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1. INTRODUCTION 

Recently it has been shown [l-6] that many classical or nonclassical Banach spaces enjoy a 
uniform property with respect to a given topology. This enables the authors to prove a fixed 
point result via well known theorems [7-91. In this work we show that there is a more general 
property that reduces to the main conclusion of these results. Therefore, these conclusions should 
not be seen as particular results in particular spaces. We will also define and study properties 
such as Opial condition, Kadec-Klee and ergodic properties in hyperbolic metric spaces. 

2. BASIC DEFINITIONS 

In this section, X will stand for a Banach space and T for a topological vector space topology 
on X that is weaker than the norm topology. 

Definition 2.1. X will be said to satisfy the property (L) for the topology T if and only if there 
exists a continuous function 6(r, S) such that 

6 
( 

lim inf IJx, - ~(1, 1(x - y IJ 
> 

5 lim inf IIx, - ~11, (1) n-+* n-+m 

for every lx,) r-convergent to x in X and for every y E X. We will assume that 6 is increasing 
with respect to every variable, that is 

6(r, s) < tqr’, s) whenever r < r ‘, 
and 

6(r, s) < 6(r, s’) whenever s < s’. 

Let us mention that this property originated from Lim’s work [lo]. Indeed Lim proved that 
for lx,] E Ip (p E (1, m)), weakly convergent to X, then 

> 

l/P 

lim inf Ilx, - yll = lim inf 11x, - xIlp + JIx - y\lp , 
n-+-.7 n-w 
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for every y E Ip. The same conclusion holds in I’ for a(/‘, c,)-convergent sequences. Using this 
property Lim defined in any Banach space a property similar to the property (L). In his 
definition the inequality in the relation (1) is replaced by an equality. It is rather restricting to 
consider the equality since many examples do not satisfy this property. 

Definition 2.2. Let 6 be as in definition 2.1. 
(i) We will say that 6 is of type (I) if 

S(r, 0) = r, for every r. 

(ii) We will say that 6 is of type (II) if 

6(0, s) = s, for every s. 

Using the continuity of 6, it is not hard to see that if 6 is of type (I) (resp. (II)) then 

inf(d(r, so) - r; r E [0, A]J > 0 (resp. inf(b(r,, s) - s; s E [0, A]) > 0) 

for every r, > 0, s,, > 0 and A > 0. 

Examples. (1) Let (x,J E ip (p L 1) be weakly convergent to 0. Then for every x E ip we have 

lim inf 11x, - xIIP = lim inf I(x,I(p + IIxIIp. 
n-m n-+m 

This implies that ip (for p L 1) satisfies the property (L) for the weak topology, with 

6(r, s) = (rP + sp)“p. 

Since the weak topology and the strong topology coincide in l’, the property (L) for the weak 
topology reduces to a trivial relation in this case. Therefore, this example is interesting only 
whenp > 1. 

(2) Consider the space Ip (1 < p < m) with the new norm 

1x1 = llXflI + lb-II, x E lP 
where x+ and x- are the positive and negative parts of x, respectively, and 11. II stands for the 
IP-norm. The new space is denoted by lP, r . Let u E lp, , and define the support of u to be the set 
supp(u) = (n; u, # 0). Let u and u in lP,r, we will write supp(u) < supp(v) whenever for every 
i E supp(u) and j E supp(u) we have i 5 j. Let u and u be in iP,, such that ju + V I 1, u # 0, 
v # 0 and supp(u) n supp(u) = 0. Then we have the following inequality: 

124 + ?JI I (IlIP + lu(p)l’p. 
Indeed, since 

Iu + UI = 1/u+ + !I+[( + IIu- + u-11 = (IIu+lIp + lI?J+py + (Ilu-IIP + IIu-lIyp, 

then using the triangle inequality for the IP-norm in R2, we get 

IL4 + UI 2 (lulP + lulpyp. 

Therefore, (P, I * I) (for p 2 1) satisfies the property (L) for the weak topology, with 

6(r, s) = (rP + sp)“p. 
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(3) Let lx,] E 1’ be a(l’, c,)-convergent to 0. Then for every x E i’ we have 

lip*i_nflix, - xl1 = liF+ir$ llxnll + IIXII. 

Hence I’ satisfies the property (L) for the weak*-topology, with 

6(r, s) = r + s. 

A similar conclusion holds for Ii,, (1 < p < co), where fr,, stands for 1’ with the new norm 

1x1 = (I(x+IJp + (lx-I(JyP, x E I’, 

where x+ and x- are the positive and negative parts of x, respectively, and I( * )I stands for the 
/‘-norm. We use again the a(f’, c,)-convergence and get 

6(r, s) = (rP + spyp. 

(4) Let X be a Banach space that is reflexive and has a weakly sequentially continuous duality 
map J+ associated to a gauge function d, which is continuous, strictly increasing with $(O) = 0 
and limt,,$(t) = m. Set Q(t) = jh 4(x) dx. Then 

@(llx + rib = Q(llxll) + 1’ 0, Jm(x + o9) df, 
,O 

for all x, y E X. Therefore, if lx,) converges weakly to 0 in X and x E X, then 

Q, 
( 

lirnnef IIx, + xJI 
> k > 

= Q 1 ynzf IIx,I) + Q(llxll). 

Therefore, X satisfies the property (L) for the weak topology and 

6(r, s) = W’(aq-) + Q(s)). 

For more on this example see [l 11. 
(5) In [12] it is proved that if (f,) is a sequence of P-uniformly bounded functions on a 

measure space, and if f, + f almost everywhere, then 

li~+ir$~Jp = 1 i~+NL - fll” + IlfllPI 

for all p E (0, 00). A generalization of this relation to vector valued functions can be found in 
[I]. Therefore, Lp satisfies the property (L) for convergence almost everywhere with 

qr, s) = (rP + s”)? 

It is not hard to see that this conclusion still holds for convergence in measure. 
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(6) Consider the Banach space C1(Ip, jq) of nuclear operators, with l/p + l/q = 1. It is 
known (see [13, 141) that C,(Ip, lq) is the dual of K(iq, lp) the space of compact operators. Using 
Arazy’s ideas [15] one can show that if (x,) E C,(F’, lq) converges weak* to 0, then for every 
x E C,(I’, lq) we have 

liF+$flIx, + xlIq 2 ~hnn~fllxnllq + llxllq~ 

This clearly implies that Ci(I”, lq) satisfies the property (L) for the weak* topology and 

6(r,s) = (i&r9 + sqJ”. 

(7) Consider the Hardy space H’(A) where A is the open unit disc in the complex plane. 
Recall that 

where 

H’(A) = (f: A --) C;fholomorphic and ]lf]l < 001, 

1’ I.f(reio)I de]. 

It is well known that (see [16, 171) 

H’(A) = (C(U)/&(A))*, 

where II is the unit sphere in the complex plane, C(U) is the space of all continuous functions 
defined on II and 

&(A) = (f analytical functions on A such that f(O) = 01. 

using the ideas of Haagerup and Pisier [18] one can show that if (x,) E H’(A) converges weak* 
to 0 and if x E H’(A) then 

‘2 lim inf ~~x,~~2 + /]xll* 5 lim inf Ilx, - x/l*. 
n-+os n+cO 

Hence, H’(A) satisfies the property (L) for this weak* topology with 

6(r, s) = (+r* + s*)l’*. 

(8) Consider the spaces 

Ji = WJ E co; II(x, < ml, 
fori= 1,2,3where 

II~&)Il, = sup 
PI<P2<...<Prn 

( i Ix,, - XPjJ’>v2 j=l 

IIkz)ll* = sup 
Pl<PZ<‘..<PZk ( 

i lXP*, - x 
j=l 

pJ*)“2. 
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and 

IIwII3 = P,<P*s;f.<Pm ( jg2 Ix,, - XP,-,I2 + IXP, - %112)1’2* 
The choice of norms depends on the property that one would like to get. These spaces play a 
central role in the geometry of Banach spaces (see [19-211). It is not hard to see that if 
u = CiiPo;ei and u = Ci>p+l /3iei (where (e,) are the unit coordinate vectors) are in Jr or J2 
then 

lbllf + IMIT 5 IIn + 4lf, 
where i = 1,2. From this one can deduce that if lx,) converges weakly to 0 in J, or J2 then 

liF+Ef Ilx,llf + Ilxll~ 5 lim inf Ilx, - XII:, 
n-m 

for every x E Ji and i = 1,2. Therefore, the spaces J1 and J2 satisfy the property (L) for the 
weak topology and 

S(r, s) = (r2 + s2y2, 
for both spaces. 

3. UNIFORM OPIAL CONDITION AND UNIFORM KADEC-KLEE PROPERTY 

Throughout this section we will assume that the topology 7 is lower semicontinuous with 
respect to the norm, that is if lx,) r-converges to x E X, then 

llxll 5 lim inf llxnll. 
n-m 

It is easy to see that this will happen if and only if the closed balls are sequentially r-closed. 

Definition 3.1. We will say that X satisfies r-Opial condition if for every bounded lx,) E X that 
r-converges to x E X, then 

for every y # x. 

lim inf [lx, - x1( < liF+$f [Ix, - yI[, 
n-+05 

We will say that X satisfies the uniform r-Opial condition if for every R > 0, for every E > 0 
there exists q > 0 such that for every lx,) E X which r-converges to x E X and for every y E X, 
we have 

liFii_nfllx, - xl1 + rl I liF+$f Ilx, - yll, 

provided lim infllx, - XII 5 R and [Ix - yll 1 E. 
n-co 

Opial’s property plays an important role in the study of r-convergence of iterates 
nonexpansive mappings and of asymptotic behavior of nonlinear semigroups [22-261. Clearly 
uniform r-Opial condition implies r-Opial condition. This property is related to the property 
(L) as the next theorem shows. 
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THEOREM 3.1. Let X be a Banach space that satisfies the property (L) for r-convergent 
sequences. Assume that the associated function 6 is of type (I). Then X satisfies uniform 
r-Opial condition. 

Proof. Let E > 0 and lx,) be r-convergent to x E X. Let z E X such that 11x - zll 2 E. Then 
since X satisfies the property (L) we have 

6 
( 

lim infllxn - XII, IIx - 211 n-m > 
I li~+~fllx. - 211. 

Using the properties of 6 we get 

6 
( 

lim inf [lx, - xl], c 
> 

5 lim inf Ilx, - 211. 
n-m n-m 

Since 6 is of type (I), then there exists q such that 

lim inf [lx, - xl1 + q 5 6 lim inf Ilx, - xl], E . 
n+cc ( n-m > 

This clearly implies the conclusion of theorem 3.1. 

Using the examples discussed in the previous section we get the following corollary. 

COROLLARY 3.1. (1) lP,,, for p E [ 1, co), satisfies weak-uniform Opial condition. 
(2) Let t be the weak*-topology o(l’, co). Then /i,,, for p E [ 1, 03), satisfies r-uniform Opial 

condition. 
(3) Let X be a reflexive Banach space which has a weakly sequentially continuous duality 

map. Then X satisfies weak-uniform Opial condition. 
(4) Let r be the topology of convergence in measure. The Lp, for p > 0, satisfies r-uniform 

Opial condition. 
(5) The James’ spaces J, and J2 satisfy weak-uniform Opial condition. 

In the following we will discuss the case of spaces with 6 that is of type (II). Before we 
proceed, let us introduce the Kadec-Klee property (in short K-K property). 

Definition 3.2. We will say the X satisfies T-K-K property if for some E > 0 there exists q > 0 
such that for every (x,) in the unit ball of X r-convergent to x we have 

llxll 5 1 - rl 
provided that 

seplx,] = inf(llxn - x,1]; n f m) > e. 

We will say that X satisfies r-uniform K-K property if the above still holds for every E. 

This property originated in [27, 281. It was quickly related to the fixed point property 
through normal structure property [29, 301 (see the next section for the definitions). In [5, 311 
the authors introduced a Kadec-Klee property for other than the classical weak or 
weak*-topologies. 
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THEOREM 3.2. Let X be a Banach space that satisfies the property (L) for T convergent 
sequences. Assume that the associated function 6 is of type (II). Then X satisfies r-uniform 
Kadec-Klee property. 

Proof. Let e > 0 and (x,) in the unit ball be r-convergent to x. Assume that seplx,) > E. 
Using the triangle inequality one can show that (after throwing out at most one element of lx,)) 

Since 

i 5 lim inf 1(x, - xl/. 
n-02 

we get 

s(am inf (lx, - x(1, /x/l) 5 liFj:f l/x,Il, 
n+m 

using the fact that 6 is of type (II), then there exists q > 0 such that 

IIXII 5 1 - rl. 
This gives the desired conclusion. 

All, the spaces discussed in the previous examples have an associated function 6 that is of 
type (II). Then the next result will follow. 

COROLLARY 3.2. All the spaces discussed in the examples of the previous section satisfy 
r-uniform Kadec-Klee property. 

It is worthy to mention that this corollary not only includes known results but it adds other 
unknown ones. 

4. OPIAL CONDITION AND KADEC-KLEE PROPERTY IN HYPERBOLIC METRIC SPACES 

Let (M, d) be a metric space. Suppose there exists a family 5 of metric segments such that 
each two points x, y in M are endpoints of a unique metric segment [x, y] E 5 ([x, y] is an 
isometric image of the real line interval [0, d(x, y)]). We shall denote by (1 - p)x 0 By the 
unique point Z of [x, y] which satisfies 

d(x, 2) = Lwx, Y>, and d(z,y) = (1 - B)&GY). 

Such metric spaces are usually called convex metric spaces. If, moreover, we have for all p, x, y 
in M 
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then M is said to be a hyperbolic metric space. It is easy to check that in this case we have for 
all x, y, z, w  in M and /I E [0, l] 

d((1 - P)x 0 By, (1 - P)z 0 /3w) 5 (1 - P)@, z) + MY> w). 

In general the point 

where (xi, . . . , x,) in IM and (Si) in [0, l] such that C ri = 1, can be defined in a canonical 
fashion. In particular, for every no L 1, for every n = kn, + m and for every 
x1,x2, . . . . x,, EM, we have 

1 1 
ix1 0 p 0 . . . @ixn =? 

( 

izo@ . . ..+(l + jw 

where 

1 
Zi = -Xino+l 0 ‘** 0 ~x(i+l)n,, i= l,...,k- 1 

*0 

and 

This definition of convex combinations does not enjoy all the properties of linear convex 
combinations. Therefore, in this work, we will assume that the following property is satisfied 
by convex combinations 

for every (x,, . . ..x.+r) in Mand n 2 1. 
Clearly normed spaces are hyperbolic spaces. As nonlinear examples one can consider 

Hadamard manifolds [32] and the Hilbert open unit ball equipped with the hyperbolic metric 
[33]. We will say that a subset C of a hyperbolic metric space M is convex if [x, y] C C whenever 
x, y are in C. 

Let r be another topology on M that is weaker than the strong topology. We will assume that 
7 is lower semicontinuous, that is 

d(x, y) 5 lim inf d(x, , y,) 
Iz-+m 

for every (x,1 and {y,) in A4 r-convergent to x and y (respectively) in M. We will also assume that 
r-compact subsets are r-sequentially compact. 

One can mimic the definitions 2.1 and 2.2 in this setting. 

Definition 4.1. Let (M, d) be a hyperbolic metric space. 
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(1) We will say that M satisfies r-Opial condition if for every lx,] E it4 that r-converges to 
xtzMwe have 

for every y # x. 

lim inf d(x, , x) < lim inf d(x, , y), 
n+m n-+m 

(2) We will say that A4 satisfies the uniform r-Opial condition if for every R > 0, for every 
E > 0 there exists r~ > 0 such that for every lx,,) c M which r-converges to x E M and for every 
y E M, we have 

lim inf d(x,, x) + q 5 lim inf d(x,, y), 
n+m n-m 

provided lim inf d(x,, x) 5 R and d(x, y) L E. 
n-m 

(3) We will say that M satisfies r-Kadec-Klee property if for some E > 0 and every r > 0 
there exists r] > 0 such that for every lx,] in M r-convergent to x we have 

d(x, a) 5 r(1 - V) 
provided that d(x,, a) I r and 

seplx,] = inf(d(x,, x,); n f m) > r-c. 

We will say that M satisfies r-uniform Kadec-Klee property if the above holds for every E. 

Next we will discuss the relation between these two properties and the fixed point property. 
For D C A4 we set 

diam(D) = sup(d(x, y); x, y E DJ, 

r(x, 0 = suptd(x, Y); Y E Dl, 

r(D) = inflr(x, D); x E D], 

e(D) = (x ED; r(D) = r(x, 0)). 

Note that r(x, D) minimizes the radius of balls centered at x which contain D and that C(D) may 
be empty. However, if D is r-sequentially compact then C(D) is not empty. Indeed let lx,) be 
in D such that lim,,, r(x,, D) = r(D). Since D is r-sequentially compact then there exists a 
subsequence lx,,) that is r-convergent to x E D. Using the lower semicontinuity of T then 

r(x, D) I lim inf r(x,,, , D) = r(D). 
n-+co 

This clearly implies that x E C?(D). 
We will say that it4 satisfies the r-normal structure if and only if for every r-compact bounded 

convex subset D of M not reduced to one point has a nondiametral point x E D, that is 

r(x, D) < diam(D). 

Definition 4.2. A selfmap T defined on a subset D of M, is said to be the nonexpansive if 
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for every x, y E D. The fixed point set of T is defined as 

Fix(T) = (x E D; T(x) = xl. 

We will say that D c M has the fixed point property if every nonexpansive map defined on D 
has a nonempty fixed point set. 

Fixed point theory for nonexpansive mappings has its origins in the 1965 existence theorems 
[7-91. Although such mappings are natural extensions of the contraction mappings, it was clear 
from the outset that the study of nonexpansive mappings required techniques which go far 
beyond the purely metric approach. For more on the fixed point property see [34, 351. Our first 
result in this section relates the fixed point property to t-Opial condition. 

THEOREM 4.1. Let M be as described above and D be a r-sequentially compact bounded convex 
subset of M. We will assume that M satisfies the r-Opial condition and D is complete. Then D 
has the fixed point property. 

Proof. Let T: D -+ D be a nonexpansive map. We will show first that there exists a sequence 
lx,) E D such that 

lim d(x,, T&J) = 0. 
n-m 

Such a sequence is called a quasi fixed sequence. Indeed let E E (0, 1) and x,, E D. Set 

T,(x) = (1 - c)T(x) @ &x0. 

Since D is convex, this map is well defined. Using the hyperbolicity of M, one can show that 

w&(x), r,(Y)) 5 (1 - EMX,Y), 

for every x, y E D. Therefore, T, has a unique fixed point in D, say x,. It is easy to see that 

d(x, , T(x,)) 5 E diam(D). 

If we denote by x,, the fixed point of Tl,,, , we get 

lim d(x,, T(x,J) = 0. 
n+m 

On the other hand since D is r-sequentially compact there exists a subsequence lx,,] of lx,] that 
is r-convergent to x E D. Using the nonexpansiveness of T we deduce that 

lim inf d(x,, , T(x)) I lim inf d(x,, , x). 
“+m n-m 

Since M satisfies r-Opial condition we obtain T(x) = x. The conclusion of theorem 4.1 is, 
therefore, complete. 

It is clear from the proof that one does not need the convexity of D. Indeed this assumption 
can be replaced by assuming that D is starshaped, that is there exists x0 E D such that [x,, , x] is 
in D whenever x E D. 
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Let us add that under the assumptions of theorem 4.1 more can be said about the fixed point 
set when the map is affine. Recall that T: D -+ D (where D is convex) is said to be affine if for 
every x1,x2, . . . . x,~Danda,,a,,..., CY, E [0, l] such that C oli = 1, then 

T(qxl @ .+. @ cy,x,) = cast @ -1. 0 ol,T(x,). 

THEOREM 4.2. Let (M, d) be a hyperbolic metric space and D be a r-sequentially compact 
bounded convex subset of M. Assume that M satisfies the r-Opial condition. Let T: D -+ D be 
a nonexpansive affine map. Then for every x E D 

P(x) = r - lim 
( 

‘x@;T(x)@ e-- @ ; T’-‘(x) , 
n-m n i 

exists. P defines a nonexpansive projection on Fix(T). 

Proof. First we know from theorem 4.1 that Fix(T) is not empty. Let x E A4 and put 

y, = ;x@;T(x)@ -.- @ ; Tn-l(x) 

for every n 2 1. Let us show that fy,) is a quasi fixed sequence, that is lim d(y,, , T(y,)) = 0. 
Since T is affine then 

Therefore, 

T(y,) = ; T(x) @ ; T2(x) 0 ... @ t T”(x). 

Hence 

d(y,, T(y,)) I A d(x, T”(x)) I 1 diam(D). 

lim 4~,, T(Y,)) = 0. 

Using the argument shown in the proof of theorem 4.1, we obtain that any r-cluster point of 
(y,) is a fixed point of T. Let y be a r-cluster point of (y,) and set 

VII = 4Yn 9 Y) 

for every n 2 1. Let us prove that okn 5 q,, for every k 2 1. It is easy to see that 

Yk, = ;%I @ ;z, @ -” @-&l, 

where 

zi = ; Tin(,) @ ; Ti”+l(x) @ . . . @ ; Ti”+“-l(x), i= 1 ,...,k- 1. 

Since T is affine then 

zi = T’” ;x@AT(x)@ ..- @ ; T’+‘(X) 
> 

= T’“(y,) 
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for every i E [0, k - I]. Then using the fact that Y E Fix(T) and Tis nonexpansive we get 

This clearly gives qkn I f~, . The last step in our proof will be to show that 

lim d(Y,, Y) exists. 
n--r-J 

Let n, 1 1 and n > lzo, Then there exists k > 1 such that 

kn, 5 n < kn, + no. 

Let us rewrite Yn as 

Y.=+lQ l-2 w*, 
( > 

where W, = Ykno and 

so 

Using the definition of k, we deduce that 

lim ES! = 1. 
n+m n 

Therefore, 

which implies 
lim sup d(Y, , Y) = lim sup Wk(n)no 3 Y) 5 Ylno. 

n-ta, n-tco 

Since no was arbitrary we deduce 

lim sup d(y, , Y) 5 lim inf d(Y, , Y), 
II -+ co n-m 

which gives the desired conclusion. Let us show that (y,] has one t-cluster point. Assume not 
and let Y and Y’ be two distinct z-cluster points of (y,]. Using the z-Opial condition one can 
show easily that 

lim W,,Y) -c lim 0, ,u’). n-+m n+m 

This clearly implies a contradiction. Finally put 

P(x) = r - limy,. 
n-m 
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Then P(x) E Fix(T) and, therefore, we have P@‘(x)) = P(x). Since T is nonexpansive and d is 
lower semicontinuous, then P is nonexpansive. This completes the proof of theorem 4.2. 

One would ask whether P is affine. This Will happen if, moreover, we assume that convex 
combinations are r-sequentially continuous, that is if (x,) and Iv,) are r-convergent to x and y, 
respectively, then ]CYX~ @ (1 - cr)y,) r-converges to cry @ (1 - a)y for every cu E [0, I]. The 
next question will be to wonder whether a similar conclusion holds for nonaffine nonexpansive 
maps. Using Bruck’s ideas [36] one can indeed prove that the fixed point set is a nonexpansive 
retract of M. Bruck’s technique will not give an ergodic conclusion similar to the one of 
theorem 4.2. For more on this problem see [l, 37, 381. 

Before getting to the result that relates r-Kadec-Klee property to r-normal structure 
property, we need the following technical lemma [39]. 

LEMMA 4.1. Assume that the hyperbolic metric space M has not the r-normal structure 
property. Then there exists a bounded r-convergent sequence (x,] E M such that 

lim d(x,, Xi) = diam((x,]), 
n-m 

for every i 1 1. 

Proof. Assume that M fails to have the r-normal structure property. Then there exists D a 
r-compact convex subset of A4 not reduced to one point such that 

T(X, 0) = diam(D), 

for every x E D. Such a subset is called a diametral set. Let xr E D. Since ~(xr , D) = diam(D), 
one can find x2 E D such that 

diam(D) 
( > 

1 - $ I d(x, , x2). 

Assume that x1, x2, . . . , x, are constructed. Since D is convex then 

1 1 
-/l 0 ix” 0 .*. 0:X” ED. 

Our assumption on D implies that there exists x,+, E D such that 

By induction the sequence (x,) is constructed. Let i L 1 and n > i. Then since 

I i d(x,+ r , Xi) + 
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we get 

diam(D)(l - &) 5 id(,xn+,,xj) + (1 - l-J diam(D). 

This clearly implies 

diam(D)(l - &) 5 d(x,,+ i , Xi) I diam(D). 

Hence 
lim d(x,, , xi) = diam(D). 
n-m 

This conclusion is still valid for any subsequence of lx,]. Since D is r-compact, it is also 
r-sequentially compact. Then lx,) has a r-convergent subsequence. This completes the proof of 
lemma 4.1. 

THEOREM 4.3. Assume that M satisfies the r-uniform Kadec-Klee property. Then A4 has 
r-normal structure property. 

Proof. Assume not. Then there exists D r-compact bounded convex subset of M not reduced 
to one point such that r(x, D) = diam(D) for every x E D. Using lemma 4.1 one finds a 
sequence (x,) E D that is r-convergent to x E D and such that 

lim d(x,, xi) = diam(D), 
n--J 

for every i L 1. One can assume that sep(x,) 2 diam(D)/3. Since A4 satisfies r-uniform 
Kadec-Klee property there exists q > 0 such that for every y E D 

d(x, y) I diam(D)(l - r), 

since d(x,, , y) I diam(D) for every n L 1. Hence 

r(x, D) I diam(D)(l - q). 

This clearly contradicts our assumption on D. Therefore, the conclusion of theorem 4.3 holds. 

Finally it is worth mentioning that r-normal structure property is related to the fixed point 
property via Kirk’s theorem [40, 411. 

THEOREM 4.4. Assume that M has r-normal structure property. Let D be a r-compact bounded 
convex subset of M. Then D has the fixed point property. 

The proof of this theorem is standard and will not be given here. 
It is worth mentioning that a constructive proof of theorem 4.4 exists (see [42]), which 

requires only r-sequential compactness. Therefore, many definitions given above in terms of r- 
compact subsets, can be weakened to r-sequentially compact subsets. 

Acknowledgement-My thanks to the referee for many constructive suggestions regarding this paper and especially for 
bringing to our attention reference [6] that led to the example (2). 
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