’s
Theorem we obtain limn→∞ ρ��
fn − f 
/�1 + 
fn − f 
��1Kk

� = 0 for every
nonnull integer k. Thus limn→∞ d�fn� f � ≤ ε for each ε > 0 which means
that limn→∞ d�fn� f � = 0.

Assume now that limn→∞ d�fn� f � = 0. For every nonnull integer k we
have

lim
n→∞ρ

( 
fn − f 

1 + 
fn − f 
1Kk

)
= 0�

Thus, there exists a subsequence �f 1
n�n of �fn�n such that �
f 1

n − f 
/�1 +

f 1
n − f 
��1K1

ρ−a�e−→ 0 and so f 1
n

ρ−a�e−→ f in K1, i.e., limn→∞ f 1
n �x� = f �x�

whenever x ∈ K1\A1 where A1 ⊂ K1 and ρ�1A1
� = 0.

By induction and using a diagonal argument we obtain a subsequence of
�fn�n which converges ρ-a.e. to f.

Definition 2.1. Let C be a subset of Lρ�

(a) C is said to be d-closed iff for any sequence �fn�n in C which
d-converges to f� then we have f ∈ C�

(b) C is d-open iff Lρ\C is d-closed.
(c) C is said to be d-sequentially compact if for each sequence �fn�n

there exists a subsequence �fnk�k which d- converges to a point in C.

It is easily seen that the family of all d-open subsets of Lρ form a topol-
ogy on Lρ. Furthermore, from Proposition 2.2, d-sequentially compact sets
and ρ-a.e. compact sets are identical. On the other hand, even though d
satisfies (3) instead of the triangular inequality, the usual arguments which
prove that sequential compactness and compactness are identical in metric
spaces hold in this setting. We also have that d-sequential compactness and
d-compactness are identical.
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3. TECHNICAL LEMMAS

In the sequel we assume that ρ is a convex, σ-finite modular func-
tion satisfying the �2-type condition, C is a convex, ρ-bounded, and
ρ-a.e. compact subset of the modular function space Lρ, and T � C → C is a
ρ-asymptotically nonexpansive mapping; i.e., there exists a sequence of
positive integers �kn�n which converge to 1 such that for every n ∈ � and
f� g ∈ C we have ρ�Tnf − Tng� ≤ knρ�f − g�.
Lemma 3.1. Under the above assumptions, let �fn�n be a sequence of

elements of C� Consider the functional , � C → R defined by ,�g� =
lim supn→∞ ρ�fn − g�� Then for any sequence �gm�m in C which ρ-a.e.
converges to g ∈ C we have

,�g� ≤ lim inf
m→∞ ,�gm��

Proof. Since C is ρ-a.e. compact, there exists a subsequence �fφ�n��n of

�fn�n such that fφ�n�
ρ−a�e−→ f ∈ C and limn→∞ ρ�fφ�n� − g� = lim supn→∞

ρ�fn − g�� Hence

,�gm� = lim sup
n→∞

ρ�fn − gm�

≥ lim sup
n→∞

ρ�fφ�n� − gm�

≥ lim inf
n→∞ ρ�fφ�n� − gm��

Lemma 1.3 implies

lim inf
n→∞ ρ�fφ�n� − gm� = lim inf

n→∞ ρ�fφ�n� − f � + ρ�f − gm��

Thus, ,�gm� ≥ lim infn→∞ ρ�fφ�n� − f � + ρ�f − gm�� for any m ≤ 1� Hence

lim inf
m→∞ ,�gm� ≥ lim inf

n→∞ ρ�fφ�n� − f � + lim inf
m→∞ ρ�f − gm��

Again using Lemma 1.3, we have

lim inf
m→∞ ρ�f − gm� = lim inf

m→∞ ρ�gm − g� + ρ�g − f ��

which implies

lim inf
m→∞ ,�gm� ≥ lim inf

n→∞ ρ�fφ�n� − f � + lim inf
m→∞ ρ�gm − g� + ρ�g − f �� �I�

On the other hand,

,�g� = lim sup
n→∞

ρ�fn − g� = lim
n→∞ρ�fφ�n� − g� = lim inf

n→∞ ρ�fφ�n� − g�
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which implies

,�g� = lim inf
n→∞ ρ�fφ�n� − f � + ρ�f − g�� �II�

From (I) and (II), it is clear that

,�g� ≤ lim inf
m→∞ ,�gm��

which completes the proof.

Denote by � the family of all subsets K of C satisfying the following
property: K is a nonempty, convex, and ρ-a.e. closed subset of C such that

f ∈ K implies �ρ−a�e�f � ⊂ K� �3�1�

where �ρ−a�e�f � = �g ∈ Lρ � g = limi→∞ Tni�f �ρ-a.e for some ni ↑ ∞�.
Ordering � by inclusion, there exists a nonempty minimal element H in �
which satisfies (3.1) by using Zorn’s lemma because C is compact for the
topology generated by d.

The following lemma is the counterpart in modular function spaces of
Lemma 2.1 in [13] for Banach spaces.

Lemma 3.2. Under the above assumptions, for each f ∈ H define the
functional

rf �g� = lim sup
n→∞

ρ�Tnf − g�

for any g ∈ Lρ. Then the functional rf ��� is constant on H and this constant
is independent of f in H.

Proof. Let t > 0 and f ∈ H. Set

Ht�f � = �g ∈ H� rf �g� ≤ t��

It is easily seen that Ht�f � is convex. We claim that Ht�f � is ρ-a.e. closed.
Indeed, assume that �gm�m ∈ Ht�f � ρ-a.e. converges to g ∈ H. Using
Lemma 3.1, we get

lim sup
n→∞

ρ�Tnf − g� ≤ lim inf
m→∞ lim sup

n→∞
ρ�Tnf − gm� ≤ t�

Hence g ∈ Ht�f �, which clearly implies that Ht�f � is ρ-a.e. closed. Since H
is is ρ-a.e. compact we have that Ht�f � is ρ-a.e. compact. Next, we claim
that Ht�f � satisfies property (3.1). Indeed, let g ∈ Ht�f � and h ∈ �ρ−a�e�g�.
We need to check that h ∈ Ht�f �� By definition of �ρ−a�e�g�, there exists an
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increasing sequence of integers �ni�i such that Tni�g� ρ−a�e−→ h. Lemma 3.1
implies

rf �h� = lim sup
n→∞

ρ�Tnf − h� ≤ lim inf
i→∞

lim sup
n→∞

ρ�Tnf − Tnig�

≤ lim inf
i→∞

rf
(
Tni�g�) ≤ lim sup

i→∞
rf
(
Tni�g�) ≤ lim sup

m→∞
rf
(
Tm�g�)

≤ lim sup
m→∞

(
lim sup
n→∞

ρ�Tnf − Tmg�
)

≤ lim sup
m→∞

(
km lim sup

n→∞
ρ�Tn−mf − g�

)
≤ lim sup

m→∞
lim sup
n→∞

ρ�Tnf − g� ≤ t�

Hence h ∈ Ht�f � as claimed. The minimality of H implies that Ht�f � is �
or equal to H. From this, it is clear that rt�·� is constant on H. In order to
complete the proof of this lemma, we need to prove that rf is independent
of f . Let f� g ∈ H. Since C is ρ-a.e. compact, there exists a subsequence
�Tni�g��i of �Tn�g��n which ρ-a.e. converges to h ∈ C. Since H satisfies
property (3.1), we have h ∈ H. Lemma 1.3 implies

ρ�Tnf − h� ≤ lim inf
i→∞

ρ�Tnf − Tnig��

Hence

rf = rf �h� = lim sup
n→∞

ρ�Tnf − h�

≤ lim sup
n→∞

lim inf
i→∞

ρ�Tnf − Tnig�

≤ lim sup
n→∞

lim sup
m→∞

ρ�Tnf − Tmg�

≤ lim sup
m→∞

ρ�f − Tmg� = rg�f � = rg�

which obviously implies rg = rf .

Recall that if ρ satisfies the �2-type condition, then ρ-convergence and
norm (i.e., Luxemburg norm) convergence coincide. We have the following
result:

Lemma 3.3. Let ρ be a convex modular function satisfying the �2-type
condition. Let S be a nonempty, norm-compact subset of Lρ with diamρ�S� >
0. Then there exists f ∈ conv�S� such that

sup�ρ�g − f � � g ∈ S� < diamρ�S��
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Proof. The proof is similar to the classical one known in Banach spaces.
Indeed, since S is compact and ρ is norm continuous, there exist f0� f1 ∈ S
such that ρ�f0 − f1� = diamρ�S�� Let S0 be a maximal subset of S such that
f0� f1 ∈ S0 and for any f� g ∈ S0, f �= g, we have ρ�f − g� = diamρ�S�. Since
S is compact, S0 must be finite. Write S0 = �f0� f1� f2� � � � � fn� and define

h = f0 + f1 + · · · + fn
n+ 1

�

Since S is compact, there exists g0 ∈ S such that

ρ�g0 − h� = sup�ρ�g − h� � g ∈ S��
On the other hand, using the convexity of ρ, we get

ρ�g0 − h� = ρ

(
k=n∑
k=0

(
1

n+ 1

)
g0 −

k=n∑
k=0

(
1

n+ 1

)
fk

)

≤
k=n∑
k=0

(
1

n+ 1

)
ρ�g0 − fk� ≤ diamρ�S��

If ρ�g0 − h� = diamρ�S�, then we must have ρ�g0 − fk� = diamρ�S�, for
k = 0� 1� � � � � n. This will contradict the maximality of S0� Hence

sup�ρ�g − h� � g ∈ S� = ρ�g0 − h� < diamρ�S��

4. MAIN RESULTS

Theorem 4.1. Let ρ be a convex, ρ is a convex, σ-finite function modular
satisfying the �2-type condition and C be a ρ-bounded, ρ-a.e. compact subset
of Lρ. Let T � C → C be an asymptotically nonexpansive mapping. Let H be
a convex subset of C such that:

(i) if f ∈ H then �ρ−a�e�f � ⊂ H;
(ii) for each f ∈ H, any subsequence �Tni�f ��i of �Tn�f ��n, has a

ρ-convergent subsequence.

Then T has a fixed point.

Proof. Consider the family � of nonempty ρ-a.e. compact subset of H
which satisfies property (3.1). � is not empty since H ∈ � . By the previ-
ous results, � has a minimal element. Let K be a minimal element of � .
Assume that K has more than one point, i.e., diamρ�K� > 0. Let f ∈ K.
Set

S = ��·��f � = �g ∈ H�Tni�f � �·�-converges to g for some ni ↑ ∞��
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It is easy to see that S ⊂ K. We claim that S = T �S�. Indeed, let g ∈ S.
Then there exists a sequence �Tni�f ��i which �·�-converges to g. Since

T is continuous, we have Tni+1�f � �·�−→ T �g�. By definition of S, we get
T �g� ∈ S, i.e., T �S� ⊂ S. Let us show the other inclusion, i.e., S ⊂ T �S�.
Let g ∈ S. Again by definition of S, there exists a sequence �Tni�f ��i which
�·�-converges to g. The sequence �Tni−1�f ��i has a norm convergent sub-
sequence, say �Tnφ�i�−1�f ��i. Let h be its �·�-limit. Since T is continuous,
we get

T �h� = T
(

lim
i→∞

Tnφ�i�−1�f �
)
= lim

i→∞
Tnφ�i� �f � = g�

Hence g ∈ T �S�, i.e., S ⊂ T �S�. So our claim is proved, i.e., T �S� = S. Next,
notice that the assumption (ii) implies that S is norm compact. Lemma 3.3
implies the existence of f0 ∈ conv�S� ⊂ K such that

sup�ρ�g − f0� � g ∈ S� < diamρ�S�� �A�
Let r = sup�ρ�g − f0� � g ∈ S�. Set

D =
{
h ∈ K� sup

g∈S
ρ�g − h� ≤ r

}
�

Since f0 ∈ D and ρ is convex, D is a nonempty convex subset of K. We
claim that D = K. Indeed, let us first show that D is ρ-a.e. compact. By the
assumption (ii), it is enough to show that D is ρ-a.e. closed. Let �hn�n be a
sequence in D such that hn

ρ−a�e�−→ h ∈ Lρ. Fix g ∈ S. Since g−hn
ρ−a�e−→ g−h,

Lemma 1.3 implies

ρ�g − h� ≤ lim inf
n→∞ ρ�g − hn�

which yields

ρ�g − h� ≤ lim inf
n→∞

(
sup�ρ�f − hn� � f ∈ S�

)
≤ r�

Hence sup�ρ�h− g� � g ∈ S� ≤ r, i.e., h ∈ D. Next we check that D satisfies
property (3.1). Indeed, let f ∈ D and g ∈ �ρ−a�e�f �. Then there exists a

sequence �Tni�f �� ρ−a�e�−→ g. Using Lemma 1.3 we obtain

ρ�g − h� ≤ lim inf
n→∞ ρ�Tni�f � − h� ≤ lim sup

n→∞
ρ�Tnf − h�

for any h ∈ S. Since T �S� = S, there exists a sequence �un�n in S such that
h = Tn�un�, for any n ≥ 1. Hence

ρ�g − h� ≤ lim sup
n→∞

ρ�Tnf − Tnun� ≤ lim sup
n→∞

knρ�f − un�

≤ lim sup
n→∞

ρ�f − un� ≤ sup�ρ�f − u� � u ∈ S� ≤ r�
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So sup�ρ�g − h� � h ∈ S� ≤ r which gives g ∈ D. Thus D satisfies
property (3.1) and by minimality of K, we obtain D = K. But

diamρ�D� ≤ r < diamρ�S� ≤ diamρ�K��
which is a contradiction. Therefore, K is reduced to one point. Property (3.1)
will force this point to be a fixed point of T .

Now we are ready to state and prove the main result of this work.

Theorem 4.2. Let ρ be a convex, σ-finite function modular satisfying the
�2-type condition and C be a convex ρ-bounded and ρ-a.e. compact subset
of Lρ. Let T � C → C be ρ-asymptotically nonexpansive. Then T has a fixed
point.

Proof. Let � be the family of nonempty convex subsets of C which
satisfy the property (3.1). � is not empty since C ∈ � . By Zorn’s lemma,
� has a minimal element. Let H be a minimal element of � . Let us show
that H satisfies the hypothesis of Theorem (4.1). It suffices to check that
H satisfies property (ii). Let r be defined on H as in Lemma (3.2). If r = 0
we have

lim
n→∞Tnf = g

for any f� g ∈ H, which implies (ii). Otherwise, assume that r > 0. Let f ∈
H such that there exists a sequence �Tnif�i which has no norm-convergent
subsequence. Thus, there exists ε > 0 and a subsequence �Tn�k�f�k such
that

Sep
({
Tn�k�f

}
k

) = inf
{
ρ
(
Tn�k�f − Tn�k′�f

)
k �= k′� ≥ ε�

Since H is ρ-a.e. compact, there exists f∞ ∈ H such that Tn�k�f
ρ−a�e−→ f∞ ∈

H as k → ∞. Without loss of generality, we may assume the existence of

lim
k→∞

ρ�Tn�k�f − f∞� = l�

Since lim supn→∞ ρ�Tnf − f � = r, we choose η > 0 such that η < ε/2, and
an integer n0 ≥ 1, such that for all n ≥ n0 we have

ρ�Tnf − f � < r + η�

Fix n ≥ n0. There exists k0 ≥ 1 such that for all k ≥ k0, we have n�k� ≥
n+ n0 and

ρ�Tnf − Tn�k�f � = ρ�Tnf − Tn+�n�k�−n�f � = ρ�Tnf − Tn�Tn�k�−nf ��
≤ knρ�f − Tn�k�−nf � < kn�r + η��
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Note that if fn
ρ−a�e−→ f and Sep�fn�n ≥ ε, then by Lemma 1.3, we have

ε ≤ lim inf
m→∞ lim inf

n→∞ ρ�fn − fm� ≤ 2 lim inf
n→∞ ρ�fn − f ��

Combined with Lemma 1.3, we get

lim inf
n→∞ ρ�fn� = lim inf

n→∞ ρ�fn − f � + ρ�f � ≥ ε

2
+ ρ�f ��

In particular, since �Tn�k�f − Tnf�k is ρ-a.e. convergent to f∞ − Tnf as
k → ∞ and satisfies Sep��Tn�k�f − Tnf�k� ≥ ε, we get

ρ�Tnf − f∞� ≤ lim inf
k→∞

ρ�Tn�k�f − Tnf � − ε

2
�

Hence

ρ�f∞ − Tnf � ≤ r + η− ε

2
which implies

r = lim sup
n→∞

ρ�f∞ − Tnf � ≤ r + η− ε

2
< r�

This contradiction completes the proof of Theorem 4.2.

Assume that Lρ = Lp���µ� for a σ-finite measure µ. If C is a convex,
bounded, and closed subset of Lp for 1 < p < ∞ and T � C → C is
asymptotically nonexpansive, it is known that C has a fixed point because
Lp is uniformly convex. However, the result does not holds for p = 1
(even for nonexpansive mappings, see [1]). Since L1 is a modular space,
Theorem 4.1 implies the existence of a fixed point if p = 1 when C is
ρ-a.e. compact. Thus we can state.

Corollary 4.1. Let ���µ� be as above, C ⊂ L1���µ� a convex bounded
set which is compact for the topology of the convergence local in measure, and
T � C → C asymptotically nonexpansive. Then, T has a fixed point.

Proof. Under the above hypothesis ρ-a.e. compact sets and compact sets
in the topology of convergence local in measure are identical.
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