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Abstract

In this paper, we show that nonempty closed convex subsets of a metric tree enjoy many
properties shared by convex subsets of Hilbert spaces and admissible subsets of hyperconvex
spaces. Furthermore, we prove that a set valued mapping T ∗ of a metric tree M with convex
values has a selection T : M → M for which d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y)) for each x, y ∈ M .
Here by dH we mean the Hausdroff distance. Many applications of this result are given.
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1 Introduction

The study of injective envelopes of metric spaces, also known as metric trees (R-trees or T-theory),
has its motivation in many subdisciplines of mathematics as well as biology/medicine and computer
science. Its relationship with biology and medicine stems from the construction of phylogenetic trees
[24]. Concepts of “string matching” in computer science is closely related with the structure of met-
ric trees [5]. In the definition of an ordinary tree all the edges are assumed to have the same length
and therefore the metric is not often stressed. A metric tree is a generalization of an ordinary tree
which allows for different length edges. Thus emphasizing the behavior of free actions on metric
trees. (for more details see [22],[23]). Metric trees were first introduced by J. Tits [26] in 1977. A
metric tree is a metric space (M, d) such that for every x, y in M there is a unique arc between x
and y and this arc is isometric to an interval in R . For example, a connected graph without loop
is a metric tree. One basic property of metric trees is their one-dimensionality. Around the same
time period, while studying t-RNA molecules of the E. Coli bacterium, M. Eigen raised several
questions which led A. Dress [11], [12] to construct metric trees (named as T -theory). Metric trees
also arise naturally in the study of group isometries of hyperbolic spaces. For metric properties of
trees we refer to [10]. Topological characterization of metric trees were explored in [20] and [21]
where it was proved that for a separable metric space (M, d) the following are equivalent:

1. M admits an equivalent metric ρ such that (M, ρ) is an metric tree.
2. M is locally arcwise connected and uniquely arcwise connected.

Throughout this paper, we will make use of the hypercconvexity of metric trees. First let us
recall the definition of a hyperconvex metric space.
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Definition 1.1 A metric space (M,d) is said to be hyperconvex if
⋂

iεI

B(xi; ri) 6= φ for any collection
(
B(xi; ri)

)
i∈I

of closed balls in M for which d(xi, xj) ≤ ri + rj , for any i, j ∈ I.

This notion was first introduced by Aronszajn and Panitchpakdi in [3], where it is shown that a
metric space is hyperconvex if and only if it is injective with respect to nonexpansive mappings.
Later Isbell [13] showed that every metric space has an injective hull, therefore every metric space is
isometric with a subspace of a minimal hyperconvex space. Hyperconvex metric spaces are complete
and connected [16]. The simplest example of hyperconvex space is the set of real numbers R or
a finite dimensional real Banach space endowed with the maximum norm. While Hilbert space l2

fails to be hyperconvex, the spaces L∞ and l∞ are hyperconvex.
There is a close connection between hyperconvex spaces and metric trees. In [2], authors take the

definition of a metric tree from A. Dress and show that every complete metric tree is hyperconvex.
On the other hand, in [18] using the definition of R-tree given by J. Tits, it is shown that a metric
space M is a complete R-tree if and only if M is hyperconvex with unique metric segments. For
more about hyperconvex spaces and fixed point theorems in hyperconvex spaces we refer to [15]
and [16]. In this paper we focus on external hyperconvexity and utilize this concept to obtain a
selection theorem for a set valued function on a metric tree.

2 Basic Definitions and Results

We begin by describing the relevant notation. For a subset C of a metric space M , we denote the
ε-neighborhood of C by Nε(C),

Nε(C) = {x ∈ M : dist(x,C) ≤ ε},

where dist(x,C) = inf{d(x, c); c ∈ C}.

Definition 2.1 A subset C of a metric space M is said to be externally hyperconvex relative to
M , if given any family of points {xα}α∈Γ in M and a family of {rα}α∈Γ of real numbers satisfying

d(xα, xβ) ≤ rα + rβ and dist(xα, C) ≤ rα

for any α, β ∈ Γ, then it follows that
⋂

α∈Γ

B(xα; rα)
⋂

C 6= ∅.

Notice that, in the above definition, centers of the balls {xα} are not necessarily taken in C. This
concept was originally introduced by Aronszajn and Panitchpakti in their seminal paper [3], where
they have shown that:

1. Any admissible subset of a hyperconvex space M is externally hyperconvex relative to M .
2. The externally hyperconvex subsets of M are proximinal. (i.e., If C is externally hyperconvex
relative to M and if x ∈ M , then there exists c∗ ∈ C such that d(x, c∗) = dist(x, C).)

It is known that not every hyperconvex space is externally hyperconvex [17]. Throughout this
paper we use B(M) to denote the family of all nonempty bounded subsets of M .We will put the
Hausdorff metric dH on B(M). As usual, the Hausdorff metric is defined as:

dH(A,B) = inf{ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}.
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Let T ∗ : M → B(M) be a set-valued function. A selection is a map T : M → M such that
T (x) ∈ T ∗(x) for all x in M . Selection theorems appear in variety of mathematical problems (or
many problems in mathematics can be rephrased as selection problems). Depending on the context
one usually considers selections with some additional properties such as, ”continuous”, ”measur-
able”, ”nonexpansive,” etc. For example in [25], R. Sine has a selection theorem for nonexpansive
maps T ∗ : M → A(M), where A(M) is the family of admissible subsets of the hyperconvex space
M . For more, on selection and Michael’s selection theorems in particular, we refer to [6]. Selection
theorems are also utilized in problems related to extension of operators. One such example is due
to M. Zippin [27], where by using Michael’s continuous-selection theorem he obtains an extension
theorem concerning linear maps from subspaces of c0 into C(K), with K being compact and Haus-
dorff. In [16], a selection theorem was proved for set valued mapping of a hyperconvex metric space
M which takes values in the space of nonempty externally hyperconvex subsets H (relative to M).
Our purpose here is to prove a similar theorem in the context of metric trees.
Since a metric tree is a space in which there is only one path between two points x and y, this
would imply that if z is a point between x and y, by which we mean if d(x, z) + d(z, y) = d(x, y),
then we know that z is actually on the path between x and y. This will motivate the next concept
of a metric interval.

Definition 2.2 Let (M, d) be a metric space and let x, y ∈ M . An arc from x to y is the image
of a topological embedding α : [a, b] → M of a closed interval [a, b] of R such that α(a) = x and
α(b) = y. A geodesic segment from x to y is the image of an isometric embedding α : [a, b] → M
such that α(a) = x and α(b) = y. The geodesic segment will be called metric segment and denoted
by [x, y] throughout this work.

Now we are ready to define a metric tree.

Definition 2.3 A metric tree is a nonempty metric space M satisfying:

(a) Any two points of x, y ∈ M , x and y are the endpoints of a metric segment [x, y].
(b) If x, y, z ∈ M then [x, y] ∩ [x, z] = [x,w] for some w ∈ M (i.e., if we have two metric segments
with a common endpoint, then their intersection is a metric segment.)
(c) If x, y, z ∈ M and [x, y] ∩ [y, z] = {y} then [x, y] ∪ [y, z] = [x, z] (i.e., if two metric segments
intersect in a single point, then their union is a metric segment.)

Next we give some basic properties of metric segments.

Lemma 2.1 Let (M,d) be a metric space and x, y ∈ M , with x 6= y.

1. If z ∈ [x, y], then [x, z] ⊂ [x, y].

2. If M is a metric tree, then for any z ∈ M , there is a unique w ∈ [x, y] such that

[x, z] ∩ [y, z] = [w, z].

The proof is classical and may be found in [8] on page 33.

Definition 2.4 Let M be a metric tree and C ⊂ M . We say C is convex, if for all x, y ∈ C we
have [x, y] ⊂ C.

3



Clearly, a metric tree M and the ∅ are convex. Also, any closed ball B(a, r) = {z ∈ M : d(a, z) ≤ r}
in a metric tree is also convex. To see this, take two arbitrary elements x, y of B(a, r) and let
z ∈ [x, y]. From the above lemma, there exists a unique w ∈ [x, y] such that

[x, a] ∩ [y, a] = [w, a].

Since [x, y] = [x,w] ∪ [w, y], we have z ∈ [x,w] or z ∈ [w, y]. Without loss of generality, assume
z ∈ [x,w], then

d(a, z) ≤ d(a,w) + d(w, z) ≤ d(a,w) + d(w, z) + d(x, z) = d(a,w) + d(x,w) = d(a, x) ≤ r ,

which implies z ∈ B(a, r).

The following notations will be referenced throughout this paper. Let (M, d) be a metric tree
and let A be a nonempty bounded subset of M . Set

(1) co(A) = ∩{B : B is a closed ball and A ⊂ B}.

The subset A is called admissible if co(A) = A, (i.e., A is an intersection of closed balls.) Let A(M)
denote the collection of admissible subsets in M . Let C(M) denote the collection of all closed convex
subsets of M . We set:

(2) conv(A) = ∩{B : B is a convex subset of M such that A ⊆ B}.

Since closed balls are convex, we have A(M) ⊂ C(M). Moreover, this is a proper inclusion. To see
this, we need to make a couple of observations. First, if one has x 6= y with [x, y] ⊂ B(a, r) and m
is the midpoint of [x, y], then

B

(
m,

d(x, y)
2

)
⊂ B(a, r)

which implies B

(
m,

d(x, y)
2

)
⊂ co([x, y]). Indeed, considering z ∈ B

(
m,

d(x, y)
2

)
, using the

properties of metric trees, we have d(a,w) + d(w, y) = d(a, y) or

d(a,w) + d(w, m) + d(m, y) = d(a, y) ≤ r,

which implies that d(a,w) + d(w,m) ≤ r − d(x, y)/2. The triangle inequality will then imply

d(a, z) ≤ d(a,m) + d(m, z) ≤ r − d(x, y)
2

+
d(x, y)

2

and therefore z ∈ B(a, r) and from the definition of cov([x, y]), we also have z ∈ co([x, y]). Moreover
closed unit balls in a metric tree may not be compact. Indeed, take closed unit ball in R2 with
radial metric. Looking at x, y ∈ B(0, 1) with x 6= y, then the radial distance between x and y is
2. Also any metric segment in B(0, 1) is contained in co([x, y]), which implies that co([x, y]) is not
compact for this distance. But [x, y] is compact and convex. This example was suggested to us by
Kirk [19] . For more examples, we suggest the wonderful paper by Bestvina [7].

The following result due to Baillon [4] is crucial in our investigation of C(M).

Theorem 2.1 [4] Let M be a bounded metric space and let {Hβ}β∈Γ be a decreasing family of
nonempty hyperconvex subsets of of M , then

⋂

β∈Γ

Hβ 6= ∅ and is hyperconvex.
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3 The Nearest Point Map

Let C be a closed convex subset of a metric tree M . If for every point x ∈ M there exists a
nearest point in C to x, and if this point is unique, we denote this point by PC(x), and call the
mapping PC the metric projection from M into C. In a Hilbert space, the metric projections on
closed convex subsets are nonexpansive. In uniformly convex spaces, the metric projections are
uniformly Lipschitzian. In fact, they are nonexpansive if and only if the space is Hilbert. In what
follows we will show that these metric projections on closed convex subsets of metric trees are
nonexpansive. This result is not known in hyperconvex metric spaces. Indeed, one can show that
a nonexpanive retract into an admissible subset always exists which may not be in general the
nearest point projection.

The existence of a nearest point relies on some kind of compactness which reduces to the
reflexivity in the linear case.

Theorem 3.1 Let M be a bounded metric tree. Then C(M) is compact, (i.e., for any family
{Cβ}β∈Γ in C(M) such that

⋂

β∈Γf

Cβ 6= ∅, where Γf is any finite subset of Γ, we have

⋂

β∈Γ

Cβ 6= ∅

and is in C(M)). Moreover C(M) is uniformly normal.

The compactness of C(M) is a direct consequence of Baillon’s theorem. Indeed, convex subsets
of metric trees are subtrees. Therefore they must be hyperconvex. The uniform normality of C(M)
is also consequence of the hyperconvexity property. In this case, we have

R(C) = inf
{

sup
x∈C

d(x, c); c ∈ C

}
=

1
2

diam(C)

for any bounded nonempty closed convex subset C.

Next we discuss the proximinality of the closed convex subsets of a metric tree.

Lemma 3.1 If C is a nonempty bounded convex subset of a metric tree M , then

1. For any x ∈ M there exists cx ∈ C such that

d(x,C) = inf{d(x, c); c ∈ C} = d(x, cx).

2. For any x ∈ M , the set PC(x) is a singleton, (i.e., PC is single-valued.) Moreover if c ∈ C we
have

d(x, PC(x)) + d(PC(x), c) = d(x, c)

(i.e., PC(x) ∈ [x, c] the unique segment joining x to c.)

Proof:
1. Since C is not empty, the number d(x, C) is finite. Let ε > 0 then

Cε = C ∩B(x, d(x,C) + ε)

is a bounded nonempty closed convex subset of C. The compactness of C(M) implies that

PC(x) = {c ∈ C; d(x, c) = d(x,C)}
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is not empty.

2. We know that PC(x) is not empty. Let cx ∈ PC(x) and c ∈ C. Then, since M is a metric tree
there exists z ∈ M such that

[c, x] ∩ [c, cx] = [c, z].

Because C is convex, we have z ∈ [c, cx] ⊂ C. Also we have

d(x, z) + d(z, cx) = d(x, cx)

so
d(x,C) ≤ d(x, z) ≤ d(x, z) + d(z, cx) = d(x, cx) = d(x,C)

which obviously implies d(z, cx) = 0 or z = cx. So cx ∈ [x, c], which yields what we want. Clearly
this will imply that PC(x) is reduced to one point.

Next, we discuss another behavior of the retract PC .

Lemma 3.2 Let x, y ∈ M . Set cx = PC(x) and cy = PC(y), r(x) = d(x,C) = d(x, cx) and
r(y) = d(y, C) = d(y, cy). We have either

d(cx, cy) = d(x, y)− r(x)− r(y) ≤ d(x, y)

or cx = cy. In particular, PC is nonexpansive.

Proof: Since M is a metric tree, there exists z ∈ M such that [y, x]∩ [y, cx] = [y, z]. Assume z ∈ C,
since z ∈ [x, cx]. Based on what we have shown above, we must have z = cx. So d(x, cx)+d(cx, y) =
d(x, y). Since d(cx, cy) + d(cy, y) = d(cx, y), we get

d(x, cx) + d(cx, cy) + d(cy, y) = d(x, y)

which implies r(x) + d(cx, cy) + r(y) = d(x, y), or

d(cx, cy) = d(x, y)− r(x)− r(y).

Assume that z 6∈ C, and consider cz = PC(z). Since z ∈ [cx, x] we get d(x, cx) = d(x, z) + d(z, cx).
And from the above properties we have d(cx, cz) + d(cz, z) = d(cx, z). So

d(x, z) + d(z, cz) + d(z, cx) = d(x, cx)

which yields

d(x, cz) ≤ d(x, z) + d(z, cz) ≤ d(x, z) + d(z, cz) + d(z, cx) = d(x, cx).

By the definition of PC(x) we get cz = cx. A similar argument will lead to cz = cx = cy.

The fact that the nearest point projection onto convex subsets of metric trees is nonexpansive
follows also from the fact that this is true in the more general setting of CAT(0) spaces (see p. 177
of [9]).

The next theorem is crucial for our main result. It shows that convex subsets are little more
than just hyperconvex. They are externally hyperconvex which was previously unknown.
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Theorem 3.2 If C is a nonempty convex subset of a metric tree M , then C is externally hyper-
convex with respect to M .
In other words, for any (xα)α∈Γ in M and (rα)α∈Γ positive numbers such that

d(xα, xβ) ≤ rα + rβ

and
d(xα, C) ≤ rα

for any α, β ∈ Γ. Then
C

⋂ ( ⋂

α∈Γ

B(xα, rα)
)
6= ∅.

Proof: First set
PC(xα) = cα

and
r(xα) = d(xα, cα) = d(xα, C)

for any α ∈ Γ. Then for any α, β ∈ Γ we have either

d(cα, cβ) = d(x, y)− r(xα)− r(xβ) ≤ d(x, y)

or cα = cβ. Note that our assumption implies

r(xα) = d(xα, cα) = d(xα, C) ≤ rα.

In both cases we have
d(cα, cβ) ≤ rα + rβ − r(xα)− r(xβ).

Since C is hyperconvex we have

C∗ = C
⋂( ⋂

α∈Γ

B
(
cα, rα − r(xα)

))
6= ∅.

Let c ∈ C∗. Then we have c ∈ C and

d(c, cα) ≤ rα − r(xα)

but
d(xα, c) = d(xα, cα) + d(cα, c) = r(xα) + d(c, cα) ≤ rα.

In other words, we have
c ∈ C

⋂( ⋂

α∈Γ

B(xα, rα)
)

which completes the proof of our theorem.

In the next section, we will discuss how using the above results shows the existence of selections
to multivalued maps.
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4 Main Results

The selection theorem stated here is similar to the main result of [16]. Throughout this section
C(M) denotes the family of all nonempty bounded closed convex subsets of a metric tree M .

Theorem 4.1 Let M be a metric tree and T ∗ : M → C(M). Then there exists a mapping T :
M → M for which T (x) ∈ T ∗(x) for each x ∈ M and for which

d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y))

for each x, y ∈ M .

Proof: Let F denote the collection of all pairs (A, T ) such that




T : A → M,
T (a) ∈ T ∗(a),
d(T (x), T (y)) ≤ dH(T ∗(x), T ∗(y))

for all a ∈ A, and x, y ∈ M . Since ({x}, T ) ∈ F for any choice of x ∈ M and T (x) ∈ T ∗(x), we
have F 6= ∅. Define an order relation on F by setting

(A1, T1) ¹ (A2, T2) ⇔ A1 ⊂ A2 and T2|A1 = T1.

Let {(Aα, Tα)} be an increasing chain in (F ,¹). Then it follows

(⋃
α

Aα, T

)
∈ F , where T |Aα =

Tα. This element is obviously an upper bound of the family with respect to the defined order. This
allows for the use of Zorn’s lemma, which ensures us of the existence of a maximal element (A, T )
in (F ,¹). We claim that A = M . Assume not and select x0 ∈ M \ A. Set Ã = A ∪ {x0} and
consider the set

J =
⋂

x∈A

B
(
T (x); dH(T ∗(x), T ∗(x0))

)
∩ T ∗(x0) .

Since T ∗(x0) is a nonempty closed convex subset of the metric tree M , the results of the previous
section shows that J 6= ∅ if and only if for each x ∈ A, we have

dist(T (x), T ∗(x0)) ≤ dH(T ∗(x), T ∗(x0)).

Using the Lemma 3.1 above, we see that T ∗(x0) is a proximinal subset of M . Therefore the above
statement is true if and only if , for each x ∈ A,

B
(
T (x), dH(T ∗(x), T ∗(x0))

)⋂
T ∗(x0) 6= ∅.

By the definition of the Hausdorff distance, for each ε > 0 we have

T ∗(x) ⊂ NdH(T ∗(x),T ∗(x0))+ε(T
∗(x0)).

However, we are assuming that T (x) ∈ T ∗(x), so we must have

B
(
T (x), dH(T ∗(x), T ∗(x0)) + ε

)
∩ T ∗(x0) 6= ∅.

Since T ∗(x0) is proximinal in M and ε was arbitrary, we get

B
(
T (x), dH(T ∗(x), T ∗(x0))

)
∩ T ∗(x0) 6= ∅.
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Thus, we conclude J 6= ∅. Choose y0 ∈ J and define

T̃ (x) =

{
y0 if x = x0;
T (x) if x ∈ A .

Since
d(T̃ (x0), T̃ (x)) = d(y0, T (x)) ≤ dH(T ∗(x), T ∗(x0)),

for any x ∈ A, we conclude that
(
A∪{x0}, T̃

)
∈ F , contradicting the maximality of (A, T ), there-

fore A = M .

As a direct consequence we get the following Michael’s type result.

Corollary 4.1 Let M be a metric tree and T ∗ : M → C(M). Assume T ∗ is continuous, then T ∗

has a continuous selection. Moreover, if M is compact, then T ∗ has a fixed point, (i.e., there exists
x ∈ M such that x ∈ T ∗(x).)

The existence of a fixed point is a direct consequence of the main result of [14].

The conclusion of the above theorem will force the selection to inherit some Lipschitz-type
condition. Indeed we have the following:

Corollary 4.2 Let M be a metric tree and T ∗ : M → C(M). Assume T ∗ is a Lipschitzian mapping,
then T ∗ has a Lipschitzian selection T : M → M such that

Lip(T ) ≤ Lip(T ∗).

In particular, if the multivalued map T ∗ is nonexpansive then a nonexpansive selection may be
found. This will lead to the following theorem.

Theorem 4.2 Let M be a bounded metric tree and T ∗ : M → C(M). Assume T ∗ is nonexpansive.
Then T ∗ has a fixed point, (i.e., there exists x ∈ M such that x ∈ T ∗(x)). Moreover, the fixed point
set of T ∗ is convex.

Proof: To see that the fixed point set Fix(T ∗) is not empty results from the existence of the fixed
point of a nonexpansive selection of T ∗. In order to prove that Fix(T ∗) is convex, we need to adapt
the proof of the main theorem in this section. Indeed, consider the family F of all pairs (D,T ),
where Fix(T ∗) ⊂ D, and T : D → M , T (d) ∈ T ∗(d) for all d ∈ D, T (x) = x for all x ∈ Fix(T ∗),
and d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ D. By assumption (Fix(T ∗), Id) ∈ F, so F 6= ∅. The
argument is now a simple modification of the proof of Theorem 4.1. In this case we have

Fix(T ) = Fix(T ∗).

Since the fixed point set of nonexpansive maps are convex, we get the desired conclusion.

The authors wish to thank the referee for many useful remarks and for pointing out the references
[7], [8], and [9].
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