Implicit Differentiation - Exercise 1


Exercise 1. Find y' if xy3 + x2y2 + 3x2 - 6 = 1.

Answer. Let us use implicit differentiation. Then we take the derivative of the equation treating y as a function of x. We get

\begin{displaymath}(y^3 + x 3 y^2 y') + (2xy^2 + x^2 2 y y') + 6x = 0\;.\end{displaymath}

Algebraic manipulations give

\begin{displaymath}y' = - \frac{6x + y^3 + 2x y^2}{3xy^2 + 2x^2y} \cdot\end{displaymath}


[Back] [Next]
[Trigonometry] [Calculus]
[Geometry] [Algebra] [Differential Equations]
[Complex Variables] [Matrix Algebra]

S.O.S MATHematics home page


Copyright © 1999-2004 MathMedics, LLC. All rights reserved.
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA