INTEGRALS CONTAINING $\displaystyle \frac{1}{\sinh ax}$

1.
$\displaystyle\int\displaystyle \frac{dx}{\sinh ax}=\displaystyle \frac{1}{a}\ln\tanh\displaystyle \frac{ax}{2}$

2.
$\displaystyle\int\displaystyle \frac{dx}{\sinh^2 ax}=-\displaystyle \frac{\coth ax}{a}$

3.
$\displaystyle\int\displaystyle \frac{dx}{\sinh^3 ax}=-\displaystyle \frac{\coth ax}{2a\sinh ax}-\displaystyle \frac{1}{2a}\ln\tanh\displaystyle \frac{ax}{2}$

4.
$\displaystyle\int\displaystyle \frac{\coth ax}{\sinh^n ax}dx=-\displaystyle \frac{1}{na\sinh^n ax}$

5.
$\displaystyle\int\sinh ax dx=\displaystyle \frac{1}{a}\cosh ax$

6.
$\displaystyle\int \displaystyle \frac{x dx}{\sinh ax}=\displaystyle \frac{1}{a^...
...tyle \frac{2(-1)^n(2^{2n-1}-1)B_n(ax)^{2n+1}}{(2n+1)!}+\cdot\cdot\cdot \right\}$

where the constants Bn are the Bernoulli's numbers.

7.
$\displaystyle\int\displaystyle \frac{x dx}{\sinh^2 ax}=-\displaystyle \frac{x\coth ax}{a}+\displaystyle \frac{1}{a^2}\ln\sinh ax$

8.
$\displaystyle\int\displaystyle \frac{dx}{x\sinh ax}=-\displaystyle \frac{1}{ax}...
...aystyle \frac{(-1)^n 2(2^{2n-1}-1)B_n(ax)^{2n-1}}{(2n-1)(2n)!}+\cdot\cdot\cdot $

where the constants Bn are the Bernoulli's numbers.

9.
$\displaystyle\int\displaystyle \frac{dx}{q+p/\sinh ax}=\displaystyle \frac{x}{q}-\displaystyle \frac{p}{q}\int\displaystyle \frac{dx}{p+q/\sinh ax}$

10.
$\displaystyle\int\displaystyle \frac{dx}{\sinh^n ax}=\displaystyle \frac{-\coth...
...2} ax}-\displaystyle \frac{n-2}{n-1}\int\displaystyle \frac{dx}{\sinh^{n-2} ax}$

[Tables]

S.O.S MATHematics home page

Copyright © 1999-2004 MathMedics, LLC. All rights reserved.
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA