INTEGRALS CONTAINING Csc(ax)

1.
$\displaystyle\int\csc axdx=\displaystyle \frac{1}{a}\ln(\csc ax-\cot ax)=\displaystyle \frac{1}{a}\ln\tan\displaystyle \frac{ax}{2}$

2.
$\displaystyle\int\csc^2 axdx=-\displaystyle \frac{\cot ax}{a}$

3.
$\displaystyle\int\csc^3 axdx=-\displaystyle \frac{\csc ax\cot ax}{2a}+\displaystyle \frac{1}{2a}\ln\tan\displaystyle \frac{ax}{2}$

4.
$\displaystyle\int\csc^n ax\cot axdx=-\displaystyle \frac{\csc^n ax}{na}$

5.
$\displaystyle\int\displaystyle \frac{dx}{\csc ax}=-\displaystyle \frac{\cos ax}{a}$

6.
$\displaystyle\int x\csc ax dx=\displaystyle \frac{1}{a^2}\left(ax+\displaystyle...
...laystyle \frac{2(2^{2n-1}-1)B_{n}(ax)^{2n+1}}{(2n+1)!}+ \cdot\cdot\cdot \right)$

where the constants Bn are the Bernoulli's numbers.

7.
$\displaystyle\int\displaystyle \frac{\csc ax}{x}dx=-\displaystyle \frac{1}{ax}+...
...displaystyle \frac{2(2^{2n-1}-1)B_{n}(ax)^{2n-1}}{(2n-1)(2n)!}+ \cdot\cdot\cdot$

where the constants Bn are the Bernoulli's numbers.

8.
$\displaystyle\int x\csc^2 axdx=-\displaystyle \frac{x\cot ax}{a}+\displaystyle \frac{1}{a^2}\ln\sin ax$

9.
$\displaystyle\int\displaystyle \frac{dx}{q+p\csc ax}=\displaystyle \frac{x}{q}-\displaystyle \frac{p}{q}\int\displaystyle \frac{dx}{p+q\sin ax}$

10.
$\displaystyle\int\csc^n axdx=-\displaystyle \frac{\csc^{n-2}ax\cot ax}{a(n-1)}+\displaystyle \frac{n-2}{n-1}\int\csc^{n-2}axdx$

[Tables]

S.O.S MATHematics home page

Copyright © 1999-2004 MathMedics, LLC. All rights reserved.
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA